Дана частота найти напряжение

Резонанс в электрических цепях

Явление резонанса можно наблюдать в любых колебательных системах, в том числе механических и электрических. Электрический резонанс возникает при определенных условиях в электрических цепях переменного тока, содержащих индуктивности и емкости.

Изучение электрического резонанса

Изучение электрического резонанса необходимо, так как это явление широко используется в технике электросвязи, а в установках сильного тока, где его возникновение специально не предусматривается, резонанс может оказаться опасным (могут возникнуть перенапряжения и пробой изоляции).

Колебательный контур

Для того чтобы понять резонансные явления, переходные процессы в электрических цепях переменного тока, которые рассматриваются далее, важно иметь представление о процессах в колебательном контуре, состоящем из идеальных катушки и конденсатора, т. е. в контуре без потерь.
Колебательный процесс в таком контуре заключается во взаимном преобразовании электрического и магнитного полей. При этом изменяется энергия полей, поэтому колебательный процесс в контуре с количественной стороны будем, как и раньше, характеризовать изменением энергии.

Ток и напряжение в колебательном контуре

Резонанс в электрических цепях

Предположим, что конденсатор с емкостью С получил от источника запас энергии

Резонанс в электрических цепях

В первую часть периода (0 — T/4) конденсатор разряжается и в цепи существует ток. В это время в обособленной цепи конденсатор играет роль источника энергии (рис. 17.1, б). В начальный момент ток равен нулю, далее он увеличивается. Увеличение тока в цепи вызывает возникновение э. д. с. самоиндукции eL и накопление энергии в магнитном поле катушки. Э. д. с. самоиндукции уравновешивает напряжение на конденсаторе:

Напряжение на конденсаторе в процессе разрядки уменьшается, поэтому вызываемый в цепи ток растет все медленнее, соответственно с этим уменьшается и э. д. с. самоиндукции, которая пропорциональна скорости изменения тока. Таким образом, к концу разрядки конденсатора (Резонанс в электрических цепяхРезонанс в электрических цепяхРезонанс в электрических цепях) энергия электрического поля перешла в энергию магнитного ноля и накопилась в количестве Резонанс в электрических цепях

Резонанс в электрических цепях

Рис. 17.1. К анализу колебательного контура

Резонанс в электрических цепях

С этого момента ток начинает уменьшаться (но не прекращается), сохраняя свое направление. В следующую часть периода (от T/4 до T/2) направление тока сохраняется, потому что э. д. с. самоиндукции при уменьшении тока меняет свой знак, и роль источника энергии переходит к катушке. Уменьшающийся ток теперь является зарядным током конденсатора, заряжающегося в обратном направлении (рис. 17.1, в). Напряжение на конденсаторе увеличивается, уравновешивая теперь э. д. с. самоиндукции:

При увеличении напряжения на конденсаторе его зарядный ток уменьшается все быстрее, в результате чего э. д. с. eL увеличивается. Таким образом, к концу зарядки конденсатора напряжение на его обкладках достигает наибольшего значения, э. д. с. самоиндукции тоже максимальна, а ток становится равным нулю. Энергия магнитного поля снова перешла в энергию электрического поля . С этого момента рост э. д. с. самоиндукции прекращается и начинается ее уменьшение. Роль источника энергии снова переходит к конденсатору. Начинается третья часть периода (от Т/2 до 3T/4). В рассматриваемом процессе конденсатор второй раз становится источником энергии. Но по сравнению с первым он имеет обратную полярность, поэтому его разрядный ток изменяет направление и далее увеличивается. Снова энергия убывает в электрическом поле и накапливается в магнитном поле (рис. 17.1, г).

В момент времени t = 3T/4 напряжение на конденсаторе и э. д. с. самоиндукции становятся равными нулю, а ток — наибольшим. В последнем отрезке времени (от 3T/4 до Т) процесс протекает в том же порядке, что и во втором, но при обратном направлении тока (рис. 17.1, д).

В момент времени t = Т конденсатор заряжен в том же направлении и тем же количеством энергии, как и при t = 0. Ток переходит через нуль к положительным значениям и далее увеличивается. Процесс повторяется в порядке, рассмотренном ранее.

Характеристики колебательного контура

Энергетический процесс в колебательном контуре имеет периодический характер с периодом Т. Колебания в электрической цепи, не связанной с источником энергии, называют собственными или свободными.
Этот процесс рассмотрен по графикам изменения тока i, напряжения uC и э.д.с. eL, которые приняты синусоидальными функциями времени.
Для такого предположения имеется полное основание, так как эти величины взаимно связаны соотношением
Резонанс в электрических цепях
Вместе с тем ток в контуре пропорционален скорости изменения заряда конденсатора, причем он увеличивается, когда конденсатор разряжается. Следовательно,
Резонанс в электрических цепях
Такая взаимная связь переменных величин говорит о синусоидальном законе изменения тока и напряжения, но при наличии сдвига фаз между ними на 90°, т. е. при
Резонанс в электрических цепях
Резонанс в электрических цепях
Это можно проверить:
Резонанс в электрических цепях
Резонанс в электрических цепях
Резонанс в электрических цепях
Величину ω0 в уравнениях тока и напряжения называют угловой частотой собственных колебаний в контуре. Найдем ее, используя равенство наибольшего количества энергии в конденсаторе и катушке:
Резонанс в электрических цепях

и связь между амплитудами тока и напряжения:

Резонанс в электрических цепях
Резонанс в электрических цепях
Сокращая, получим
Резонанс в электрических цепях
Частота собственных колебаний
Резонанс в электрических цепях
Период собственных колебаний
Резонанс в электрических цепях

Из равенства (17.1) вытекает еще одно важное соотношение
Резонанс в электрических цепях
Величина, стоящая в знаменателе, имеет размерность сопротивления и называется волновым сопротивлением контура:
Резонанс в электрических цепях

Колебательный контур с потерями энергии

Незатухающие колебания в контуре получаются в предположении, что потери энергии отсутствуют, т. е. R = 0.

Если активное сопротивление контура не равно нулю, то запас энергии в контуре сокращается (энергия превращается в тепло), амплитуды тока и напряжения с каждым периодом убывают, как показано на рис. 17.2.
Более детальное исследование колебательного контура показывает, что частота собственных колебаний зависит от активного сопротивления:
Резонанс в электрических цепях
При R = 0 это выражение совпадает с (17.2).
При Резонанс в электрических цепяхколебания в контуре не возникают, в чем нетрудно убедиться, подставив значение R в формулу (17.7). В этом случае процесс в контуре после подключения конденсатора к катушке является апериодическим, напряжение на конденсаторе с максимальной величины постепенно падает до нуля, а ток сначала растет, а потом тоже падает до нуля, не меняя знака (рис. 17.3).

Резонанс в электрических цепях

Рис. 17.2. График изменения тока в колебательном контуре с потерями

Резонанс в электрических цепях

Рис. 17.3. Апериодический разряд конденсатора на катушку индуктивности

Резонанс напряжений

При рассмотрении различных режимов электрических цепей был отмечен случай равенства реактивных сопротивлений ХL = ХC при последовательном соединении элементов, содержащих индуктивность и емкость.

В этом случае электрическая цепь находится в режиме резонанса напряжений, который характеризуется тем, что реактивная мощность цепи равна нулю, ток и напряжение совпадают по фазе.

Условие возникновения резонанса

Резонанс напряжений возникает при определенной для данной цепи частоте источника энергии (частоте вынужденных колебании), которую называет резонансной частотой ωр.

Резонанс в электрических цепях

При резонансной частоте, как будет показано далее, .
Режим электрической цепи при последовательном соединении участков с индуктивностью и емкостью, характеризующийся равенством индуктивного и емкостного сопротивлений, называют резонансом напряжений.
Резонанс напряжений рассмотрим, сначала на схеме идеализированной цепи (рис. 17.4, а), в которой последовательно с резистором R включены идеальные (без потерь) катушка L и конденсатор С.

Резонанс в электрических цепях

Рис. 17.4. К вопросу о резонансе напряжений

Реактивные сопротивления ХL и ХC (рис. 17.4, б) зависят от частоты вынужденных колебаний ω:
Резонанс в электрических цепяхРезонанс в электрических цепях
Приравнивая реактивные сопротивления и учитывая, что ω = ωр, получим
Резонанс в электрических цепях.
Отсюда резонансная частота
Резонанс в электрических цепях
В данном случае выражение для резонансной частоты совпадает с формулой (17.3) для частоты собственных колебаний в контуре без потерь.
Основные соотношения между величинами, характеризующими режим электрической цепи и энергетические процессы. Нужно отметить, что в неразветвленной цепи обмен энергией между катушкой и конденсатором совершается через источник энергии, который восполняет потери энергии в активных сопротивлениях.

Резонансные кривые

Резонанс напряжений в цепи можно установить двумя путями: 1) изменением параметров L и С (одного из них или обоих вместе) при постоянной частоте источника или 2) изменением частоты источника энергии при постоянных L и С.

В связи с этим большой практический интерес представляют зависимости напряжений и токов на отдельных элементах цепи от частоты. Эти зависимости называют резонансными кривыми (рис. 17.4, в).

Реактивные сопротивления с изменением частоты меняются, как показано на рис. 17.4, б. При увеличении частоты ХL увеличивается пропорционально частоте, а ХC уменьшается по закону обратной пропорциональности.
Соответственно полное сопротивление Z цепи при резонансной частоте ωр оказывается наименьшим, равным активному сопротивлению R; при частоте Резонанс в электрических цепяхполное сопротивление увеличивается с уменьшением частоты за счет роста ХC; при частотах Резонанс в электрических цепяхполное сопротивление растет с увеличением частоты за счет роста ХL .

Такая зависимость полного сопротивления от частоты определяет характер изменения тока при постоянном напряжении в цепи (рис. 17.4, в). При Резонанс в электрических цепяхток равен нулю, далее с увеличением частоты ток увеличивается и при Резонанс в электрических цепяхдостигает максимума Iр. Дальнейшее увеличение частоты ведет к постепенному уменьшению тока до нуля при Резонанс в электрических цепяхАналогично изменяется напряжение на активном сопротивлении UR, которое пропорционально току: Резонанс в электрических цепях.

