Амплитуда колебаний напряжения формула

Электромагнитные колебания и волны

Свободные электромагнитные колебания. Колебательный контур

Электромагнитные колебания — это периодические изменения заряда, силы тока и напряжения, происходящие в электрической цепи. Простейшей системой для наблюдения электромагнитных колебаний служит колебательный контур.

Колебательный контур — это замкнутый контур, образованный последовательно соединенными конденсатором и катушкой.

Сопротивление катушки ​ \( R \) ​ равно нулю.

Если зарядить конденсатор до напряжения ​ \( U_m \) ​, то в начальный момент времени ​ \( t_1=0 \) ​, напряжение на конденсаторе будет равно ​ \( U_m \) ​. Заряд конденсатора в этот момент времени будет равен ​ \( q_m=CU_m \) ​. Сила тока равна нулю.

Полная энергия системы будет равна энергии электрического поля:

Конденсатор начинает разряжаться, по катушке начинает течь ток. Вследствие самоиндукции в катушке конденсатор разряжается постепенно.

Ток достигает своего максимального значения ​ \( I_m \) ​ в момент времени ​ \( t_2=T/4 \) ​. Заряд конденсатора в этот момент равен нулю, напряжение на конденсаторе равно нулю.

Полная энергия системы в этот момент времени равна энергии магнитного поля:

В следующий момент времени ток течет в том же направлении, постепенно (вследствие явления самоиндукции) уменьшаясь до нуля. Конденсатор перезаряжается. Заряды обкладок имеют заряды, по знаку противоположные первоначальным.

В момент времени ​ \( t_3=T/2 \) ​ заряд конденсатора равен ​ \( q_m \) ​, напряжение равно ​ \( U_m \) ​, сила тока равна нулю.

Полная энергия системы равна энергии электрического поля конденсатора.

Затем конденсатор снова разряжается, но ток через катушку течет в обратном направлении.

В момент времени ​ \( t_4=3T/4 \) ​ сила тока в катушке достигает максимального значения, напряжение на конденсаторе и его заряд равны нулю. С этого момента ток в катушке начинает убывать, но не сразу (явление самоиндукции). Энергия магнитного поля переходит в энергию электрического поля. Конденсатор начинает заряжаться, и через некоторое время его заряд равен первоначальному, а сила тока станет равной нулю.

Через время, равное периоду ​ \( T \) ​, система возвращается в начальное состояние. Совершилось одно полное колебание, дальше процесс повторяется.

Важно!
Колебания, происходящие в колебательном контуре, – свободные. Они совершаются без какого-либо внешнего воздействия — только за счет энергии, запасенной в контуре.

В контуре происходят превращения энергии электрического поля конденсатора в энергию магнитного поля катушки и обратно. В любой произвольный момент времени полная энергия в контуре равна:

где ​ \( i, u, q \) ​ – мгновенные значения силы тока, напряжения, заряда в любой момент времени.

Эти колебания являются затухающими. Амплитуда колебаний постепенно уменьшается из-за электрического сопротивления проводников.

Вынужденные электромагнитные колебания. Резонанс

Вынужденными электромагнитными колебаниями называют периодические изменения заряда, силы тока и напряжения в колебательном контуре, происходящие под действием периодически изменяющейся синусоидальной (переменной) ЭДС от внешнего источника:

где ​ \( \varepsilon \) ​ – мгновенное значение ЭДС, \( \varepsilon_m \) – амплитудное значение ЭДС.

При этом к контуру подводится энергия, необходимая для компенсации потерь энергии в контуре из-за наличия сопротивления.

Резонанс в электрической цепи – явление резкого возрастания амплитуды вынужденных колебаний силы тока в колебательном контуре с малым активным сопротивлением при совпадении частоты вынужденных колебаний внешней ЭДС с частотой собственных колебаний в контуре.

Емкостное и индуктивное сопротивления по-разному изменяются в зависимости от частоты. С увеличением частоты растет индуктивное сопротивление, а емкостное уменьшается. С уменьшением частоты растет емкостное сопротивление и уменьшается индуктивное сопротивление. Кроме того, колебания напряжения на конденсаторе и катушке имеют разный сдвиг фаз по отношению к колебаниям силы тока: для катушки колебания напряжения и силы тока имеют сдвиг фаз ​ \( \varphi_L=-\pi/2 \) ​, а на конденсаторе \( \varphi_C=\pi/2 \) ​. Это означает, что когда растет энергия магнитного поля катушки, то энергия электрического поля конденсатора убывает, и наоборот. При резонансной частоте индуктивное и емкостное сопротивления компенсируют друг друга и цепь обладает только активным сопротивлением. При резонансе выполняется условие:

Резонансная частота вычисляется по формуле:

Важно!
Резонансная частота не зависит от активного сопротивления ​ \( R \) ​. Но чем меньше активное сопротивление цепи, тем ярче выражен резонанс.

Чем меньше потери энергии в цепи, тем сильнее выражен резонанс. Если активное сопротивление очень мало ​ \( (R\to0) \) ​, то резонансное значение силы тока неограниченно возрастает. С увеличением сопротивления максимальное значение силы тока уменьшается, и при больших значениях сопротивления резонанс не наблюдается.

График зависимости амплитуды силы тока от частоты называется резонансной кривой. Резонансная кривая имеет больший максимум в цепи с меньшим активным сопротивлением.

Одновременно с ростом силы тока при резонансе резко возрастают напряжения на конденсаторе и катушке. Эти напряжения становятся одинаковыми и во много раз больше внешнего напряжения. Колебания напряжения на катушке индуктивности и конденсаторе всегда происходят в противофазе. При резонансе амплитуды этих напряжений одинаковы и они компенсируют друг друга. Падение напряжения происходит только на активном сопротивлении.

При резонансе возникают наилучшие условия для поступления энергии от источника напряжения в цепь: при резонансе колебания напряжения в цепи совпадают по фазе с колебаниями силы тока. Установление колебаний происходит постепенно. Чем меньше сопротивление, тем больше времени требуется для достижения максимального значения силы тока за счет энергии, поступающей от источника.

Явление резонанса используется в радиосвязи. Каждая передающая станция работает на определенной частоте. С приемной антенной индуктивно связан колебательный контур. При приеме сигнала в катушке возникают переменные ЭДС. С помощью конденсатора переменной емкости добиваются совпадения частоты контура с частотой принимаемых колебаний. Из колебаний всевозможных частот, возбужденных в антенне, контур выделяет колебания, равные его собственной частоте.

Резонанс может привести к перегреву проводов и аварии, если цепь не рассчитана на работу в условиях резонанса.

Гармонические электромагнитные колебания

Гармоническими электромагнитными колебаниями называются периодические изменения заряда, силы тока и напряжения, происходящие по гармоническому – синусоидальному или косинусоидальному – закону.

В электрических цепях это могут быть колебания:

  • силы тока – ​ \( i=I_m\cos(\omega t+\varphi+\frac<\pi>); \) ​
  • напряжения – \( u=U_m\cos(\omega t+\varphi); \)
  • заряда – \( q=q_m\cos(\omega t+\varphi); \)
  • ЭДС – \( \varepsilon=\varepsilon_m\sin\omega t. \)

В этих уравнениях ​ \( \omega \) ​ –циклическая частота, ​ \( \varphi \) ​ – начальная фаза колебаний, амплитудные значения: силы тока – ​ \( I_m \) ​, напряжения – ​ \( U_m \) ​ и заряда – ​ \( q_m \) ​.

Важно!
Если в начальный момент времени заряд имеет максимальное значение, а сила тока равна нулю, то колебания заряда совершаются по закону косинуса с начальной фазой, равной нулю. Если в начальный момент времени заряд равен нулю, а сила тока максимальна, то колебания заряда совершаются по закону синуса.