Напряжение на конденсаторе UC при Резонанс в электрических цепяхравно напряжению на зажимах источника U, так как сопротивление конденсатора Резонанс в электрических цепяхчто соответствует разрыву цепи на его зажимах. С ростом частоты UC увеличивается, достигая наибольшей величины при частоте, несколько меньшей резонансной, и далее уменьшается до нуля при Резонанс в электрических цепях

Индуктивное напряжение Резонанс в электрических цепяхпри частоте Резонанс в электрических цепяхтак как сопротивление Резонанс в электрических цепяхУвеличение частоты ведет к увеличению UL, которое при частоте, несколько большей резонансной, достигает максимума, а затем уменьшается до величины напряжения источника при Резонанс в электрических цепяхкогда сопротивление Резонанс в электрических цепяхчто соответствует разрыву цепи на зажимах катушки.

Резонанс в электрических цепях

При частотах, меньших резонансной, реактивное сопротивление цепи имеет емкостный характер (отрицательно), поэтому и угол сдвига фаз в цепи отрицательный. Уменьшаясь с ростом частоты, он становится равным нулю при резонансе , а затем меняет знак и увеличивается при дальнейшем увеличении частоты.

Добротность контура

При резонансе напряжений отношение напряжения на индуктивности или емкости к напряжению, приложенному к цепи (напряжению источника), равно отношению волнового сопротивления к активному. Действительно, при резонансе сопротивления реактивных элементов

Резонанс в электрических цепях
Поэтому
Резонанс в электрических цепяхРезонанс в электрических цепях
Из этого выражения следует, что при Резонанс в электрических цепяхнапряжение на реактивных элементах больше напряжения источника.

Такое превышение может оказаться значительным, если реактивные сопротивления много больше активного, и изоляция катушки или конденсатора может быть пробита. На практике подобный случай возможен, если на конце кабельной линии включается приемник, обладающий индуктивностью.
В радиотехнике качество резонансного контура считается тем выше, чем больше отношение Резонанс в электрических цепяхназываемое добротностью контура Q:
Резонанс в электрических цепях
Чем меньше мощность потерь энергии в контуре (этому соответствует меньшая величина R), тем больше добротность контура.

Большей величине добротности соответствует больший ток Iр при резонансе и более острая резонансная кривая.

На рис. 17.5 показаны две резонансные кривые тока, построенные в относительных единицах при двух величинах добротности. По горизонтальной оси отложены отношения изменяющейся частоты источника энергии к резонансной частоте ω/ωр, а по вертикальной —отношения тока при данной частоте к току при резонансной частоте I/Iр.

Резонанс в электрических цепях

Рис. 17.5. Резонансные кривые при двух значениях добротности контура

Все рассуждения о резонансе напряжений в идеализированной цепи можно распространить и на цепи, содержащие последовательно соединенные катушку и конденсатор с потерями. Как известно, реальные катушки и конденсатор могут быть представлены схемами последовательного соединения активного и реактивного сопротивлений (рис. 17.5). Активные сопротивления катушки и конденсатора можно рассматривать как часть общего активного сопротивления цепи R, тогда схема на рис. 17.4, а будет пригодна и в этом случае.

Резонанс в электрических цепях

Резонансные (колебательные) цепи:

Резонансными или колебательными цепями называются электрические цепи, в которых могут возникать явления резонанса напряжений или токов.

Резонанс представляет собой такой режим пассивной электрической цепи, содержащей индуктивности и емкости, при котором реактивное сопротивление и реактивная проводимость цепи равны нулю; соответственно равна нулю реактивная мощность на выводах цепи.

Резонанс напряжения наблюдается в электрической цепи с последовательным соединением участков, содержащих индуктивности и емкости. Неразветвленная цепь, состоящая из последовательно соединенных элементов r, L и С, рассмотренная, представляет собой один из простейших случаев такой цепи. В радиотехнике ее называют последовательным колебательным контуром.

При резонансе напряжений индуктивное сопротивление одной части цепи компенсируется емкостным сопротивлением другой ее части, последовательно соединенной с первой. В результате реактивное сопротивление и реактивная мощность на выводах цепи равны нулю.

В свою очередь резонанс токов наблюдается в электрической цепи с параллельным соединением участков, содержащих индуктивности и емкости. Один из простейших примеров такой цепи, состоящей из параллельно соединенных элементов r, L и С. В радиотехнике такую цепь называют параллельным колебательным контуром.

При резонансе токов индуктивная проводимость одной части цепи компенсируется емкостной проводимостью другой ее части, параллельно соединенной с первой. В результате реактивная проводимость и реактивная мощность на выводах цепи равны нулю.

Частоты, при которых наблюдается явление резонанса, называются резонансными частотами.

Исследование резонансных режимов в электрических цепях заключается в нахождении резонансных частот,

Резонанс в электрических цепях

зависимостей различных величин от частоты или параметров L и С, а также в рассмотрении энергетических соотношений при резонансе.

Резонансные цепи очень широко применяются в электротехнике и представляют собой неотъемлемую часть всякого радиотехнического устройства. Изучению явления резонанса, свойств и частотных характеристик простейших резонансных цепей посвящена данная глава.

Последовательный колебательный контур. Резонанс напряжений

Резонанс в электрических цепях

Резонансная цепь с последовательным соединением r, L и С (рис. 5-1) является простейшей цепью для изучения явления резонанса напряжений и подробно рассматривается ниже. Комплексное сопротивление такой цепи зависит от частоты:

Резонанс в электрических цепях

Резонанс напряжений наступает при частоте когда

Резонанс в электрических цепях
отсюда
Резонанс в электрических цепяхРезонанс в электрических цепях

Резонанс в электрических цепях
Мгновенные энергии выражаются формулами:Резонанс в электрических цепях

Резонанс в электрических цепях

Если принять

Резонанс в электрических цепях

Резонанс в электрических цепях

Резонанс в электрических цепях

Такие зависимости называются частотными характеристиками

Максимальные значения этих энергий равны друг другу, так как

Резонанс в электрических цепях

Это следует и из того, что реактивное сопротивление цепи, содержащей индуктивность и емкость, при любой схеме соединений пропорционально разности максимальных значений энергии, запасаемой в магнитном и электрическом полях:

Резонанс в электрических цепях

Поэтому условию резонанса (х = 0) соответствует равенство

Резонанс в электрических цепях

Мгновенные значения Резонанс в электрических цепяхколеблются с удвоенной частотой около среднего значения Резонанс в электрических цепяхпричем происходит непрерывное перераспределение энергии магнитного и электрического полей, суммарное значение которой постоянно:

Резонанс в электрических цепях

.

В рассматриваемом случае (резонанс напряжений, рис. 5-1) в цепи не происходит обмена энергии между источником и реактивными элементами цепи, а вся электрическая энергия, поступающая от источника, расходуется в сопротивлении r.

Мы уже встречались с понятием добротности индуктивной катушки Резонанс в электрических цепяхи конденсатора Резонанс в электрических цепях. Умножив и разделив выражение для Резонанс в электрических цепяхполучим:

Резонанс в электрических цепях

Здесь Резонанс в электрических цепях— максимум энергии, периодически запасаемой индуктивностью L; Р — активная мощность, расходуемая в сопротивлении при амплитуде тока Резонанс в электрических цепях

Аналогично рассуждая, т. е. умножив и разделив выражение Резонанс в электрических цепяхполучим:
Резонанс в электрических цепях
где Резонанс в электрических цепях— максимум энергии, периодически запасаемой емкостью С, а Р— активная мощность потерь в параллельном сопротивлении r при амплитуде напряжения на емкости Резонанс в электрических цепяхСледовательно, в обоих случаях добротность определяется в, зависимости от отношения максимума энергии реактивного элемента к энергии РТ, выделяемой в виде тепла за период.

В случае резонансной цепи также пользуются понятием добротности цепи, подразумевая под этим в общем случае величину

Резонанс в электрических цепях
здесь Резонанс в электрических цепях— резонансная частота; Резонанс в электрических цепях— сумма максимальных значений энергии, периодически запасаемой при резонансе в индуктивных (или емкостных) элементах; Р — активная мощность на выводах цепи при резонансе.

Знак Резонанс в электрических цепяхв (5-3) относится к случаю, когда число индуктивных (или емкостных) элементов превышает единицу. В рассматриваемом нами случае резонанса напряжений в цепи рис. 5-1 знак Резонанс в электрических цепяхопускается.

Для схемы рис. 5-1 на основании (5-3) получаем:

Резонанс в электрических цепях
где
Резонанс в электрических цепях
называется характеристическим (а также волновым) сопротивлением резонансного контура.

Резонанс в электрических цепях

Условимся называть относительной расстройкой частоты по отношению к резонансной
частоте контура величину

Резонанс в электрических цепях

Сопротивление контура согласно (5-1) и с учетом (5-2) и (5-4)

Резонанс в электрических цепях
откуда, используяРезонанс в электрических цепяхполучаем:
Резонанс в электрических цепях

Резонанс в электрических цепях

Следовательно, полное сопротивление цепи

и угол

Резонанс в электрических цепях

Ток в цепи
Резонанс в электрических цепях
При частоте, близкой к резонансной, Резонанс в электрических цепяхзначительно меньше единицы, и поэтому приближенноРезонанс в электрических цепях

Выражения (5-7) практически достаточно точны при Резонанс в электрических цепях. При Резонанс в электрических цепяхпогрешность в сопротивлении z меньше 10%.

На рис. 5-2 кривые даны в относительных значениях: по оси абсцисс отложена относительная расстройка частоты Резонанс в электрических цепяхпо оси ординат — отношение полного сопротивления z к активному сопротивлению r (рис. 5-2, а) и угол Резонанс в электрических цепях(рис. 5-2, б).

Резонанс в электрических цепяхСледует обратить внимание на то, что частотам выше резонанснойРезонанс в электрических цепяхсоответствуют положительные значения расстройки Резонанс в электрических цепяха частотам ниже резонансной Резонанс в электрических цепях— отрицательные значения Резонанс в электрических цепяхнулевой частотеРезонанс в электрических цепяхсоответствует Резонанс в электрических цепяхпри резонансной частоте Резонанс в электрических цепях

Резонанс в электрических цепях
Полное сопротивление цепи минимально при резонансе напряжений при этом ток в цепи достигает своего максимального значения Резонанс в электрических цепях

Резонанс в электрических цепях

На рис. 5-3 изображены резонансные кривые тока в относительных значениях: по оси абсцисс, как и на предыдущих графиках, отложены значения по оси ординат — отношения токов к максимальному току при резонансе:

Резонанс в электрических цепях

Резонанс в электрических цепях

Чем выше добротность цепи Q, тем острее резонансные кривые. Таким образом, величина Q характеризует остроту резонансной кривой («остроту настройки»); согласно (5-3) чем больше отношение максимума энергии поля реактивного элемента к количеству теплоты, рассеиваемой за один период в резонансном контуре, тем острее резонансная кривая.

Резонанс в электрических цепях

Резонансные кривые были построены здесь в зависимости от относительной расстройки частоты Можно

вывести расчетные выражения и построить резонансные кривые в зависимости от Резонанс в электрических цепяхили относительной частоты Резонанс в электрических цепяхСледует заметить, что максимумы резонансных кривых на рис: 5-3 равны, так как по оси ординат отложено отношение Резонанс в электрических цепяхЕсли откладывать ток I, то при разных r максимумы резонансных кривых, естественно, не совпадут в одной точке.

Полосу частот вблизи резонанса, на границах которой ток снижается доРезонанс в электрических цепяхмаксимального (резонансного) значения Резонанс в электрических цепяхпринято называть полосой пропускания резонансного контура. При токе Резонанс в электрических цепяхмощность, расходуемая в сопротивлении r, равна:

Резонанс в электрических цепях
т. е. составляет половину мощности, расходуемой при резонансе. Поэтому полосу пропускания характеризуют как полосу, границы которой соответствуют половине максимальной мощности. На границах полосы пропускания резонансного контура активное и реактивное сопротивления равны Резонанс в электрических цепяхЭто следует из условия

Резонанс в электрических цепях

Резонанс в электрических цепях

что дает

Соответственно и фазовый сдвиг между напряжением на выводах цепи и током составляет Резонанс в электрических цепяхна нижней границе комплексное сопротивление цепи имеет емкостный характер (ток опережает напряжение) и Резонанс в электрических цепях= —45°; на верхней границе комплексное сопротивление цепи имеет индуктивный характер (ток отстает от напряжения) и Резонанс в электрических цепях= 45°.

На основании (5-8) условие для границы полосы пропускания записывается в следующем виде:

Резонанс в электрических цепях

Резонанс в электрических цепях

откуда

Резонанс в электрических цепях

(знак минус перед корнем, получающийся в результате решения квадратного уравнения, опускается, как не имеющий смысла). Индексы 1 и 2 и соответственно знаки минус и плюс в выражении (5-9) относятся к границам ниже и выше резонанса.

Резонанс в электрических цепях

По определению полоса пропускания резонансного контура находится из условия

Резонанс в электрических цепях

Величина d, обратная добротности контура, называется затуханием контура.

При достаточно высокой добротности резонансного контура Резонанс в электрических цепяхподкоренное выражение (5-9) может быть приравнено единице, откуда Резонанс в электрических цепяхт.е. пропуская практически симметрична относительно резонансной частоты.
В радиотехнических устройствах к одному из реактивных элементов колебательного контура, например емкости, подключается нагрузка в виде сопротивления Резонанс в электрических цепяхВследствие этого возрастают потери в цепи и соответственно уменьшается добротность. Для определения добротности нагруженного контура параллельное соединение Резонанс в электрических цепяхи С может быть заменено эквивалентным при резонансной частоте последовательным соединением емкости и «вносимого сопротивления» Резонанс в электрических цепяхС этой целью используются условия эквивалентности цепей с последовательным и параллельным соединениями.

Так как обычно Резонанс в электрических цепяхС учета того,что Резонанс в электрических цепяхполучаем: Резонанс в электрических цепяхПри этом, как отмечалось в конце емкости эквивалентных схем могут быть практически приравнены друг другу.

Таким образом, добротность нагруженного контура равна:

Резонанс в электрических цепях
а затухание увеличивается на вносимое затухание Резонанс в электрических цепях

Резонанс в электрических цепях
Если вносимое сопротивление Резонанс в электрических цепяхзначительно превышает сопротивление к, то
Резонанс в электрических цепях
Внутреннее сопротивление источника э. д. с. Резонанс в электрических цепяхдобавляемое к сопротивлению r, влияет на добротность и полосу пропускания колебательного контура: чем больше Резонанс в электрических цепяхтем ниже добротность и шире полоса пропускания

контура. Поэтому с точки зрения сокращения полосы пропускания последовательного колебательного контура выгоден источник напряжения с малым внутренним сопротивлением.

В условиях, близких к резонансу, напряжения на индуктивности и емкости могут быть весьма велики, что необходимо учитывать во избежание повреждения изоляции.

На рис. 5-4 показана векторная диаграмма тока и напряжений при резонансе. Напряжения на реактивных элементах при резонансе определяются из выражения

Резонанс в электрических цепях
При Q > 1 эти напряжения превышают напряжение U — Е, приложенное к резонансному контуру. Однако значения, получаемые на основании (5-11), не являются максимальными: максимум напряжения Резонанс в электрических цепяхрасполагается

Резонанс в электрических цепяхРезонанс в электрических цепях
несколько выше (правее), а максимум Uc — ниже (левее) резонансной частоты (рис. 5-5).

Напряжение на индуктивности Резонанс в электрических цепяхравное нулю при Резонанс в электрических цепях= 0, с увеличением Резонанс в электрических цепяхможет возрастать только до тех пор, пока ток не начнет снижаться быстрее, чем возрастает Резонанс в электрических цепях. После этого Резонанс в электрических цепяхспадает, стремясь, в пределе к Е. Напряжение на емкости Резонанс в электрических цепяхравное при Резонанс в электрических цепях= О приложенному напряжению U = Е, увеличивается, пока ток растет быстрее, чем Резонанс в электрических цепях; затем Резонанс в электрических цепяхспадает, стремясь в пределе к нулю. Кривые Резонанс в электрических цепяхпересекаются при резонансе, причем ордината точки пересечения в соответствии с (5-11) равна QE.

Резонанс в электрических цепях

Эго также вытекает из анализа следующих ниже выражений, полученных с учетом (5-5) и (5-6):

Резонанс в электрических цепях
Напряжение Резонанс в электрических цепяхдостигает максимума при

Резонанс в электрических цепях
а напряжение Резонанс в электрических цепях

Резонанс в электрических цепях
Пренебрегая Резонанс в электрических цепяхпо сравнению с единицей, получаем приближенную формулу
Резонанс в электрических цепях
Возвращаясь к определению понятия добротности рассматриваемой резонансной цепи, мы видим, что наряду с формулами (5-3) и (5-4) добротность цепи характеризуется выражениями (5-10) и (5-11), а именно:
Резонанс в электрических цепях
Последняя формула показывает, что добротность рассматриваемой цепи определяется как кратность перенапряжения на L и С при резонансной частоте.

Выше была рассмотрена неразветвленная электрическая цепь с последовательно соединенными r, L н С. Для исследования явления резонанса в более сложных разветвленных цепях, где резонанс напряжений может возникать на одной или нескольких частотах, наряду с аналитическим методом расчета, иллюстрированным выше, целесообразно также пользоваться методом геометрических мест.

Резонанс в электрических цепяхСледует отметить, что при Резонанс в электрических цепяхмаксимум функции Резонанс в электрических цепяхнаступает при Резонанс в электрических цепяхт. е. в этом случае Резонанс в электрических цепяхс ростом частоты непрерывно стремится к значению приложенного напряжения U — Е; максимум же функции Резонанс в электрических цепяхв рассматриваемом случае имеет место при Резонанс в электрических цепях= —1, т. е. при нулевой частоте Резонанс в электрических цепяхкогда Резонанс в электрических цепях

Параллельный колебательный контур и резонанс токов

Явление резонанса токов удобно изучать применительно к электрической цепи с параллельно соединенными r, L и С (рис. 5-6), так как при этом можно непосредственно воспользоваться результатами, полученными в предыдущем параграфе.

Действительно, выражение для комплексной проводимости такой цепи

Резонанс в электрических цепях

по своей структуре аналогично выражению (5-1), причем резонансная частота определяется согласно (5-2).

Резонанс в электрических цепях

Добротность резонансной цепи на основании (5-3)

Резонанс в электрических цепях
По аналогии с предыдущим выражение (5-13) приводится к виду:
Сравнивая полученный результат с (5-6), убеждаемся в том, что выражение Y/g для схемы рис. 5-6 имеет тот же вид, что и выражение Резонанс в электрических цепяхдля схемы рис. 5-1.

Резонанс в электрических цепях

Поэтому кривые рис. 5-2 применимы и в данном случае: кривые рис. 5-2, а выражают зависимость от 6 Отношения y/g, а кривые рис. 5-2, б — зависимость угла —

Кривые рис. 5-2, а показывают, что при резонансе токов полная проводимость цепи минимальна, т. е. входное сопротивление достигает максимума.

Резонанс в электрических цепях

При заданном напряжении на выводах цепи ток, идущий от источника в цепь, равен:

Резонанс в электрических цепях

Этот ток достигает минимума при резонансной частоте, так как при этом

Резонанс в электрических цепях

Резонанс в электрических цепях

Следовательно, отношение. токов определяется из выражения

Резонанс в электрических цепях

правая часть которого полностью совпадает с (5-8).

Резонанс в электрических цепях

В связи с этим резонансные кривые рис. 5-3 выражают применительно к схеме рис. 5-6 зависимость

В случае резонанса токов токи в индуктивном и емкостном элементах схемы рис. 5-6 равны и противоположны по знаку:

Резонанс в электрических цепях
Полученное выражение показывает, что добротность рассматриваемой цепи определяется как кратность токов в L и С по отношению к суммарному току Резонанс в электрических цепях

Резонанс в электрических цепях

При Q > 1 эти токи превышают

Если параллельный колебательный контур питается от источника тока с внутренним сопротивлением Резонанс в электрических цепяхто чем меньше сопротивление Резонанс в электрических цепяхприсоединяемое параллельно сопротивлению r, тем ниже добротность и шире полоса пропускания контура. Поэтому в отличие от последовательного колебательного контура с точки зрения сокращения. полосы пропускания параллельного колебательного контура выгоден источник тока с большим внутренним сопротивлением.