Сила тока равна первой производной заряда от времени:

Амплитуда колебаний силы тока равна:

Колебания заряда и напряжения в колебательном контуре происходят в одинаковых фазах. Амплитуда напряжения равна:

Колебания силы тока смещены по фазе относительно колебаний заряда на ​ \( \pi/2 \) ​.

Период свободных электромагнитных колебаний

Период свободных электромагнитных колебаний находится по формуле Томсона:

где ​ \( L \) ​ – индуктивность катушки, ​ \( C \) ​ – электроемкость конденсатора.

Важно!
Период и циклическая частота не зависят от начальных условий, а определяются только индуктивностью катушки и электроемкостью конденсатора. Амплитуда колебаний заряда и силы тока определяются начальным запасом энергии в контуре.

При свободных гармонических колебаниях происходит периодическое преобразование энергии. Период колебаний энергии в два раза меньше, чем период колебаний заряда, силы тока и напряжения. Частота колебаний энергии в два раза больше частоты колебаний заряда, силы тока и напряжения.

Переменный ток. Производство, передача и потребление электрической энергии

Переменным называется ток, изменяющийся по величине и направлению по гармоническому закону.

Переменный ток представляет пример вынужденных электромагнитных колебаний. Для описания переменного электрического тока используют следующие величины:

• мгновенное значение силы тока – i;

• мгновенное значение напряжения – u;

• амплитудное значение силы тока – Im;

• амплитудное значение напряжения –Um.

Цепь переменного тока представляет собой колебательный контур, к которому приложена внешняя синусоидальная ЭДС. В цепь переменного тока могут включаться различные нагрузки: резистор, катушка, конденсатор.

Активное сопротивление

Проводник, преобразующий всю энергию электрического тока во внутреннюю, называется активным сопротивлением ​ \( R \) ​. (Эту величину мы раньше называли сопротивлением.) Активное сопротивление зависит от материала проводника, его длины и площади поперечного сечения и не зависит от частоты переменного тока.

В проводнике с активным сопротивлением колебания силы тока и напряжения совпадают по фазе:

Мгновенное значение мощности: ​ \( p=i^2R, \) ​

среднее значение мощности за период: ​ \( \overline

=\frac. \) ​

Действующим значением силы переменного тока ​ \( I_Д \) ​ называют значение силы постоянного тока, который в том же проводнике выделяет то же количество теплоты , что и переменный ток за то же время:

Действующим значением напряжения переменного тока ​ \( U_Д \) ​ называют значение напряжения постоянного тока, который в том же проводнике выделяет то же количество теплоты, что и переменный ток за то же время:

Для цепи с активным сопротивлением выполняется закон Ома для мгновенных, амплитудных и действующих значений.

Индуктивное сопротивление

Катушка в цепи переменного тока имеет большее сопротивление, чем в цепи постоянного тока. В такой цепи колебания напряжения опережают колебания силы тока по фазе на ​ \( \pi/2 \) ​. Колебания силы тока и напряжения происходят по закону:

Амплитуда силы тока в катушке:

где ​ \( L \) ​ – индуктивность катушки.

Индуктивным сопротивлением ​ \( X_L \) ​ называют физическую величину, равную произведению циклической частоты на индуктивность катушки:

Индуктивное сопротивление прямо пропорционально частоте. Физический смысл индуктивного сопротивления: ЭДС самоиндукции препятствует изменению в ней силы тока. Это приводит к существованию индуктивного сопротивления, уменьшающего силу тока.

Для цепи с индуктивным сопротивлением выполняется закон Ома.

Емкостное сопротивление

В цепи постоянного тока через конденсатор ток не идет. Для переменного тока конденсатор обладает конечным сопротивлением, обратно пропорциональным его емкости. В цепи переменного тока сопротивление конденсатора меньше, чем в цепи постоянного тока.

В такой цепи колебания напряжения отстают от колебаний силы тока по фазе на ​ \( \pi/2 \) ​. Колебания силы тока и напряжения происходят по закону:

Амплитуда силы тока в катушке: ​ \( I_m=C\omega U_m. \) ​.

Если ввести обозначение ​ \( X_C=\frac <\omega C>\) ​, то получим соотношение между амплитудными значениями силы тока и напряжения, аналогичное закону Ома: ​ \( I_m=\frac. \) ​

Емкостным сопротивлением ​ \( X_C \) ​ называют величину, обратную произведению циклической частоты на электроемкость конденсатора. Емкостное сопротивление обратно пропорционально частоте.

Физический смысл емкостного сопротивления: изменению переменного тока в любой момент времени противодействует электрическое поле между обкладками конденсатора.

В цепи переменного тока колебания силы тока и ЭДС происходят по синусоидальному закону с одинаковой циклической частотой ​ \( \omega \) ​ и разностью фаз ​ \( \varphi \) ​:

Соотношения амплитудных значений силы тока ​ \( I_m \) ​ и ЭДС ​ \( \varepsilon_m \) ​ в цепи переменного тока связаны между собой законом Ома для цепи переменного тока:

Он гласит: амплитуда силы переменного тока прямо пропорциональна амплитуде ЭДС и обратно пропорциональна полному сопротивлению цепи:

Величина ​ \( Z \) ​ называется полным сопротивлением цепи переменного тока.

Электрическая энергия имеет перед другими видами энергии следующие преимущества:

  • можно передавать на большие расстояния с малыми потерями;
  • удобно распределять между потребителями;
  • легко превращать в другие виды энергии.

В настоящее время производится и используется энергия переменного тока. Это связано с возможностью преобразовывать его напряжение и силу тока с малыми потерями энергии, что особенно важно при передаче электроэнергии на большие расстояния.

Различают следующие типы электростанций:

  • тепловые;
  • гидроэлектростанции;
  • атомные.

Получение переменного тока

Переменный ток получают с помощью генератора переменного тока.

Генератор переменного тока (электромеханический генератор переменного тока) – это устройство, преобразующее механическую энергию в электрическую. В основе работы генератора переменного тока лежит явление электромагнитной индукции.

Процесс получения переменного тока можно рассмотреть на примере вращения витка провода в однородном магнитном поле. Магнитный поток через площадь витка равен:

Если период вращения витка ​ \( T \) ​, то угол ​ \( \alpha=\frac<2\pi t>=\omega t \) ​.

Тогда ​ \( \Phi=BS\cos\omega t. \) ​

ЭДС индукции изменяется по закону ​ \( e=-\Phi’=BS\omega\sin\omega t=\varepsilon_m\sin\omega t. \) ​

Амплитуда ЭДС ​ \( \varepsilon_m=BS\omega. \) ​

Если рамка содержит ​ \( N \) ​ витков, то ​ \( \varepsilon_m=NBS\omega. \) ​

Основные части генератора переменного тока:

  • обмотка статора с большим числом витков, в ней индуцируется ЭДС. Статор состоит из отдельных пластин из электротехнической стали для уменьшения нагрева от вихревых токов;
  • ротор (вращающаяся часть генератора) создает магнитное поле. Для получения нужной частоты переменного тока может иметь несколько пар полюсов. На гидроэлектростанциях в генераторе число пар полюсов равно 40–50, на тепловых электростанциях – 10 -16 ;
  • клеммы для снятия напряжения.

Промышленные генераторы вырабатывают напряжение порядка 10 4 В. Промышленная частота переменного тока в нашей стране 50 Гц.

Передача электроэнергии

Электроэнергия производится в основном вдалеке от основных потребителей энергии, там, где есть топливные ресурсы.