Для схемы рис. 5-6 при резонансе токов остается в силе вывод, сделанный в предыдущем параграфе о непрерывном обмене энергией между индуктивным и емкостным элементами при резонансе напряжений.

Схема рис. 5-6 является идеализированной, так как она не учитывает активных потерь в ветвях L и С. Поэтому рассмотрим другие схемы,’приняв во внимание активные сопротивления в ветвях L и С (рис. 5-7, а и б).

Резонанс в электрических цепях

Условие резонанса токов для схемы рис. 5-7, а записывается в виде равенства реактивных проводимостей:

Резонанс в электрических цепях

Явление резонанса возможно при этом только в случае, если подкоренное выражение (5-15) имеет положительный

знак или, что то же, величиныРезонанс в электрических цепяхимеют одинаковый знак Если Резонанс в электрических цепяхто цепь резонинует на любой частоте.

Резонанс в электрических цепях
.
На рис. 5-8 показана векторная диаграмма при резонансе токов в цепи рис. 5-7, а. Токи в индуктивной и емкостной ветвях слагаются из активных Резонанс в электрических цепяхи реактивных Резонанс в электрических цепяхсоставляющих, причем

Резонанс в электрических цепях

Чем меньше Резонанс в электрических цепяхпо сравнению сРезонанс в электрических цепяхи тем ближе

к Резонанс в электрических цепяхугол фазового сдвига между Резонанс в электрических цепяхпри этом токи в ветвях образуют как бы один контурный ток Резонанс в электрических цепях Резонанс в электрических цепяхзамыкающийся в колебательном контуре

Резонанс в электрических цепях

При резонансе вся цепь имеет только активную проводимость

откуда с учетом (5-14)
Резонанс в электрических цепях
Для колебательного контура с малыми потерями можно пренебречь слагаемым Резонанс в электрических цепяхпо сравнению с Резонанс в электрических цепяхи считать,

что Резонанс в электрических цепяхПри этом проводимость колебательного контура приближенно выразится формулой, широко распространенной в практике радиотехнических расчетов:
Резонанс в электрических цепях
При Резонанс в электрических цепях(5-15)
Резонанс в электрических цепях
Кроме того, если Резонанс в электрических цепяхпри любой

частоте (резонанс в такой цепи называют «безразличным» резонансом).

Резонанс в электрических цепях

Легко убедиться в том, что и в. случае резонансной цепи с двумя параллельными ветвями (см. рис. 5-7) соблюдается условие Для этого достаточно

Резонанс в электрических цепях

умножить обе части уравнения (5-14) на

Выше отмечалось, что в схеме с параллельно соединенными r, L и С (см. рис. 5-6) полная проводимость всей цепи имеет минимум при резонансной частоте.

Для схемы рис. 5-7, б нетрудно показать, что при изменении частоты о) или индуктивности L минимум полной проводимости цепи, а также минимум общего тока наступают не при резонансной частоте. В том же случае, когда переменным параметром является емкость С, проводимость и общий ток достигают минимума при резонансе токов.
Добротность параллельного колебательного контура рис. на основании (5-3) равна:

Резонанс в электрических цепях
но
Резонанс в электрических цепях
откуда
Резонанс в электрических цепях
где резонансная частота Резонанс в электрических цепяхопределяется по формуле (5-15).

Резонанс в электрических цепях

Часто в ветви с емкостью сопротивлением можно пренебречь. Тогда формулы значительно упрощаются.

Рассмотрим этот случай (см. рис. 5-7, б).

Резонанасная частота такого контура согласно (5-15)
Резонанс в электрических цепях
а добротность цепи в соответствии с полученным выше выражением
Резонанс в электрических цепях
Из сопоставления (5-16) и (5-2) видно, что при одних и тех же параметрах r, L и С резонансные частоты для схем рис. 5-1 и 5-7, б отличаются множителем

Резонанс в электрических цепях

При Резонанс в электрических цепяхразность резонансных частот не превышает 1%. Кроме того, выражение (5-16) показывает, что резонанс токов возможен в охеме рис. 5-7,6 только при Резонанс в электрических цепях

Общее сопротивление колебательного контура (см. рис, 5-7, б)
Резонанс в электрических цепях
На основании соотношений (5-16) и (5-17) можно получить:
Резонанс в электрических цепях
Учитывая также соотношения
Резонанс в электрических цепях
получаем выражение для сопротивления колебательного контура:

Резонанс в электрических цепях

.

Резонанс в электрических цепях

При резонансной частоте

Резонанс в электрических цепях

В тех случаях, когда весьма велико по сравнению с единицей выражение (5-18) упрощается:

Резонанс в электрических цепях

Резонанс в электрических цепях

В режиме, близком к резонансу, когданесоизмеримо меньше единицы, данное выражение заменяется приближенным:

Резонанс в электрических цепях

При высокой добротности колебательного контура

Резонанс в электрических цепях

Приэтом токи в ветвях
Резонанс в электрических цепях
Здесь Резонанс в электрических цепях— ток, входящий в цепь.

Напряжение на выводах цепи Резонанс в электрических цепяхсвязано с током I следующим образом:
Резонанс в электрических цепях
Приближенные выражения (5-19) и (5-20) аналогичны при заданном Q выражениям(5-12) и (5-7), выведенным для цепи рис. 5-1, при условии замены напряжений токами и обратно. Поэтому кривые сопротивлений, токов и напряжений, соответствующие схеме рис. 5-1, в известном масштабе приближенно выражают проводимости, напряжения и токи в схеме рис. 5-7, б.

Следует обратить внимание на то, что в схеме рис. 5-6 мгновенная мощность в цепи при резонансе токов равна мгновенной мощности, расходуемой в сопротивлении r; в схемах с двумя параллельными ветвями (рис. 5-7) мгновенная мощность на выводах цепи отлична от мгновенной мощности, расходуемой в сопротивлениях ветвей. Например, в тот момент, когда ток, входящий в цепь, проходит через нулевое значение, мгновенная мощность на выводах цепи равна нулю; в этот момент токи в ветвях, сдвинутые по фазе относительно суммарного тока цепи, отличны от нуля и поэтому мгновенная мощность, расходуемая в сопротивлениях ветвей, также не равна нулю. Объясняется это тем, что в схемах ~рис. 5-7, а и б энергия, накапливаемая реактивными элементами, периодически преобразуется частично в теплоту (в сопротивлениях ветвей), а затем вновь пополняется за счет энергии источника.
Для повышения крутизны резонансных характеристик, необходимой для более четкого разделения колебаний разных частот, в радиотехнике широко применяются двухконтурные резонансные цепи: два резонансных контура, настроенных каждый в отдельности на одну и ту же частоту, связываются индуктивно или электрически. В отличие от «одногорбой» резонансной кривой одиночного контура в связанных цепях получаются «двугорбые» кривые; например, ток в каждом контуре может иметь максимумы при двух частотах, расположенных ниже и выше резонансной частоты одиночного контура.

Частотные характеристики сопротивлений и проводимостей реактивных двухполюсников

Двухполюсником называется любая электрическая цепь или часть электрической цепи, имеющая два вывода. Ниже рассматриваются только линейные двухполюсники, т. е. такие, которые состоят из линейных элементов.

Различают двухполюсники активные и пассивные.

Активным называется двухполюсник, содержащий источники электрической энергии, которые не компенсируются взаимно внутри двухполюсника.

Резонанс в электрических цепях

Пассивным называется двухполюсник, не содержащий источников электрической энергии; в случае линейного двухполюсника он может содержать источники электрической энергии, взаимно компенсирующиеся таким образом, что напряжение на его разомкнутых выводах равно нулю. Такой линейный двухполюсник относится к категории пассивных; его сопротивление, измеренное на выводах, не изменится, если источники электрической энергии внутри него заменить пассивными элементами — внутренними сопротивлениями источников э. д. с. или соответственно внутренними проводимостями источников тока. Пример двухполюсника, содержащего компенсированные источники, показан на рис. 5-9.

По числу элементов, входящих в двухполюсник, различают одноэлементный, двухэлементный и многоэлементный двухполюсники.

По характеру этих элементов двухполюсники делятся на реактивные, т. е. состоящие из индуктивностей и емкостей, и двухполюсники с потерями, содержащие активные сопротивления. Реактивные двухполюсники представляют собой идеализированные электрические системы, приближающиеся по своим свойствам к физически существующим цепям с малыми потерями.

Частотные характеристики сопротивлений или проводимостей двухполюсников, образующих электрическую цепь, предопределяют частотные и резонансные свойства цепи, т. е. зависимости амплитуд и фаз токов и напряжений от частоты.

Настоящий параграф посвящен изучению частотных характеристик пассивных реактивных двухполюсников.

Одноэлементные реактивные двухполюсники

Индуктивность и емкость представляют собой простейшие одноэлементные реактивные двухполюсники. Знак комплексного сопротивления и комплексной проводимости каждого из этих двухполюсников не зависит от частоты; этим они существенно отличаются от других, более сложных реактивных двухполюсников, содержащих неоднородные реактивные элементы, т. е. индуктивность и емкость в разных сочетаниях.

Комплексное сопротивление индуктивного элемента во всем спектре частот имеет положительный знак, а комплексная проводимость — отрицательный:

Резонанс в электрических цепях

Комплексное сопротивление емкостного элемента во всем спектре частот имеет отрицательный знак, а комплексная проводимость — положительный:

Резонанс в электрических цепях

В рассматриваемом случае реактивных двухполюсников комплексные сопротивления и проводимости являются мнимыми. Поэтому для сохранения знаков частотные ха-рактернстнкн сопротивлений и проводимостей удобно рисовать в прямоугольной системе координат, в которой вверх откладываются мнимые величины со знаком плюс, а вниз — со знаком минус.

Частотные характеристики Резонанс в электрических цепяхпостроенные в прямоугольной системе координат, представляют собой прямые линии, а частотные характеристики Резонанс в электрических цепях— равнобочные гиперболы (рис. 5-10). Таким образом, кривые Резонанс в электрических цепяхи Резонанс в электрических цепяханалогичны кривым Резонанс в электрических цепях

Следует заметить, что как сопротивления, так и проводимости рассматриваемых здесь одноэлементных реактивных двухполюсников возрастают (с учетом знака) по мере повышения частоты, т. е.

Резонанс в электрических цепях

Резонанс в электрических цепях

Это является общим свойством всех реактивных двухполюсников, а не только одноэлементных.

Двухполюсник, состоящий из последовательно или параллельно соединенных однородных элементов (индуктивностей или емкостей), относится к числу одноэлементных двухполюсников, так как последовательно или параллельно соединенные однородные элементы могут быть заменены одним эквивалентным реактивным элементом того же характера.

Двухэлементные реактивные двухполюсники

Двухэлементные двухполюсники, составленные из индуктивности и емкости, представляют собой простейшие резонансные цепи.

При последовательном соединении индуктивности и емкости алгебраически складываются комплексные сопротивления. На рис. 5-11, а жирной линией показана частотная характеристика двухполюсника, полученная в результате графического сложения кривых Резонанс в электрических цепяхОна пересекает ось абсцисс при резонансной частоте Резонанс в электрических цепях(резонанс напряжений). Эта частота, при которой функция Z Резонанс в электрических цепяхобращается в нуль, называется нулем данной функции; точка на оси абсцисс, которая соответствует нулю функции, обозначается кружком.

Резонанс в электрических цепях
Частотная характеристика проводимости того же двухполюсника представляет собой функцию, обратную сопротивлению: Резонанс в электрических цепях

Кривая Y показана на рис. 5-11, б.

При резонансной частоте проводимость рассматриваемого двухполюсника обращается в бесконечность; эта точка носит название полюса функции Y и обозначается на чертеже крестиком

Частотные характеристики Z и Y, построенные таким образом1, соответствуют уравнениям:

Резонанс в электрических цепях
и
Резонанс в электрических цепях
или с учетом(5-2):
Резонанс в электрических цепях

Резонанс в электрических цепях

На осях ординат частотных характеристик чисто реактивных цепей откладываются мнимые значения сопротивлений и проводимостей.

Резонанс в электрических цепях

В области частот ниже резонансной сопротивление емкостного элемента превышает по абсолютному значению сопротивление индуктивного элемента; при этом сопротивление двухполюсника имеет емкостный характер.

Резонанс в электрических цепях

В области частот выше резонансной абсолютное значение емкостного сопротивления меньше, чем индуктивного; сопротивление двухполюсника имеет индуктивный характер.

При параллельном соединении индуктивности и емкости алгебраически складываются их комплексные проводимости. На рис. 5-12, а жирной линией показана частотная
Резонанс в электрических цепях
характеристика двухполюсника, полученная в результате графического сложения Резонанс в электрических цепях

Частотная характеристика сопротивления того же двухполюсника представляет собой функцию, обратную проводимости: Z — 1/Y. Кривая Z показана на рис. 5-12, б.

Частота, при которой характеристика Y пересекает ось абсцисс (нуль функции У), а характеристика Z уходит в бесконечность (полюс функции Z), является резонансной частотой (резонанс токов).

Частотные характеристики, построенные на рис. 5-12, соответствуют уравнениям:
Резонанс в электрических цепях
И
Резонанс в электрических цепях

или с учетом (5-22)

Резонанс в электрических цепях

В области частот ниже резонансной проводимость индуктивного элемента перекомпенсирует проводимость емкостного элемента и сопротивление двухполюсника получается, индуктивным. В области частот выше резонансной наблюдается обратное явление и сопротивление двухполюсника имеет емкостный характер.

Таким образом, в зависимости от частоты двухэлементный реактивный двухполюсник может иметь либо индуктивное, либо емкостное сопротивление. При этом, так же как и в случае одноэлементного реактивного двухполюсника, кривые Z и Y возрастают, т. е. производные от Резонанс в электрических цепяхи Резонанс в электрических цепяхпо частоте положительны.

В отличие от сопротивлений одноэлементных двухполюсников, которые выражаются только через текущую частоту, сопротивления двухэлементных реактивных двухполюсников зависят также и от разности квадратов резонансной и текущей частот (формулы (5-21) и (5-22)1.

Как видно из выражений (5-21), для построения частотных характеристик двухполюсника, состоящего из последовательно соединенных элементов L и С, достаточно знать нуль функции Z или, что то же, полюс функции Y. Параметр L, входящий в (5-21), влияет только на выбор масштаба Z и Y по оси ординат.

Аналогично в соответствии с (5-22) для построения частотных характеристик двухполюсника, состоящего из параллельно соединенных элементов L и С, достаточно знать полюс Z или, что то же, нуль Y, причем параметр С влияет только на масштаб Z и Y.

Двухполюсники, имеющие одинаковые частотные характеристики Z или Y, эквивалентны.

Многоэлементный реактивный двухполюсник

Многоэлементный реактивный двухполюсник может быть получен в результате различных сочетаний одноэлементных и двухэлементных двухполюсников. Пользуясь частотными характеристиками, приведенными выше, можно построить частотные характеристики для трех-, четырех- и много-элементных реактивных двухполюсников. При этом одно-

родные элементы (или группы элементов с одинаковыми резонансными частотами), соединенные параллельно или последовательно, должны быть сначала заменены одним элементом (или эквивалентной группой элементов, как это, например, показано на рис. 5-13).

Резонанс в электрических цепях

Такие двухполюсники будем называть «приведенными».

Из свойства положительности производной Резонанс в электрических цепях(или Резонанс в электрических цепяхследует, что нули и полюсы функций Z (или Y) должны чередоваться, так как при наличии двух последовательных нулей, не разделенных полюсом, имелся бы участок характеристики с отрицательной производной.

Резонанс в электрических цепях
В общем случае, если при Резонанс в электрических цепяхсопротивление реактивного двухполюсника равно нулю, т. е. имеется путь для постоянного тока, то первым наступает резонанс токов, за ним следует резонанс напряжений и т. д.

В противном случае порядок расположения резонансов обратный: первым наступает резонанс напряжений, вторым — резонанс токов и т. д.

На рис. 5-14, а дана схема многоэлементного двухполюсника, а на рис. 5-14, б — соответствующая ему частотная характеристика сопротивления.

Резонанс в электрических цепях

У реактивных двухполюсников сумма чисел полюсов и нулей (не считая точек на единицу меньше числа элементов данного «приведенного» двухполюсника.

Резонанс в электрических цепях

Расположение нулей и полюсов, как указывалось выше, поочередное, а все ветви частотной характеристики с увеличением возрастают.

  1. Электротехника
  2. Основы теории цепей
  • Соединение звездой и треугольником в трехфазных цепях
  • Принцип действия асинхронного и синхронного двигателей
  • Метод симметричных составляющих
  • Цепи периодического несинусоидального тока
  • Расчет неразветвленной однородной магнитной цепи
  • Энергия магнитного поля
  • Синусоидальные Э.Д.С. и ток
  • Электрические цепи с взаимной индуктивностью

При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org

Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи

Сайт пишется, поддерживается и управляется коллективом преподавателей

Telegram и логотип telegram являются товарными знаками корпорации Telegram FZ-LLC.

Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.

Дана частота найти напряжение

Время, в течение которого совершается одно полное изме­нение ЭДС, то есть один цикл колебания или один полный оборот радиуса-вектора, называется периодом колебания пере­менного тока (рисунок 1).

Рисунок 1. Период и амплитуда синусоидального колебания. Период — время одного колебания; Аплитуда — его наибольшее мгновенное значение.

Период выражают в секундах и обозначают буквой Т.

Так же используются более мелкие единицы измерения периода это миллисекунда (мс)- одна тысячная секунды и микросекунда (мкс)- одна миллионная секунды.

1 мкс=0,001 мс = 0,000001сек =10 -6 сек.

Число полных изменений ЭДС или число оборотов ради­уса-вектора, то есть иначе говоря, число полных циклов колеба­ний, совершаемых переменным током в течение одной секунды, называется частотой колебаний переменного тока.

Частота обо­значается буквой f и выражается в периодах в секунду или в герцах.

Одна тысяча герц называется килогерцом (кГц), а миллион герц — мегагерцом (МГц). Существует так же единица гигагерц (ГГц) равная одной тысячи мегагерц.

1000 000 Гц = 10 6 Гц = 1000 кГц = 1 МГц;

1000 000 000 Гц = 10 9 Гц = 1000 000 кГц = 1000 МГц = 1 ГГц;

Чем быстрее происходит изменение ЭДС, то есть чем бы­стрее вращается радиус-вектор, тем меньше период колебания Чем быстрее вращается радиус-вектор, тем выше частота. Таким образом, частота и период переменного тока являются величинами, обратно пропорциональными друг другу. Чем больше одна из них, тем меньше другая.

Математическая связь между периодом и частотой переменного тока и напряжения выра­жается формулами

Например, если частота тока равна 50 Гц, то период будет равен:

И наоборот, если известно, что период тока равен 0,02 сек, (T=0,02 сек.), то частота будет равна:

Частота переменного тока, используемого для освещения и промышленных целей, как раз и равна 50 Гц.

Частоты от 20 до 20 000 Гц называются звуковыми часто­тами. Токи в антеннах радиостанций колеблются с частотами до 1 500 000 000 Гц или, иначе говоря, до 1 500 МГц или 1,5 ГГц. Такие вы­сокие частоты называются радиочастотами или колебаниями высокой частоты.

Наконец, токи в антеннах радиолокационных станций, станций спутниковой связи, других спецсистем (например ГЛАНАСС, GPS) колеблются с частотами до 40 000 МГц (40 ГГц) и выше.

Амплитуда переменного тока

Наибольшее значение, которого достигает ЭДС или сила тока за один период, называется амплитудой ЭДС или силы переменного тока. Легко заметить, что амплитуда в масштабе равна длине радиуса-вектора. Амплитуды тока, ЭДС и напряжения обозначаются соответственно бук­вами Im, Em и Um (рисунок 1).