С электростанции переменный ток по проводам линии электропередач (ЛЭП) поступает к различным потребителям электрической энергии. Для уменьшения потерь при передаче переменного тока необходимо использовать высокое напряжение. Чем длиннее линия, тем выше должно быть напряжение. В высоковольтных ЛЭП оно может достигать 500 кВ. Генераторы на электростанциях вырабатывают напряжение 16–20 кВ. Потребителям не нужно высокое напряжение. Возникает необходимость преобразования напряжения. С электростанции электрический ток поступает на повышающую подстанцию, затем передается по линии электропередач на понижающую подстанцию, где напряжение понижается до 6–10 кВ, а затем до 220–380 В. Для преобразования напряжения используют трансформатор.

Трансформатор – устройство, преобразующее переменное напряжение без изменения его частоты.

На схемах трансформатор обозначается:

Основные части трансформатора:

  • замкнутый сердечник из электротехнической стали;
  • две катушки-обмотки.

Катушка, подключаемая к источнику переменного напряжения, называется первичной обмоткой; катушка, к которой подключается нагрузка, – вторичной обмоткой.

Сердечник набирается из отдельных пластин для уменьшения потерь на нагревание вихревыми токами.

Принцип действия основан на явлении электромагнитной индукции. При подключении первичной обмотки к полюсам источника напряжения в ней возникает переменный ток. Напряжение изменяется с течением времени по гармоническому закону. С такой же частотой будут изменяться сила тока в катушке и магнитный поток, создаваемый этим током.

При изменении магнитного потока в каждом витке провода первичной обмотки возникает переменная ЭДС самоиндукции. Этот магнитный поток будет пронизывать и вторую катушку. В каждом ее витке возникает ЭДС индукции, изменяющаяся по гармоническому закону с той же частотой. Число витков в обмотках различно. Отношение ЭДС самоиндукции ​ \( \varepsilon_1 \) ​ в первичной обмотке к ЭДС индукции во вторичной обмотке \( \varepsilon_2 \) равно отношению числа витков в первичной обмотке ​ \( N_1 \) ​ к числу витков во вторичной обмотке ​ \( N_2 \) ​:

Режим работы

  • Режим холостого хода – разомкнута цепь вторичной обмотки. Напряжение ​ \( U_2 \) ​ на ее концах в любой момент времени равно ЭДС индукции ​ \( \varepsilon_2 \) ​, взятой с противоположным знаком. Поэтому можно записать:

где ​ \( k \) ​ – коэффициент трансформации.

Если ​ \( k>1 \) ​, то трансформатор понижающий, если \( k

  • Режим нагрузки. При подключении нагрузки к концам вторичной обмотки в ней возникает переменный ток. Напряжение ​ \( U_2 \) ​ на ее концах в любой момент времени отличается от ЭДС индукции ​ \( \varepsilon_2 \) ​ на величину падения напряжения на внутреннем сопротивлении вторичной обмотки ​ \( r \) ​: ​ \( U_2=\varepsilon_2-I_2r \) ​ или ​ \( U_2=I_2R \) ​.

Мощность тока в обмотках одинакова. Поэтому увеличение напряжения на входе повышающего трансформатора в ​ \( k \) ​ раз сопровождается уменьшением силы тока во вторичной катушке во столько же раз.

В трансформаторе нет потерь на трение, так как нет вращающихся частей. Потери в сердечнике состоят из потерь на нагревание и на перемагничивание.

Отношение мощности ​ \( P_2 \) ​, потребляемой нагрузкой, к мощности ​ \( P_1 \) ​, потребляемой первичной обмоткой трансформатора, называется коэффициентом полезного действия трансформатора:

КПД трансформатора – 98%.

Потребление электрической энергии: промышленность – около 70%; сельское хозяйство; транспорт; строительство; средства связи; в быту.

Электромагнитное поле

Электромагнитное поле – это особый вид материи, с помощью которого осуществляется электромагнитное взаимодействие заряженных тел или частиц.

Это понятие было введено Д. Максвеллом, развившим идеи Фарадея о том, что переменное магнитное поле порождает вихревое электрическое поле.

Всякое изменение магнитного поля порождает в окружающем пространстве вихревое электрическое поле, силовые линии которого замкнуты. Вихревое электрическое поле порождает появление вихревого магнитного поля и так далее. Эти переменные электрическое и магнитное поля, существующие одновременно, и образуют единое электромагнитное поле.

Характеристиками этого поля являются вектор напряженности и вектор магнитной индукции.

Если электрический заряд покоится, то вокруг него существует только электрическое поле.

Если напряженность электрического поля равна нулю, а магнитная индукция отлична от нуля, то обнаруживается только магнитное поле.

Если электрический заряд двигается с постоянной скоростью, то вокруг него существует электромагнитное поле.

Максвелл предположил, что при ускоренном движении зарядов в пространстве будет возникать возмущение, которое будет распространяться в вакууме с конечной скоростью. Когда это возмущение достигнет второго заряда, то изменится сила, с которой электромагнитное поле действует на этот заряд.

При ускоренном движении заряда происходит излучение электромагнитной волны. Электромагнитное поле материально. Оно распространяется в пространстве в виде электромагнитной волны.

Свойства электромагнитных волн

Электромагнитная волна – это изменяющееся во времени и распространяющееся в пространстве электромагнитное поле.

Существование электромагнитных волн было теоретически предсказано английским физиком Дж. Максвеллом в 1864 году. Электромагнитные волны были открыты Г. Герцем.

Источник электромагнитной волны – ускоренно движущаяся заряженная частица – колеблющийся заряд.

Важно!
Наличие ускорения – главное условие излучения электромагнитной волны. Интенсивность излученной волны тем больше, чем больше ускорение, с которым движется заряд.

Источниками электромагнитных волн служат антенны различных конструкций, в которых возбуждаются высокочастотные колебания.

Электромагнитная волна называется монохроматической, если векторы ​ \( \vec \) ​ и \( \vec \) ​ совершают гармонические колебания с одинаковой частотой (частотой волны).

Длина электромагнитной волны: ​ \( \lambda=cT=\frac, \) ​

где ​ \( c \) ​ – скорость электромагнитной волны, ​ \( T \) ​ – период, ​ \( \nu \) ​ – частота электромагнитной волны.

Свойства электромагнитных волн

  • В вакууме электромагнитная волна распространяется с конечной скоростью, равной скорости света 3·10 8 м/с.
  • Электромагнитная волна поперечная. Колебания векторов напряженности переменного электрического поля и магнитной индукции переменного магнитного поля взаимно перпендикулярны и лежат в плоскости, перпендикулярной к вектору скорости волны.
  • Электромагнитная волна переносит энергию в направлении распространения волны.

Важно!
Электромагнитная волна в отличие от механической волны может распространяться в вакууме.

Плотность потока или интенсивность – это электромагнитная энергия, переносимая через поверхность единичной площади за единицу времени.

Обозначение – ​ \( I \) ​, единица измерения в СИ – ватт на квадратный метр (Вт/м 2 ).

Важно!
Плотность потока излучения электромагнитной волны от точечного источника убывает обратно пропорционально квадрату расстояния от источника и пропорциональна четвертой степени частоты.

Электромагнитная волна обладает общими для любых волн свойствами, это:

  • отражение,
  • преломление,
  • интерференция,
  • дифракция,
  • поляризация.

Электромагнитная волна производит давление на вещество. Это означает, что у электромагнитной волны есть импульс.

Различные виды электромагнитных излучений и их применение

Электромагнитные излучения имеют длины волн от 10 -12 до 10 4 м или частоты от 3·10 4 до 3·10 20 .

Различают следующие виды электромагнитных излучений:

  • радиоволны;
  • инфракрасное излучение;
  • видимое излучение (свет);
  • ультрафиолетовое излучение;
  • рентгеновское излучение;
  • гамма-излучение.

Границы между диапазонами условны, но излучения имеют качественные различия в свойствах. При переходе от излучений с малой частотой к излучениям с большей частотой волновые свойства проявляются слабее, а корпускулярные (квантовые) – сильнее.

Радиоволны

​ \( \lambda \) ​ = 10 3 –10 -3 м, ​ \( \nu \) ​ = 10 5 –10 11 Гц. Источники радиоволн – колебательный контур, вибратор.

Радиоволны делятся на:

  • длинные (длина больше 1 км);
  • средние (от 100 м до 1 км);
  • короткие (от 10 до 100 м);
  • ультракороткие (меньше 10 м).

Свойства: отражение, поглощение, интерференция, дифракция. Применение: радиосвязь, телевидение, радиолокация.

Радиосвязью называется передача информации с помощью радиоволн. Радиосвязь осуществляется с помощью модулированных радиоволн. Модуляцией радиоволны называется изменение ее параметров (амплитуды, частоты, начальной фазы) с частотой, меньшей частоты передаваемой волны.

Схема радиосвязи показана на рисунке:

Передача радиоволн. Генератор высокой частоты вырабатывает высокочастотные колебания несущей частоты. Звуковые колебания поступают в микрофон, где преобразуются в электромагнитные колебания. В модуляторе эти колебания преобразуются в модулированные колебания. После усиления модулированные колебания поступают в передающую антенну, которая излучает электромагнитные волны. На рисунке показан звуковой сигнал низкой частоты и модулированный высокочастотный сигнал.

Прием радиоволн. Электромагнитные колебания поступают в приемную антенну и вызывают электромагнитные колебания в приемном контуре. Эти колебания поступают в усилитель, а затем в детектор. В качестве детектора используют устройство с односторонней проводимостью. Это может быть полупроводниковый диод. В детекторе сигнал демодулируют (детектируют). Процесс детектирования заключается в выделении из высокочастотных модулированных колебаний колебаний низкой (звуковой) частоты. После сглаживания и усиления сигнал поступает в динамик. На рисунке показаны процессы детектирования (демодуляции) и сглаживания.

Радиолокацией называют обнаружение и определение местоположения объектов с помощью радиоволн. Излучение осуществляется короткими импульсами. В интервале времени между излучением двух последовательных импульсов осуществляется прием отраженного от объекта сигнала. Для радиолокации используют ультракороткие радиоволны.

Инфракрасное (тепловое) излучение

​ \( \lambda \) ​ = 10 -3 – 10 -7 м, ​ \( \nu \) ​ = 10 11 – 10 14 Гц. Источники – атомы и молекулы вещества.

Это излучение испускают все тела при температуре, отличной от 0 К. Свойства: нагревает вещество при поглощении; интерференция; дифракция; проходит через дождь, снег, дымку; невидимо; преломление, отражение. Применение: в приборах ночного видения, в физиотерапии, промышленности (для сушки). Регистрируют с помощью термопары, болометра, фотографическим методом.

Видимое излучение

​ \( \lambda \) = 8·10 -7 – 4·10 -7 м, \( \nu \) = 4·10 11 – 8·10 14 Гц.

Это излучение воспринимается глазом. Свойства: отражение, преломление, поглощение, интерференция, дифракция.

Ультрафиолетовое излучение

\( \lambda \) = 10 -8 – 4·10 -7 м, \( \nu \) = 8·10 14 – 3·10 15 Гц. Источники – кварцевые лампы.

Ультрафиолетовое излучение дают светящиеся пары ртути и твердые тела, у которых температура выше 1000°С. Свойства: химическое действие; большая проникающая способность; биологическое действие; невидимо. Применение: в медицине, промышленности. Регистрируют фотографическими методами.

Рентгеновское излучение

\( \lambda \) = 10 -8 – 10 -11 м, \( \nu \) = 3·10 16 – 3·10 19 Гц. Источник – рентгеновские трубки.

Возникает при торможении быстрых электронов. Свойства: высокая химическая активность; биологическое действие; интерференция; дифракция на кристаллической решетке; высокая проникающая способность. Применение: в медицине, промышленности, науке.

Гамма-излучение

Длина волны меньше 10 -11 м, частота от 10 20 Гц и выше. Источник – ядерные реакции.

Свойства: высокая проникающая способность, сильное биологическое действие. Применение: в медицине, промышленности (дефектоскопия), науке.

Шкала электромагнитных излучений позволяет сделать вывод: все электромагнитные излучения обладают одновременно волновыми и квантовыми свойствами, которые дополняют друг друга.

Важно!
Волновые свойства сильнее выражены при малых частотах и больших длинах волн, а квантовые – при больших частотах и малых длинах волн.

Решение задач по теме «Электромагнитные колебания и волны»

По этой теме можно выделить четыре группы задач:

  • на определение параметров колебательного контура;
  • на уравнения гармонических электромагнитных колебаний;
  • на применение закона Ома;
  • на расчет мощности и КПД трансформатора.

Решение первой группы задач на определение параметров колебательного контура основано на использовании формулы Томсона (формулы периода свободных электромагнитных колебаний) и закона сохранения и превращения энергии в колебательном контуре. Поэтому необходимо записать уравнения для мгновенных значений заряда и напряжения на конденсаторе и силы тока в катушке; записать уравнение для полной энергии колебательного контура в произвольный момент времени. В качестве дополнительных формул могут понадобиться формулы электроемкости плоского конденсатора, индуктивности катушки и длины электромагнитной волны. Помните, что скорость распространения электромагнитной волны в вакууме равна скорости света – 3·10 8 м/с. В среде с показателем преломления ​ \( n \) ​ скорость света можно рассчитать по формуле: ​ \( v=\frac. \) ​

Важно!
Амплитудное значение напряжения – ​ \( U_m=\frac \) ​, амплитудное значение силы тока – ​ \( I_m=q_m\omega \) ​.

При решении второй группы задач на уравнения гармонических электромагнитных колебаний рекомендуется записать заданное в задаче уравнение и уравнение гармонических колебаний в общем виде. Сравнить эти уравнения и определить основные характеристики: амплитуду, частоту, фазу.

При решении задач на закон Ома нужно помнить, что электроизмерительные приборы показывают действующие значения напряжения и силы тока. Действующие значения величин пропорциональны амплитудным значениям. Важно помнить, что резонанс возникает при равенстве индуктивного и емкостного сопротивлений.

Решение четвертой группы задач на расчет мощности и КПД трансформатора опирается на знание формул КПД и мощности в цепи.

Амплитуда колебаний — определение, характеристика и формулы

Амплитуда колебаний – это максимальное значение отклонения от нулевой точки. В физике данный процесс анализируется в разных разделах. Он изучается при механических, звуковых и электромагнитных колебаниях. В перечисленных случаях амплитуда измеряется по-разному и по своим законам.

Амплитуда колебаний

Амплитудой колебания называют максимальную отдаленную точку нахождения тела от положения равновесия. В физике она обозначается буквой А и измеряется в метрах. За амплитудой можно наблюдать на простом примере пружинного маятника.

Пружинный маятник

  • величина А – это амплитуда свободных движений груза на пружине;
  • (ωt + φ0) – это фаза свободных колебаний, где ω — это циклическая частота, а φ0 – это начальная фаза, когда t = 0.

002

В физике указанную формулу называют уравнением гармонических колебаний. Данное уравнение полностью раскрывает процесс, где маятник движется с определенной амплитудой, периодом и частотой.

Период колебаний

Результаты лабораторных опытов показывают, что циклический период движения груза на пружине напрямую зависит от массы маятника и жесткости пружины, но не зависит от амплитуды движения.