Угловая (циклическая) частота переменного тока.

Скорость вращения радиуса-вектора, т. е. изменение ве­личины угла поворота в течение одной секунды, называется угловой (циклической) частотой переменного тока и обозначается греческой буквой ? (оме­га). Угол поворота радиуса-вектора в любой данный момент относительно его начального положения измеряется обычно не в градусах, а в особых единицах — радианах.

Радианом называется угловая величина дуги окружности, длина которой равна радиусу этой окружности (рисунок 2). Вся окружность, составляющая 360°, равна 6,28 радиан, то есть 2.

Рисунок 2. Радиан.

1рад = 360°/2

Следовательно, конец радиуса-вектора в течение одного периода пробегают путь, равный 6,28 радиан (2). Так как в тече­ние одной секунды радиус-вектор совершает число оборотов, равное частоте переменного тока f, то за одну секунду его ко­нец пробегает путь, равный 6,28 * f радиан. Это выражение, характеризующее скорость вращения радиуса-вектора, и будет угловой частотой переменного тока — ? .

? = 6,28*f = 2f

Фаза переменного тока.

Угол поворота радиуса-вектора в любое данное мгновение относительно его начального положения называется фазой переменного тока. Фаза характеризует величину ЭДС (или тока) в данное мгновение или, как говорят, мгновенное значение ЭДС, ее направление в цепи и направление ее изменения; фаза пока­зывает, убывает ли ЭДС или возрастает.

Читайте также: Кабель для напряжения 240 квт

Рисунок 3. Фаза переменного тока.

Полный оборот радиуса-вектора равен 360°. С началом но­вого оборота радиуса-вектора изменение ЭДС происходит в том же порядке, что и в течение первого оборота. Следова­тельно, все фазы ЭДС будут повторяться в прежнем поряд­ке. Например, фаза ЭДС при повороте радиуса-вектора на угол в 370° будет такой же, как и при повороте на 10°. В обо­их этих случаях радиус-вектор занимает одинаковое положе­ние, и, следовательно, мгновенные значения ЭДС будут в обоих этих случаях одинаковыми по фазе.

ПОНРАВИЛАСЬ СТАТЬЯ? ПОДЕЛИСЬ С ДРУЗЬЯМИ В СОЦИАЛЬНЫХ СЕТЯХ!

Решение типовых задач. Синусоидальные токи, напряжения

Синусоидальные токи, напряжения. Параметры идеальных элементов электрических цепей синусоидального тока

Общие сведения

Электромагнитный процесс в электрической цепи считается периодическим, если мгновенные значения напряжений и токов повторяются через равные промежутки времени Т. Время Т называется периодом. Напряжения u(t) = u(t+T) и токи i(t)=i(t+T) ветвей электрической цепи являются периодическими функциями времени.

Величина, обратная периоду (число периодов в единицу времени), называется частотой: f = 1/T. Частота имеет размерность 1/c, а единицей измерения частоты служит Герц (Гц).

Широкое применение в электротехнике нашли синусоидальные напряжения и токи:

Um, Im – максимальные или амплитудные значения,

ω = 2π/T = 2πf – угловая частота (скорость изменения аргумента),

ωt + ψu, ωt + ψi – фазы, соответственно напряжения и тока.

Графики изменения u(t), i(t) удобно представлять не в функции времени t, а в функции угловой величины ωt , пропорциональной t (рис. 1.1).

Величина φ = (ωt + ψu) – (ωt + ψi) = ψu, — ψi называется углом сдвига фаз. На рис. 1.1 ψu > 0, ψi > 0, φ = ψuψi > 0, т.е. напряжение опережает ток. Аналогично можно ввести понятие углов сдвига фаз между двумя напряжениями или токами.

Количество тепла, рассеиваемого на сопротивление R при протекании по нему тока, электромагнитная сила взаимодействия двух проводников с равными токами, пропорциональны квадрату тока. Поэтому о величине тока судят по действующему значению за период. Действующее значение периодического тока i(t) определяется по выражению

Для квадратов левой и правой частей этого равенства, после умножения их на RT, будем иметь:

Из этого равенства следует, что действующее значение периодического тока равно по величине такому постоянному току I, который на неизменном сопротивлении R за время T выделяет тоже количество тепла, что и ток i(t).

При синусоидальном токе i(t) = Im sin ωt интеграл

Следовательно, действующее значение синусоидального тока равно

Действующее значение синусоидальных напряжений u(t), э.д.с. e(t) определяются аналогично:

Для измерения действующих значений используются приборы электромагнитной, электродинамической, тепловой и др. систем.

Среднее значение синусоидального тока определяется как среднее за половину периода. Поэтому,

Средние значения синусоидальных напряжений u(t), э.д.с. e(t) определяются аналогично:

Отношение амплитудного значения к действующему называется коэффициентом амплитуды ka, а отношение действующего значения к среднему – коэффициентом формы kф. Для синусоидальных величин, например, тока i(t), эти коэффициенты равны:

Для синусоидальных токов i(t) = Im sin(ωt + ψi) уравнения идеальных элементов R, L, C при принятых на рис. 1.2. положительных направлениях имеют вид

На активном сопротивлении R мгновенные значения напряжения и тока совпадают по фазе. Угол сдвига фаз φ = 0.

На индуктивности L мгновенное значение тока отстает от мгновенного значения напряжения на угол . Угол сдвига фаз .

На емкости C мгновенное значение напряжения отстает от мгновенного значения тока на угол . Угол сдвига фаз .

Величины ωL и 1/ωC имеют размерность [Ом] и называются реактивным сопротивлением индуктивности или индуктивным сопротивлением XL:

и реактивным сопротивлением емкости или емкостным сопротивлением XС:

Величины 1/ωL и ωC имеют размерность [Ом -1 ] и называются реактивной проводимостью индуктивности или индуктивной проводимостью BL:

Читайте также: Допустимое нормальное напряжение формула

и реактивной проводимостью емкости или емкостной проводимостью BС:

Связь между действующими значениями напряжения и тока на идеальных элементах R, L, C устанавливают уравнения:

Для синусоидального напряжения u = Um sin ωt начальная фаза тока на входе пассивного двухполюсника (рис. 1.3.) равна

Проекция напряжения на линию тока

называется активной составляющей напряжения.

Проекция напряжения на линию, перпендикулярную току,

называется реактивной составляющей напряжения.

Проекция тока на линию напряжения

называется активной составляющей тока.

Проекция тока на линию, перпендикулярную напряжению,

называется реактивной составляющей тока.

Имеют место очевидные соотношения:

В цепи синусоидального тока для пассивного двухполюсника по определению вводятся следующие величины:

2. Эквивалентные активное Rэк и реактивное Xэк сопротивления:

4. Эквивалентные активная Gэк и реактивная Bэк проводимости:

Из треугольников сопротивлений и проводимостей (рис. 1.4) следует:

Эквивалентные параметры являются измеряемыми величинами, поэтому могут быть определены из физического эксперимента (рис. 1.5).

Электрическая цепь по схеме рис. 1.5 должна содержать амперметр А и вольтметр U для измерения действующих значений напряжения и тока, фазометр φ для измерения угла сдвига фаз между мгновенными значениями напряжения и тока на входе пассивного двухполюсника П.

Угол сдвига фаз пассивного двухполюсника .

Физическая величина, численно равная среднему значению от произведения мгновенных значений напряжения u(t) и тока i(t), называется активной мощностью Р.По определению имеем:

называются полной мощностью S и реактивной мощностью Q в цепи синусоидального тока. Имеет место равенство

Коэффициент мощности kм в цепи синусоидального тока определяется выражением:

Единицей измерения активной мощности является Ватт [Вт]. Для измерения активной мощности служит ваттметр. Ваттметр включается по схеме рис. 1.6.

Единица измерения полной мощности [ВА], реактивной – [ВАр].

Для вычисления мощностей удобно использовать следующие выражения:

Решение типовых задач

Для измерения мгновенных значений напряжений u(t) и токов i(t) служит осциллограф. Поскольку сопротивление входа этого прибора очень большое, непосредственно для измерения тока осциллограф использовать нельзя. Измеряют не ток, а пропорциональное току напряжение на шунте Rш (рис. 1.7, а).

К источнику синусоидального напряжения частотой f = 50 Гц подключена катушка индуктивности (рис. 1.7, а). Активное сопротивление провода, из которого изготовлена катушка, R = 10 Ом, индуктивность L = 1,6 мГн. Осциллограмма напряжения uш(t) представлена на рис. 1.7, б. Сопротивление шунта Rш = 0,1 Ом. Масштаб по вертикальной оси осциллограммы mu = 0,02 В/дел (0,02 вольта на деление).

Рассчитать действующие значения напряжения uRL, составляющих uR и uL этого напряжения. Построить графики мгновенных значений напряжений uRL, составляющих uR и uL.

По осциллограмме рис. 1.7, б двойная амплитуда напряжения на шунте 2А = 10 дел. Находим амплитудное значение Im тока i:

Реактивное сопротивление Х индуктивности L на частоте

Амплитудные значения напряжений uR и uL:

Мгновенные значения составляющих напряжения на сопротивление R катушки индуктивности и индуктивности L соответственно равны (ψi = 0):

Мгновенное значение напряжения на активном сопротивлении в фазе с током, на индуктивности – опережает на угол .

Действующие значения напряжений:

Векторные диаграммы напряжений и тока приведены на рис. 1.8.

К цепи со схемой рис.1.10 приложено синусоидальное напряжение u = 141 sin 314t B.

Найти мгновенные и действующие значения тока и напряжения на всех участках цепи, если R = 30 Ом,

Назначаем положительные направления тока и напряжений как на рис. 1.10. Определяем реактивное сопротивление ХС емкости C на частоте ω = 314с -1 :

Полное сопротивление цепи:

– напряжения на резисторе R: ;

– напряжения на емкости С: .