В физике период обозначают буквой Т и описывают формулами:

Период колебаний

Исходя из формул, период колебаний – это механические движения, повторяющиеся через определенный промежуток времени. Простыми словами периодом называют одно полное движение груза.

Частота колебаний

Под частотой колебаний следует понимать количество повторений движения маятника или прохождения волны. В разных разделах физики частота обозначается буквами ν, f или F.

Данная величина описывается выражением:

v = n/t – количество колебаний за промежуток времени,

  • n – это единица колебаний;
  • t – отрезок времени.

В Международной системе измерений частоту измеряют в Гц (Герцах). Она относится к точным измеряемым составляющим колебательного процесса.

Например, наукой установлена частота вращения Солнца вокруг центра Вселенной. Она равна -10 35 Гц при одинаковой скорости.

Циклическая частота

В физике циклическая и круговая частота имеют одинаковое значение. Данная величина еще называется угловой частотой.

Циклическая частота

Обозначают ее буквой омега. Она равна числу собственных колебательных движений тела за 2π секунд времени:

Данная величина нашла свое применение в радиотехнике и, исходя из математического расчета, имеет скалярную характеристику. Ее измерения проводят в радианах на секунду. С ее помощью значительно упрощаются расчеты процессов в радиотехнике.

Например, резонансное значение угловой частоты колебательного контура рассчитывают по формуле:

Тогда как обычная циклическая резонансная частота выражается:

В электрике под угловой частотой следует понимать число полных трансформаций ЭДС или число оборотов радиуса – вектора. Здесь ее обозначают буквой f.

Как определить амплитуду, период и частоту колебаний по графику

Для определения на графике составляющих колебательного механического процесса или, например, колебания температуры, нужно разобраться в терминах этого процесса.

  • расстояние испытываемого объекта от исходной точки – называют смещением и обозначают х;
  • наибольшее отклонение – амплитуда смещения А;
  • фаза колебания – определяет состояние колебательной системы в любой момент времени;
  • начальная фаза колебательного процесса – когда t = 0, то φ = φ0.

402

Из графика видно, что значение синуса и косинуса может меняться от -1 до +1. Значит, смещение х может быть равно –А и +А. Движение от –А до +А называют полным колебанием.

Построенный график четко показывает период и частоту колебаний. Стоить отметить, что фаза не воздействует на форму кривой, а только влияет на ее положение в заданный промежуток времени.

Гармонические напряжения и токи

В предыдущих лекциях рассматривались электрические цепи при условии, что они находятся под воздействием постоянных напряжений и токов. В действительности же действующие в электрических цепях токи и напряжения являются переменными, т. е. представляют собой электрические колебания. Напомним, что колебаниями называются процессы, которые характеризуются определенной повторяемостью во времени. Различают непериодические и периодические колебания.

Гармонические напряжения и токи

Простейшим и в то же время наиболее важным типом периодических колебаний являются гармонические, когда колеблющаяся величина

Исключительная роль гармонических колебаний в теории и практике радиотехники объясняется следующими обстоятельствами:

  • они широко используются для передачи сигналов и электрической энергии (например, промышленный ток с частотой 50 Гц);
  • применяются как простейший испытательный сигнал;
  • являются единственным типом колебаний, форма которых не изменяется при прохождении через любую линейную систему;
  • любое периодическое негармоническое колебание может быть представлено в виде суммы (наложения) различных гармонических колебаний (такое представление называют спектром негармонического колебания).

Если временной интервал ограничен Гармонические напряжения и токито имеет место отрезок гармонического колебания, который уже будет обладать отличными от гармонического колебания свойствами; при этом чем больше временной интервал, тем ближе свойства отрезка к свойствам самого гармонического колебания; во всём курсе лекций предполагается, что временной интервал исчисляется от нуля до бесконечности: Гармонические напряжения и токи

Определение гармонических напряжений и токов

Электрическое гармоническое колебание аналитически записывают в виде функции:

Гармонические напряжения и токи

Гармонические напряжения и токи

Традиционно в электротехнике используют синусную форму записи, а в теории электрических цепей (радиотехнике) — косинусную, которой, если это не оговаривается особо, и будем пользоваться в дальнейшем:

Гармонические напряжения и токи

(7.1)

Если под колебанием Гармонические напряжения и токипонимать ток Гармонические напряжения и токиили напряжение Гармонические напряжения и токито (7.1) будет представлять собой соответственно гармонический ток или гармоническое напряжение, причём Гармонические напряжения и токи

Гармоническое колебание определено полностью, если заданы все три его параметра: Гармонические напряжения и токи— амплитуда, Гармонические напряжения и токи— круговая частота, Гармонические напряжения и токи— начальная фаза.

Рассмотрим смысл указанных параметров (рис. 7.1):

Гармонические напряжения и токиамплитуда колебания — наибольшее по абсолютному значению отклонение колеблющейся величины; размерность амплитуды совпадает с размерностью колебания Гармонические напряжения и токи

Гармонические напряжения и токи— периодически изменяющийся аргумент функции Гармонические напряжения и токиназываемый мгновенной фазой или просто фазой колебания; выражается в радианах (рад); Гармонические напряжения и токи

Гармонические напряжения и токи— начальная фаза (рад) — значение мгновенной фазы при Гармонические напряжения и токи, т. е. Гармонические напряжения и токиначальная фаза может быть как положительной, так и отрицательной; начальная фаза определяет значение гармонического колебания в момент Гармонические напряжения и токии пропорциональна расстоянию от ближайшего максимума до оси ординат. При Гармонические напряжения и токимаксимум смещён влево от оси, а при Гармонические напряжения и токи— вправо; при Гармонические напряжения и токимаксимум располагается на оси ординат;

Гармонические напряжения и токи

— круговая частота (угловая скорость) — определяет скорость изменения фазы, выражается в радианах в секунду (рад/с),
т. е. круговая частота численно равна изменению мгновенной фазы за единицу времени (секунду).

Введём ещё два характерных для периодических колебаний параметра: период и частоту.

Т период колебания — наименьший интервал времени, через который процесс повторяется, а именно:

Гармонические напряжения и токи

(7.2)

этому периоду соответствует изменение фазы на Гармонические напряжения и токирадиан Гармонические напряжения и токи

Гармонические напряжения и токи

(7.3)

Гармонические напряжения и токи

(7.4)

называется циклической частотой и измеряется в герцах (Гц).

Гармонические напряжения и токи

В ряде практических задач требуется знать фазовые соотношения между гармоническими колебания одинаковой частоты. Фазовые соотношения характеризуют разностью фаз сравниваемых колебаний.

Пусть рассматриваются два колебания

Гармонические напряжения и токи

(7.5)

Гармонические напряжения и токи

называется разностью фаз или сдвигом фаз этих колебаний. Если Гармонические напряжения и токито колебание Гармонические напряжения и токиотстаёт от колебания Гармонические напряжения и токипо фазе на угол Гармонические напряжения и токи; если Гармонические напряжения и токито колебание Гармонические напряжения и токиопережает колебание Гармонические напряжения и токина угол Гармонические напряжения и токи

Если сдвиг фаз между двумя колебаниями равен 0, Гармонические напряжения и токиили Гармонические напряжения и токирадиан, то говорят, что колебания происходят в фазе, противофазе или находятся в квадратуре соответственно.

Гармонические напряжения и токи

При практических расчётах часто начальную фазу выражают в градусах (°). Поскольку соответствует 180°, то нетрудно получить соотношение

Гармонические напряжения и токи

(7.6)

Линейные операции над гармоническими колебаниями

К линейным операциям над гармоническими колебаниями относятся: умножение на постоянное число (константу), дифференцирование, интегрирование и алгебраическое сложение гармонических колебаний одинаковой частоты. Результатом таких операций являются новые гармонические колебания той же частоты. Рассмотрим эти операции.