Угол сдвига фаз между напряжением u и током i:

Начальная фаза тока i определяется из соотношения . Откуда,

Мгновенные значения тока и напряжений на участках цепи:

Для пассивного двухполюсника (рис. 1.5) экспериментально определены:

Найти полное и эквивалентные активное и реактивное сопротивления двухполюсника.

Читайте также: Стабилизатор напряжения работающий при минусовых температурах

По цепи по схеме рис. 1.10 действующие значения тока i на частотах

Определить параметры цепи R и C, если на этих частотах напряжение на входе U = 100 В.

По определению на частотах f1 и f2 имеем:

Непосредственно по схеме цепи рис. 1.10 находим:

Значения параметров R и С найдем из решения системы уравнений

Программа расчета в пакете MathCAD.

U:=100 f1:=500 f2:=1000 I1:=1 I2:=1.8 ←Присвоение переменным заданных условием задачи величин.
←Расчет полных сопротивлений на частотах f1 и f2.
←Расчет угловой частоты.
←Задание приближенных значений параметров R и C цепи.
Giver
←Решение системы нелинейных уравнений. Для набора «=» нажмите [Ctrl]=.
←Присвоение вектору RC найденных значений параметров R и C цепи.

Значения параметров цепи: .

Вычислить действующее значение тока и активную мощность на входе пассивного двухполюсника с эквивалентными активной проводимостью

G = 0,011 Ом -1 и реактивной проводимостью B = 0,016 Ом -1 . Напряжение на входе двухполюсника U = 30 В.

Действующее значение тока

Задача 1.6

Действующее значение синусоидального тока ветви с резистором R равно 0, 1 А (рис. 1.11). Найти действующие значения напряжения u, и токов iL и i, если R = 430 Ом; XL = 600 Ом. Чему равна активная, реактивная и полная мощности этого двухполюсника?

Положительные направления напряжения и токов указаны на рис. 1.11.

Действующее значение тока IR = 0,1 А.

Действующее значение тока I можно вычислить, определив полную проводимость Y цепи. По виду схемы имеем

Действующее значение синусоидального напряжения на емкости С в цепи со схемой рис. 1.10 UС = 24 В. Найти действующее значение напряжения u и тока i, если XC = 12 Ом; R = 16 Ом.

Определяем действующее значение тока i

Полное сопротивление цепи

Определяем действующее значение напряжения u

Задача 1.8

Для определения эквивалентных параметров пассивного двухполюсника в цепи синусоидального тока были сделаны измерения действующих значений напряжения, тока и активной мощности (рис. 1.12).

A → 0,5 A, U → 100 B, W → 30 Вт.

Для определения характера реактивного сопротивления (проводимости) параллельно двухполюснику была включена емкость С (ВС ˂ Вэк). При этом показания амперметра уменьшились. Рассчитать эквивалентные сопротивления и проводимости двухполюсника.

Действующее значение: I = 0,5 A, U = 100 B. Активная мощность, потребляемая двухполюсником, P = 30 Вт. Полное сопротивление двухполюсника

Эквивалентное активное сопротивление

Эквивалентное реактивное сопротивление

Характер реактивного сопротивления индуктивный (Хэк = ХL, φ > 0). После включения параллельно двухполюснику емкости С, ток I’ ˂ I. Этому случаю соответствует векторная диаграмма рис. 1.13 а. Емкостному характеру соответствует векторная диаграмма рис. 1.13 б.

Полная проводимость двухполюсника

Эквивалентная активная проводимость

Эквивалентная реактивная проводимость

Следует обратить внимание, что треугольники сопротивлений и проводимостей для одного и того же двухполюсника подобны (рис. 1.4). Поэтому,

1.3. Задачи и вопросы для самоконтроля

1. Какими параметрами описываются синусоидальные токи в электрических цепях?

2. Как связаны между собой круговая частота ω и период Т синусоидального тока?

3. Что такое действующее значение переменного тока?

4. Запишите формулы для вычисления индуктивного и емкостного сопротивлений.

5. Объясните, как определить напряжение на участке цепи, если заданы и r и x.

6. Нарисуйте треугольник сопротивлений и треугольник проводимостей с необходимыми обозначениями.

7. Запишите формулы для вычисления активной и реактивной мощностей.

8. Напряжение на индуктивности L = 0,1 Гн в цепи синусоидального тока изменяется по закону . Найти мгновенное значение тока и индуктивности.

9. Ток в емкости С = 0,1 мкФ равен . Найти мгновенное значение напряжения на емкости.

10. На участке цепи с последовательно включенными активным сопротивлением R = 160 Ом и емкостью С = 26,54 мкФ мгновенное значение синусоидального тока . Найти мгновенные значения напряжений на емкости и на всем участке цепи. Чему равны действующие значения этих величин?

Дата добавления: 2016-01-29 ; просмотров: 96927 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

  • Напряжение
  • Реле
  • Трансформатор
  • Что такое рекуперация на электровозе
  • Чем отличается электровоз от тепловоза
  • Чем глушитель отличается от резонатора
  • Стойки стабилизатора как определить неисправность
  • Стабилизатор поперечной устойчивости как работает

Зависимость напряжения от частоты питающего тока

Надо заметить, что напряжение и разность потенциалов – это одно и то же. По сути, это сила, которая способна заставить электрические заряды двигаться потоком. Не имеет значения, куда будет направлено это движение.

Разность потенциалов – просто другое выражение для напряжения. Оно нагляднее и, может быть, понятнее, но сути дела не меняет. Поэтому главный вопрос состоит в том, откуда берется напряжение, и от чего оно зависит.

В том, что касается домашней сети 220 Вольт, ответ простой. На гидростанции поток воды вращает ротор генератора. Энергия вращения трансформируется в силу напряжения. Атомная электростанция вначале превращает воду в пар. Он и крутит турбину. В бензоэлектростанции ротор вращает сила сгорающего бензина. Есть и другие источники, но суть всегда одна и та же: энергия превращается в напряжение.

Самое время задаться вопросом о зависимости напряжения от частоты. Но мы еще не знаем, откуда берется частота.

Виды мощностей

Мощностью называется измеряемая физическая величина, которая равна скорости изменения с преобразованием, передачей или потреблением системной энергии. Согласно более узкому понятию, это показатель, который равен отношению затраченного времени на работы к самому периоду, который тратится на работу. Обозначается в механике символом N. В электротехнической науке используется буква P. Нередко можно увидеть также символ W, от слова ватт.

Мощность переменного тока -это произведение силы тока с напряжением и косинусом сдвига фаз. При этом беспрепятственно можно посчитать только активную и реактивную разновидность. Узнать полное мощностное значение можно через векторную зависимость этих показателей и площади.

Основные мощностные разновидности

Активная мощность

Активной называется полезная сила, определяющая процесс прямого преобразования электроэнергии в необходимый вид силы. В каждом электроприборе преобразовывается она по-своему. К примеру, в лампочке получается свет с теплом, в утюге — тепло, а в электрическом двигателе — механическая энергия. Соответственно, показывает КПД устройства.

Активная разновидность

Реактивная мощность

Реактивной называется та, которая определяется при помощи электромагнитного поля. Образуется при работе электроприборов. Обратите внимание! Это вредная и паразитная мощностная характеристика, которая определяется тем, каков характер нагрузки. Для лампочки она равняется нулю, а для электродвигателя она может быть равна большим значением.

Разница между величинами в том, что активно действующая мощностная характеристика показывает КПД устройств, а реактивная является передачей этого КПД. Разница также наблюдается в определении, символе, формуле и значимости.

Обратите внимание! Что касается значения, то вторая нужна лишь для того, чтобы управлять создавшимся напряжением от первой величины и преодолевать мощностные колебания. Обе измеряются в ваттах и имеют большое значение в электромагнитном излучении, механической форме генератора или акустической волне. Активно применяются в промышленности.

Реактивная разновидность

Полная мощность

Полная — это сумма активной с реактивной мощностью. Равна сетевому мощностному показателю. Это произведение напряжения с током в момент игнорирования фазы угла между ними. Вся рассеиваемая с поглощаемой и возвращаемой энергией — это полная энергия.

Это произведение напряжения и тока, единица измерения которого это ватт, перемноженный на ампер. При активности цепи, полная равняется активной. Если речь идет об индуктивной или емкостной схеме, то полная больше, чем активная.

Вам это будет интересно Как воздействует электрический ток на организм человека

Полная разновидность

Комплексная мощность

Это сумма всех мощностных показателей фаз источника электроэнергии. Это комплексный показатель, модуль которого равняется полному мощностному показателю электроцепи. Аргументом является фазовый сдвиг между электротоком с сетевым напряжением. Может быть выражена уравнением, где суммарный мощностный показатель, который генерируют источники электроэнергии, равен суммарному мощностному показателю, который потребляется в электроцепи.

Обратите внимание! Вычисляется посредством использования соответствующей формулы. Так, необходимо комплексное напряжение перемножить на комплексны ток или же удвоенное значение комплексного тока перемножить на импеданс. Также можно удвоенное значение комплексного напряжения поделить на удвоенное значение импеданса.

Читайте также: 3 группа по электробезопасности до и выше 1000 вольт

Комплексная разновидность

Что является источником частоты

Тот же самый генератор. Частота его вращения превращается в одноименное свойство напряжения. Вращайте генератор быстрее – частота будет больше. И наоборот.

Хвост не может «вилять» собакой. По той же причине частота не может изменить напряжение. Следовательно, выражение «зависимость напряжения от частоты тока» не имеет смысла?

Чтобы найти ответ, надо правильно сформулировать вопрос. Есть такая присказка про глупца и 10 ученых мужей. Он задавал неправильные вопросы, а они не могли ответить.

Если назвать напряжение другим определением, все встанет на свои места. Оно применяется для цепей, состоящих из множества разных сопротивлений. «Падение напряжения». Оба выражения часто считаются синонимами, что почти всегда неправильно. Потому что падение напряжения действительно может зависеть от частоты.

С чего бы напряжению падать?

Да просто потому, что не может не падать. Итак. Если на одном полюсе источника потенциал равен 220 Вольт, а на другом – ноль, то это падение могло произойти только в цепи. Закон Ома говорит о том, что, если в сети имеется одно сопротивление, то все напряжение на нем и упадет. Если два и больше – каждое падение будет пропорционально его величине, а их сумма равна исходной разности потенциалов.