Гармонические напряжения и токи

1. Умножение на константу

Гармонические напряжения и токи

Гармонические напряжения и токи

даёт новое гармоническое колебание, амплитуда которого отличается от амплитуды исходного колебания в раз

Гармонические напряжения и токи

а фаза остаётся неизменной.

Гармонические напряжения и токи

Из полученного результата следует, что при дифференцировании получается гармоническое колебание той же частоты; однако амплитуда и начальная фаза изменяются и оказываются равными

Гармонические напряжения и токи

Гармонические напряжения и токи

даёт гармоническое колебание той же частоты, но амплитуда и начальная фаза изменяются и оказываются равными:

Гармонические напряжения и токи

соответственно при условии равенства нулю постоянной интегрирования.

4. Сложение (наложение, суперпозиция) гармонических колебаний одинаковой частоты

Гармонические напряжения и токи

Воспользуемся известной формулой сложения аргументов

Гармонические напряжения и токи

и представим гармонические колебания в виде:

Гармонические напряжения и токи

Складывая и группируя слагаемые, получаем:

Гармонические напряжения и токи

(7.7)

Гармонические напряжения и токи

(7.8)

Подставляя (7.8) в (7.7)

Гармонические напряжения и токи

Гармонические напряжения и токи

(7.8)

где при условии (7.8)

Гармонические напряжения и токи

(7.9)

Гармонические напряжения и токи

Остаётся найти амплитуду Для этого возведём в квадрат оба равенства (7.8) и извлечём корень из их суммы

Гармонические напряжения и токи

(7.10)

Помня, что Гармонические напряжения и токиисследуем результат (7.10) в зависимости от соотношения Гармонические напряжения и токии Гармонические напряжения и токи

Гармонические напряжения и токи

• т. е. колебания находятся в фазе: амплитуда результирующего колебания максимальна и равна сумме амплитуд составляющих колебаний

Гармонические напряжения и токи

Гармонические напряжения и токи

• т. е. колебания находятся в противофазе: амплитуда результирующего колебания минимальна и равна абсолютному значению разности амплитуд составляющих колебаний

Гармонические напряжения и токи

Гармонические напряжения и токи

• т. е. колебания находятся в квадратуре: амплитуда результирующего колебания равна корню квадратному из суммы квадратов амплитуд составляющих колебаний

Гармонические напряжения и токи

Выводы:

  • линейные операции над гармонической функцией приводят лишь к изменению её амплитуды и начальной фазы;
  • наложение двух гармонических колебаний равных частот образует гармоническое колебание той же частоты; амплитуда результирующего колебания зависит от соотношения начальных фаз слагаемых колебаний и лежит в пределах

Гармонические напряжения и токи

  • наложение любого числа гармонических колебаний одной частоты образует гармоническое колебание той же частоты

Гармонические напряжения и токи

  • амплитуду и начальную фазу результирующего колебания можно найти, последовательно применяя формулы сложения гармонических колебаний для каждой пары колебаний.

Энергетические характеристики гармонических колебаний

Кроме указанных в разд. 7.1.1 параметров, гармонические колебания описываются энергетическими характеристиками:

  • мгновенной мощностью,
  • средней мощностью,
  • действующими (эффективными) значениями амплитуд напряжения и тока.

Мгновенная мощность гармонических колебаний при согласном выборе положительных направлений тока Гармонические напряжения и токии напряжения Гармонические напряжения и токиопределяется как произведение мгновенных значений тока и напряжения

Гармонические напряжения и токи

Заменив произведение косинусов на полусумму косинусов разности и суммы аргументов, получаем

Гармонические напряжения и токи

(7.11)

Гармонические напряжения и токи

откуда следует, что потребляемая мгновенная мощность содержит постоянную составляющую (первое слагаемое, на графике Рср), относительно которой она колеблется с удвоенной частотой (рис. 7.2).

Гармонические напряжения и токи

Положительным значениям мощности соответствует потребление цепью электрической энергии, а отрицательным значениям — отдача электрической энергии. В пассивных цепях это происходит за счёт энергии, запасаемой в конденсаторах (энергия электрического поля) и/или в индуктивностях (энергия магнитного поля). Для цепей, содержащих активные элементы, это означает, что цепь генерирует электрическую энергию.

Средняя (активная) мощность произвольных колебаний определяется как отношение энергии, подведённой к цепи за некоторый промежуток времени, к длительности этого промежутка Гармонические напряжения и токипри условии, что Гармонические напряжения и токи

Гармонические напряжения и токи

(7.12)

Гармонические напряжения и токи

Для гармонических колебаний пределы интегрирования в (7.12) можно ограничить периодом колебания Т, полагая . При этих условиях из (7.12) и (7.11) имеем:

Гармонические напряжения и токи

(7.13)

Левый интеграл в полученной сумме равен:

Гармонические напряжения и токи

Обратимся к правому интегралу конечного выражения (7.13), представляющему собой интеграл от функции косинуса на периоде:

Гармонические напряжения и токи

Найдём этот интеграл:

Гармонические напряжения и токи

Числитель дроби равен нулю, поскольку, во-первых,

Гармонические напряжения и токи

и, во-вторых, в силу периодичности функции синуса справедливы равенства:

Гармонические напряжения и токи

Таким образом, правый интеграл в (7.13) равен нулю, т. е. попутно доказано, что интеграл от функции косинуса за период равен нулю (это справедливо и для функции синуса).

Следовательно, средняя мощность гармонического колебания равна:

Гармонические напряжения и токи

(7.14)

Гармонические напряжения и токи

где ; — разность фаз напряжения и тока на входе цепи, и является постоянной составляющей мгновенной мощности (7.11). Выражение (7.14) означает, что:

Гармонические напряжения и токи

  • средняя, или активная мощность пропорциональна амплитудам напряжения и тока и косинусу сдвига фазы между ними;
  • чем меньше разность фаз, тем больше активная мощность;
  • для пассивных цепей согласно принципу сохранения энергии при наличии зависимых источников это неравенство может не иметь силы;
  • средняя мощность, потребляемая цепью, должна быть равна арифметической сумме средних мощностей, потребляемых в каждом элементе цепи

Гармонические напряжения и токи

где Гармонические напряжения и токи— количество элементов в цепи, Гармонические напряжения и токи— средняя мощность, потребляемая Гармонические напряжения и токи-ым элементом.

На практике необходимо также знать среднеквадратичные значения произвольных напряжений и токов, которые определяются по формулам:

Гармонические напряжения и токи

(7.15)

Отсюда для периодических, в том числе и гармонических, колебаний в соответствии с (7.13) имеем:

Гармонические напряжения и токи

(7.16)

Подставляя в (7.16) выражения для мгновенных напряжений и токов

Гармонические напряжения и токи

Гармонические напряжения и токи

(7.17)

Гармонические напряжения и токи

Среднеквадратические значения напряжений и токов называют действующими (эффективными). Они меньше амплитуд соответствующих колебаний в раз.

Покажем вывод формул (7.17) на примере напряжения:

Гармонические напряжения и токи

Гармонические напряжения и токи

подкоренное выражение примет вид:

Гармонические напряжения и токи

поскольку по доказанному ранее второй интеграл последней суммы равен нулю.

Действующие значения напряжения и тока позволяют записать среднюю мощность в форме:

Гармонические напряжения и токи

Символическое изображение гармонических колебаний

Гармонические напряжения и токи в линейной цепи находятся в результате решения задач анализа, которые даже для относительно простых цепей, как это будет видно из дальнейшего, оказываются достаточно трудоёмкими. На практике используются функциональные преобразования, в результате которых операции над исходными функциями заменяются более простыми операциями над некоторыми новыми функциями. Исходные функции называются оригиналами, а соответствующие им новые функции — изображениями или символами.

Решение любой задачи методом функционального преобразования состоит из трёх следующих основных этапов:

  1. Прямого преобразования оригиналов к их изображениям (символам).
  2. Вычисления изображений искомых функций по правилам операций над изображениями.
  3. Обратного преобразования полученных изображений искомых функций к их оригиналам.

Рассматриваемое здесь функциональное преобразование, получившее название символического изображения гармонических колебаний, не является единственным; в лекции 16 будет рассмотрено более общее преобразование — преобразование Лапласа.

Гармонические напряжения и токи

Идея символического изображения гармонических колебаний состоит в замене гармонических функций комплексными числами. Возможность такого изображения гармонических функций заложена в том, что в режиме гармонических колебаний все колебания имеют одну и ту же заранее известную частоту равную частоте внешнего воздействия. Тогда гармоническое колебание

Гармонические напряжения и токи

Гармонические напряжения и токи

достаточно охарактеризовать только двумя вещественными числами: которые можно объединить в одно комплексное число и рассматривать его как символическое изображение гармонического колебания. А операции над числами проще операций над функциями.

Гармонические напряжения и токи

Представим гармоническое колебание в виде действительной части новой комплексной функции, опустив для простоты записи индекс 0 при

Гармонические напряжения и токи

(7.18)

Тогда комплексная функция, стоящая в правой части равенства, может быть представлена как произведение некоторой комплексной функции на комплексную экспоненту

Гармонические напряжения и токи

Определение:

Гармонические напряжения и токи

(7.19)

называется комплексной амплитудой или символическим изображением гармонического колебания: её модуль равен амплитуде Гармонические напряжения и токиа аргумент — начальной фазе Гармонические напряжения и токигармонического колебания.

Восстановление Гармонические напряжения и токипо символическому изображению Гармонические напряжения и токиясно из соотношений (7.18) и (7.19). Например, гармоническое напряжение

Гармонические напряжения и токи

имеет комплексную амплитуду (символическое изображение) вида:

Гармонические напряжения и токи

Соответствия между линейными операциями над гармоническими колебаниями и операциями над их символическими изображениями

1. Умножение на константу:

Гармонические напряжения и токи

Полученная формула показывает, что умножению гармонического колебания на константу соответствует умножение на константу его комплексной амплитуды.

2. Сложение: пусть гармоническое колебание Гармонические напряжения и токипредставляет собой сумму N гармонических колебаний одинаковой частоты со, но имеющих разные амплитуды Гармонические напряжения и токии начальные фазы Гармонические напряжения и токи

Гармонические напряжения и токи

Применим к обеим частям данного равенства преобразование (7.41) с учётом того, что суммируемые колебания имеют одну и ту же частоту. Тогда получим:

Гармонические напряжения и токи

Следовательно, операции сложения (суммирования) гармонических колебаний соответствует операция сложения их комплексных амплитуд.

3. Дифференцирование: дифференцируя функцию

Гармонические напряжения и токи

Гармонические напряжения и токи

Комплексная амплитуда, т. е. символическое изображение найденной функции, оказывается такой:

Гармонические напряжения и токи

поскольку согласно формуле Эйлера (7.40)

Гармонические напряжения и токи

Гармонические напряжения и токи

Следовательно, операции дифференцирования гармонического колебания соответствует операция умножения его комплексной амплитуды на оператор

4. Интегрирование: интегрируя функцию

Гармонические напряжения и токи

Гармонические напряжения и токи

Символическое изображение этой функции имеет вид:

Гармонические напряжения и токи

Гармонические напряжения и токи

Гармонические напряжения и токи

Следовательно, операции интегрирования гармонического колебания соответствует операция деления символического изображения на оператор

Заметим, что комплексные амплитуды напряжения и тока имеют вид:

Гармонические напряжения и токи

Например, мгновенному значению гармонического напряжения

Гармонические напряжения и токи

В соответствует комплексная амплитуда напряжения

Гармонические напряжения и токи

а комплексной амплитуде тока

Гармонические напряжения и токи

Гармонические напряжения и токи

при известной круговой частоте соответствует мгновенное значение гармонического тока:

Гармонические напряжения и токи

Законы Ома и Кирхгофа для комплексных амплитуд

  • комплексную амплитуду тока Гармонические напряжения и токи
  • комплексную амплитуду напряжения Гармонические напряжения и токи

Покажем, что изученные ранее законы Ома и Кирхгофа справедливы и для комплексных амплитуд.

Закон Ома в символической форме:
для определения закона Ома необходимо установить связи между комплексными токами и напряжениями, действующими в некотором двухполюснике (рис. 7.3).

Гармонические напряжения и токи

Введём следующие определения:

Гармонические напряжения и токи

Комплексным сопротивлением двухполюсника называется отношение комплексных амплитуд напряжения и тока на входе двухполюсника

Гармонические напряжения и токи

(7.20)

Комплексное сопротивление называют также комплексом полного сопротивления, или импедансом.

Гармонические напряжения и токи

Комплексной проводимостью двухполюсника называется отношение комплексных амплитуд тока и напряжения на входе двухполюсника

Гармонические напряжения и токи

(7.21)

Комплексную проводимость называют также комплексом полной проводимости, или адмитансом.

Из определений следует соотношение:

Гармонические напряжения и токи

(7.22)

откуда вытекает, что комплексные амплитуды напряжений и токов на входе двухполюсника формально удовлетворяют закону Ома:

Гармонические напряжения и токи

(7.23)

Комплексные сопротивления и проводимости двухполюсников представляют собой в общем случае комплексные величины, зависящие как от параметров цепи, так и от частоты воздействия.

Первый закон Кирхгофа в символической форме:
сумма комплексных амплитуд токов всех N ветвей, подключённых к каждому из узлов электрической цепи, равна нулю.

Действительно, для мгновенных значений токов имеем:

Гармонические напряжения и токи

Гармонические напряжения и токи

где — номер ветви, подключённой к рассматриваемому узлу. Тогда, заменяя мгновенные значения токов их комплексными амплитудами, согласно правилу сложения комплексных амплитуд получаем:

Гармонические напряжения и токи

Второй закон Кирхгофа в символической форме.
сумма комплексных амплитуд напряжений на всех N ветвях, входящих в любой контур цепи, равна нулю.

Это показывается так же, как и для первого закона:

Гармонические напряжения и токи

Комплексные сопротивления и проводимости

Поставим задачу установить связь между активными и реактивными составляющими комплексных сопротивлений и проводимостей, для чего подробнее рассмотрим комплексные амплитуды напряжения и тока (7.45).

Из комплексной амплитуды напряжения имеем:

Гармонические напряжения и токи

(7.24)

Гармонические напряжения и токи

называется модулем комплексного сопротивления, или полным сопротивлением двухполюсника. Таким образом, полное сопротивление двухполюсника равно отношению амплитуды гармонического напряжения на зажимах двухполюсника к амплитуде гармонического тока, протекающего через эти зажимы.

Аналогично из соотношения

Гармонические напряжения и токи

можно выделить модуль комплексной проводимости, или полную проводимость двухполюсника:

Гармонические напряжения и токи

Аргументы комплексного сопротивления и комплексной проводимости у пассивных двухполюсников могут меняться только в пределах:

Гармонические напряжения и токи

Для решения поставленной задачи представим комплексное сопротивление и комплексную проводимость в алгебраической форме:

Гармонические напряжения и токи

— активная составляющая,

Гармонические напряжения и токи

— реактивная составляющая комплексного сопротивления. Подобным образом для комплексной проводимости

Гармонические напряжения и токи

(7.27)

Гармонические напряжения и токи

— активная составляющая,

Гармонические напряжения и токи

— реактивная составляющая комплексной проводимости.