Ну и что? Где здесь указание на зависимость напряжения от частоты тока? Пока что все зависит от величины сопротивления. Вот, если бы найти такой резистор, который меняет свои параметры при изменении частоты! Тогда и падение напряжения на нем менялось бы автоматически.

Частота тока

На постоянном токе поток носителей электрозарядов не меняет свое направление во времени, хотя мгновенная его величина может меняться. На переменном токе ток периодически изменяет направленность. Количественная характеристика этого изменения – это частота электрического тока.

Измерение частоты тока осциллографом

Измерение частоты тока осциллографом

Есть такие резисторы

Их еще называют реактивными, в отличие от активных собратьев. На что же они реагируют, изменяя свою величину? На частоту! Существует 2 вида реактивных сопротивлений:

Каждый вид связан со своим полем. Индуктивное – с магнитным, емкостное – с электрическим. На практике они представлены в первую очередь, соленоидами.

Они представлены на фото выше. И конденсаторами (ниже).

Читайте также: Как зарядить гелевый аккумулятор в домашних условиях

Их можно считать антиподами, потому что реакция на изменение частоты прямопротивоположная. Индуктивное сопротивление растет с частотой. Емкостное, наоборот, падает.

Теперь, учитывая особенности реактивных сопротивлений, в соответствии с законом Ома, можно утверждать, что зависимость напряжения от частоты переменного тока существует. Она может быть рассчитана с учетом величин реактивных сопротивлений в цепи. Только для ясности надо помнить, что речь идет именно о падении напряжения на элементе цепи.

Характеристики

Переменный ток течет по цепи и меняет свое направление с величиной. Создает магнитное поле. Поэтому его нередко называют периодическим синусоидальным переменным электротоком. Согласно закону кривой линии, величина его меняется через конкретный промежуток времени. Поэтому он называется синусоидным. Имеет свои параметры. Из важных стоит указать период с частотой, амплитудой и мгновенным значением.

Период — это то время, на протяжении которого происходит изменение электротока, а затем оно повторяется вновь. Частота — период течение за секунду. Измеряется в герцах, килогерцах и миллигерцах.

Амплитуда — токовое максимальное значение с напряжением и эффективностью протекания на протяжении полного периода. Мгновенное значение — переменный ток или напряжение, возникающее за конкретное время.

Вам это будет интересно На какую мощность рассчитан автомат 16а

Характеристики переменного тока

И все-таки она существует!

Вопросительный знак в заголовке статьи превратился в восклицательный. «Яндекс» реабилитирован. Осталось только привести формулы зависимости напряжения от частоты для разных видов реактивных сопротивлений.

Емкостное: XC = 1/(w · C). Здесь w — угловая частота, C — емкость конденсатора.

Индуктивное: XL = w · L, где w — то же, что и в предыдущей формуле, L — индуктивность.

Как видно, частота влияет на величину сопротивления, изменяя его, следовательно, изменяет и падение напряжения. Если в сети имеется активное сопротивление R, емкостное XC и индуктивное XL, то сумма падений напряжений на каждом элементе будет равна разности потенциалов источника: U = Ur + Uxc+ Uxl.

Нормируемые требования к показателям

В РФ требования к качеству работы энергосистемы стандартизированы.

В соответствии с ГОСТ 13109-97 частота в энергосистеме должна непрерывно поддерживаться на уровне f = 50 ± 0,2 Гц, при этом допускается кратковременное отклонение частоты до значения ∆f = 0,4 Гц.

Анализируя зависимость силы тока от частоты, можно сделать вывод, что если подключаемая нагрузка имеет чисто активный характер (к примеру, резистор), то в широком диапазоне сила тока от частоты иметь зависимость не будет. В случае достаточно высоких частот, когда индуктивность и ёмкость подключаемой нагрузки будут характеризоваться сопротивлением, сравнимым с активным, то сила тока будет иметь определенную зависимость от частоты.

Другими словами, при варьировании частоты тока происходит изменение ёмкостного сопротивления, изменение которого, в свою очередь, приводит к изменению тока, протекающего по цепи.

То есть при повышении частоты, снижается ёмкостное сопротивление, и повышается ток, протекающий по цепи.

Математическое выражение зависимости будет иметь следующий вид: I = UCω;

Зависимость при учете активного сопротивления будет определяться следующим выражением: I (ω) = UCω √(R2 • C2 • ω2 + 1).

Как узнать какая мощность в цепи переменного тока

Стоит указать, что это величина, которая прямо связывается с иными показателями. К примеру, она находится в прямой зависимости от времени, силы, скорости, вектора силы и скорости, модуля силы и скорости, момента силы и частоты вращения. Часто в формулах во время вычисления электромощности используется также число Пи с показателем сопротивления, мгновенным током, напряжением на конкретном участке электрической сети, активной, полной и реактивной силой. Непосредственно участник вычисления это амплитуда, угловая скорость и начальная сила тока с напряжением.

Формула мощности в цепи переменного тока

В однофазной цепи

Понять, какой мощностный показатель есть в однофазной цепи переменного тока, можно при помощи применения трансформатора тока. Для этого необходимо воспользоваться ваттметром, который включен через токовый трансформатор. Показания следует перемножить на трансформаторный коэффициент тока. В момент измерения мощности в высоком напряжении трансформатор тока необходим, чтобы заизолировать ваттметр и обеспечить безопасность пользователя. Параллельна цепь включается не непосредственным способом, а благодаря трансформатору напряжения. Вторичные обмотки с корпусами измерительных трансформаторных установок необходимо заземлять во избежание случайного изоляционного повреждения и попадания высокого напряжения на приборы.

Обратите внимание! Для определения параметров в сети необходимо амперметр перемножить на трансформаторный коэффициент тока, а цифры, полученные вольтметром, перемножить на трансформаторный коэффициент напряжения.

В трехфазной цепи

В цепи переменного тока мощностный показатель в трехфазной цепи определить можно, перемножив ток на напряжение. Поскольку это непостоянный электроток, он зависит от времени и других параметров, поэтому необходимо использовать другие проверенные схемы. Так, можно использовать ваттметр.

Измерение должно быть проведено только в одной фазе и по формуле умножено на три. Этот способ экономит приборы и уменьшает габариты измерения. Применяется для высокой точности измерения каждой фазы. В случае несимметричной нагрузки, нужно использовать соответствующую схему подключения ваттметра. Это более точный способ, но требует наличие трех ваттметров.

Читайте также: Зануление и заземление: в чем разница

Влияние частоты тока на электроприборы

Далее рассмотрим влияние частоты электрического тока. Увеличение частоты до сравнительно невысоких величин (1 — 10 тыс. Гц), обычно является следствием исключительно повышения номинальной мощности электроаппаратуры, поскольку таким образом возрастает проводимость газовых промежутков. Для измерения частоты в системе используют частотомеры.

Паровая турбина разрабатываются и создаются таким образом, чтобы при номинальной скорости вращения (частоте) обеспечивалась максимальная выходная мощность на валу. При этом уменьшение номинальной частоты является следствием возникновения потерь на удар пара о лопатки с единовременным повышением момента вращения, а повышение частоты — к снижению момента вращения.

Таким образом, наиболее экономичный режим работы достигается при оптимальной частоте.

Помимо этого, работа на пониженных частотах приводит к ускоренному износу рабочих лопаток и прочих частей и механизмов. Снижение частоты оказывает влияние на расход на собственные нужды станций.

Экономия энергии и точное управление системами являются основными причинами применения преобразователей частоты в системах отопления, вентиляции и кондиционирования воздуха HVAC (Отопление, Вентиляция и Кондиционирование). Экономия энергии важна, так как небольшое уменьшение оборотов вентилятора или центробежного насоса имеет очень большое влияние на потребление им энергии.

КПД вентиляторов или насосов вместе с преобразователем частоты остается высоким на пониженных оборотах. КПД двигателя, однако, падает, поскольку двигатель становится недозагруженным. Изготовители преобразователей частоты предприняли попытки улучшить КПД двигателей на малых оборотах, используя ряд конструктивных решений. К сожалению, большинство из этих решений требует кропотливой ручной регулировки и все еще не может оптимизировать КПД двигателя во всех условиях.

Преобразователь частоты VLT HVAC Drive имеет уникальную функцию управления, называемую автоматической оптимизацией энергопотребления AEO (Automatic Energy Optimization). Благодаря этой функции преобразователь частоты автоматически увеличивает КПД двигателя до максимума в любых условиях работы.

Ниже рассматривается причина уменьшенного КПД двигателя при малых нагрузках и способ, которым функция AEO противодействует этой естественной тенденции. Рассматриваются также применение и ограничения данной функции.

Работа двигателя

В асинхронных электродвигателях переменного тока крутящий момент на валу двигателя создается магнитным полем внутри двигателя. Напряженность этого магнитного поля и возникающий в результате крутящий момент меняются вместе с требованием по нагрузке на двигателе. Более высокая нагрузка требует более высокого крутящего момента, что означает, что двигатель потребляет больше тока из линии питания. Хотя обороты двигателя остаются относительно постоянными, потребляемый ток может меняться существенно.

Если полный крутящий момент двигателя не требуется, то не требуется и полное магнитное поле. Ток, который создает чрезмерное магнитное поле, не дает положительного эффекта и генерирует реактивный ток, который тратит энергию и создает тепловое напряжение. Избыточный ток даже более очевиден на малом крутящем моменте, когда реактивный ток растет по сравнению с действительной составляющей тока. Это основная причина, почему малонагруженные двигатели демонстрируют низкий КПД, что и будет обсуждаться ниже более подробно.

Чтобы ограничить ток через двигатель, ограничивается подаваемое на двигатель напряжение. Хотя это и кажется простым, в действительности это не так. Слишком уменьшенное напряжение приводит к чрезмерному скольжению ротора двигателя, которое в свою очередь приводит к большому потреблению тока. Тепло, создаваемое этим током, может серьезно повредить двигатель. Поскольку слишком сильное неконтролируемое снижение напряжения может повредить двигатель, большинство изготовителей преобразователей частоты избегают уменьшения напряжения двигателя до оптимального уровня.