Наконец, установим связь между активными и реактивными составляющими комплексных сопротивлений и проводимостей:

Гармонические напряжения и токи

(7.28)

Аналогично получаем соотношения:

Гармонические напряжения и токи

(7.29)

Выводы:

  • активные составляющие комплексных сопротивлений и проводимостей пассивных двухполюсников не могут принимать отрицательных значений;
  • реактивные составляющие могут принимать как положительные, так и отрицательные значения: если Гармонические напряжения и токии Гармонические напряжения и токисопротивление (проводимость) имеет индуктивный характер, в противном случае — ёмкостной;
  • если колебания напряжения и тока происходят в фазе Гармонические напряжения и токидвухполюсник обладает чисто активным сопротивлением (проводимостью).

Комплексные числа и операции над ними

Рассмотрим всевозможные пары действительных (обычных) чисел, взятых в определённом порядке. Каждую такую упорядоченную пару Гармонические напряжения и токиназывают комплексным числом, обозначают одной буквой (например, Гармонические напряжения и токи) и записывают в виде

Гармонические напряжения и токи

где символ Гармонические напряжения и токиотделяет одно число из пары от другого; знаки ± указывают на то, что два действительных числа объединяются в нечто единое. Число а называется действительной частью Гармонические напряжения и токичисло Гармонические напряжения и токимнимой частью Гармонические напряжения и токикомплексного числа. Комплексные числа Гармонические напряжения и токиможно записывать как Гармонические напряжения и токисоответственно. При этом:

  • комплексное число вида Гармонические напряжения и токиназывается действительным (вещественным);
  • комплексное число вида Гармонические напряжения и токиназывается чисто мнимым;
  • число 0— единственное комплексное число, которое является одновременно и действительным, и мнимым;
  • два комплексных числа, которые отличаются только знаком мнимой части, называются комплексно-сопряжёнными; число, комплексно-сопряжённое с числом Гармонические напряжения и токиобозначают Гармонические напряжения и токитаким образом, если Гармонические напряжения и токи

Гармонические напряжения и токи

Запишем формулы для натуральных степеней числа

Гармонические напряжения и токиИз (7.30) видно, что при возведении числа j в степень п наблюдается периодичность значений степени, а именно: из равенства Гармонические напряжения и токиследует, что если Гармонические напряжения и токиИными словами: чтобы найти Гармонические напряжения и токидостаточно возвести Гармонические напряжения и токив степень, показатель которой равен остатку от деления Гармонические напряжения и токина 4.

Арифметические действия над комплексными числами

  1. Два комплексных числа считаются равными, если равны их действительные и мнимые части.
  2. Сложение, вычитание и умножение комплексных чисел следует производить так, словно это многочлены относительно буквы Гармонические напряжения и токипри этом произведение Гармонические напряжения и токизаменяется на -1.

Гармонические напряжения и токи

Пусть тогда на основании записанных правил получаем:

равенство Гармонические напряжения и токиесли Гармонические напряжения и токи

Гармонические напряжения и токи

сумму или в общей форме:

Гармонические напряжения и токи

(7.31)

разность:

Гармонические напряжения и токи

(7.32)

произведение:

Гармонические напряжения и токи

или в общей форме

Гармонические напряжения и токи

(7.33)

3. Деление комплексных чисел определяется как действие, обратное умножению: частным от деления комплексного числа Гармонические напряжения и токина число Гармонические напряжения и токиназывают такое число Гармонические напряжения и токи, что Гармонические напряжения и токит. е.

Гармонические напряжения и токи

(7.34)

4. Полезные тождества:

Гармонические напряжения и токи

(7.35)

Геометрический смысл комплексных чисел

Как известно, положение точки Z на координатной плоскости задаётся двумя действительными числами, являющимися координатами этой точки, что записывается в виде Гармонические напряжения и токи, но точно так же задаётся и комплексное число z. Таким образом, между координатами точки и комплексным числом существует однозначное соответствие, а именно: точке Гармонические напряжения и токина плоскости соответствует комплексное число Гармонические напряжения и токи; это комплексное число назовём комплексной координатой, а саму плоскость — комплексной плоскостью, по оси абсцисс которой откладываются значения действительной части Гармонические напряжения и токиа по оси ординат — значения мнимой части Гармонические напряжения и токикомплексного числа Гармонические напряжения и токиЭти оси комплексной плоскости называются действительной и мнимой соответственно (рис. 7.4, а). Комплексной координатой начала координат О является число 0 (нуль).

Гармонические напряжения и токи

С другой стороны, на той же комплексной плоскости выберем произвольный радиус-вектор Гармонические напряжения и токидля простоты выходящий из начала координат. Тогда конец его будет иметь координату Гармонические напряжения и токиКомплексное число Гармонические напряжения и токиназывается комплексной координатой вектора А. Длина Гармонические напряжения и токиэтого вектора (расстояние от начала координат до точки Гармонические напряжения и токиназывается модулем комплексного числа Гармонические напряжения и токи.

Гармонические напряжения и токи

Угол Гармонические напряжения и токинаклона вектора к действительной оси называется аргументом Гармонические напряжения и токичисла Гармонические напряжения и токи

Гармонические напряжения и токи

Гармонические напряжения и токи

где называется главным значением аргумента (главным аргументом); главное значение аргумента удовлетворяет неравенствам:

Гармонические напряжения и токи

(7.37)

Из рис. 7.4, б следует, что

Гармонические напряжения и токи

(7.38)

Аргумент считается положительным при отсчёте против часовой стрелки и отрицательным — при отсчёте в противоположном направлении.

Формулы Эйлера и Муавра

Вновь обратимся к рис. 7.4, б и найдём значения Гармонические напряжения и токии Гармонические напряжения и токичерез значения Гармонические напряжения и токи

Гармонические напряжения и токи

Гармонические напряжения и токи

которые позволяют записать комплексное число в тригонометрической форме:

Гармонические напряжения и токи

(7.39)

В 1743 году Эйлер предложил обозначить

Гармонические напряжения и токи

(7.40)

и назвать полученное соотношение мнимой экспонентой. Тогда комплексное число z можно записать в показательной (полярной) форме

Гармонические напряжения и токи

(7.41)

Из (7.40) следуют две формулы, выражающие через Гармонические напряжения и токии Гармонические напряжения и токимнимые экспоненты. Заменяя в (7.40) Гармонические напряжения и токина Гармонические напряжения и токи, имеем:

Гармонические напряжения и токи

(7.42)

Складывая и вычитая почленно (7.40) и (7.42), получаем:

Гармонические напряжения и токи

(7.43)

откуда следуют интересующие нас формулы:

Заметим также, что модуль комплексной экспоненты равен единице; действительно:

Гармонические напряжения и токи

(7.44)

Гармонические напряжения и токи

Найдём выражение, соответствующее степени мнимой экспоненты (7.40):

Гармонические напряжения и токи

(7.45)

Гармонические напряжения и токи

(7.46)

Формулы (7.45) и (7.2) называются формулами Муавра.

  1. Электротехника
  2. Основы теории цепей
  • Энергетические характеристики двухполюсников
  • Комплексные функции электрических цепей
  • Гармонические колебания в колебательном контуре
  • Частотные характеристики линейных электрических цепей
  • Электрические цепи несинусоидального тока
  • Несинусоидальный ток
  • Электрические цепи с распределенными параметрами
  • Резистивные электрические цепи и их расчёт

При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org

Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи

Сайт пишется, поддерживается и управляется коллективом преподавателей

Telegram и логотип telegram являются товарными знаками корпорации Telegram FZ-LLC.

Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.