Делитель напряжения на резисторах это

Делитель напряжения на резисторах: формула расчета

Резисторный-делитель-напряжения

Электросбережение

Автор Aluarius На чтение 5 мин. Просмотров 1.1k. Опубликовано 12.05.2020

Делитель напряжения на резисторах

Резисторный делитель напряжения — это устройство, с помощью которого из источника с высоким напряжением можно получить лишь необходимую для устройства часть. Это нужно сделать для питания потребителя с низкой мощностью. Ниже вы узнаете о разновидностях такого приспособления, для чего оно используется в физике , а также, как произвести необходимые расчёты самостоятельно и при помощи программ.

Что такое делитель тока

Делитель тока — это устройство, позволяющее разделить поток тока на две части, чтобы в дальнейшем использовать одну из них. Он нужен, когда устройство не работает с большим током и нужно отделить его меньшее количество, необходимое для использования аппаратуры.

Состоит делитель обычно из двух резисторов , параллельно соединённых, так в каждом из них будет уменьшаться ток.
При последовательном соединении будет уменьшаться напряжение.

Виды и принцип действия

В основе принципа действия устройства, уменьшающего нагрузку сети, лежит первый закон Кирхгофа: сумма сходящихся в узле токов равна нулю.

Принцип работы у всех одинаковый: в них есть U исходное: такое же, как в источнике питания и получаемое на выходе из сети, зависящее от соотношения резисторов в плечах делителя.
Схема , позволяющая понять принцип действия:

Резисторный-делитель-напряжения

Различают разные устройства, в зависимости от элементов в составе:

  • резистивный — более популярен из-за простоты устройства.
  • ёмкостный;
  • индуктивный.

Формула для расчёта делителя напряжения

Как рассчитать резистор для понижения напряжения ?

Для расчёта получаемой в итоге нагрузки, нужно знать следующие данные: U исходное и значение сопротивления в каждом из составных элементов.

Делитель рассчитывается с учётом того, что проходящий через него ток минимум в 10 раз больше, чем на выходе и меньше, чем входящий в сеть.

Можно рассчитать общее сопротивление в резисторах:

В параллельно соединённых резисторах U1=U2, из это можно сделать вывод, что в сети протекает общий ток:
I=I1+I2

Найти общий ток можно, зная закон Ома

закон ома

Читайте также: Система «Умный дом» — какая бывает и что в неё входит

Уменьшаемое в итоге напряжение на резисторах находится по формуле:
U1=(R1/(R1+R2))*U
U2=(R2/(R1+R2))*U
Остаётся узнать, как найти ток на обоих резисторах:

Также, рассчитать напряжение на резисторе можно через ЭДС (Электродвижущую силу):

r — внутреннее сопротивление устройства.

рассчитать напряжение на резисторе можно через ЭДС (Электродвижущую силу)

Расчет делителя напряжения на резисторах, конденсаторах и индуктивностях

Делитель на резисторах — отличается своей универсальностью: используют при постоянном и переменном токе, но только при пониженном сопротивлении цепи.

Согласно закону Ома и правилу Кирхгофа через всю цепь будет проходить один и тот же ток.

Тогда на каждом из резисторов: U1= I х R1 и U2 = I х R2
Ток в цепи устройства:

ток-в-цепи-делителя

Уменьшение на конденсаторах применяют для цепей с высоким переменным током. В нём минимальная потеря энергии на выходе. Реактивное сопротивление конденсатора зависит от его электроёмкости и частоты напряжения в цепи.

Формула для вычисления сопротивления:

Делитель на индуктивностях используется при переменном низком токе на высоких частотах. Сопротивление катушки переменного тока прямо пропорционально зависит от индуктивности и частоты. У провода катушки имеется активное сопротивление, из-за чего мощность такого прибора больше, чем у аналогов.

Сопротивление катушки находится по формуле:

Расчет делителя напряжения калькулятором онлайн

Калькулятор онлайн — это программа , с помощью которой вы можете произвести необходимые вычисления для расчёта U выходного. Её используют, когда в расчётах много резисторов или при больших значениях. Для этого вам сначала нужно определить U исходное, сопротивление каждого из резисторов и ёмкость конденсатора.

Практическое применение параллельного и последовательного соединения

Составные элементы прибора соединяют в цепь, чтобы получить из сети нужную для устройства часть энергии.


Пример работы делителя напряжения на фоторезисторе.

Исходное сопротивление меняется от 1кОм в момент полного освещения до 10кОм при отсутствии света, то можно увеличить диапазон сопротивления. При добавлении резисторов с R=5,6кОм, исходящее напряжение меняется следующим образом:

Освещённость R1 (кОм) R2(кОм) R2/(R1+R2) U выходное (В)
Яркая 5,6 1 0,15 0,76
Тусклая 5,6 7 0,56 2,78
Темнота 5,6 10 0,67 3,21

Таким образом, увеличивается диапазон выходного напряжения, и оно становится подходящим для большинства сетей.

Потенциометры

Потенциометры используют в качестве делителя в системе с постоянным током. Их применяют в основном для изменения отдельных параметров в механизме.

Потенциометр

Читайте также: Однофазный и трехфазный ограничитель мощности – назначение и модельная линейка

На потенциометр подается напряжение, регулируемое подвижным контактом, который действует, когда крутят ручку, в результате оно может меняться от нуля до исходного значения.
Потенциометры используют в быту, как регулятор громкости, и в электронике, например, в качестве датчика.


Резистивные датчики

Резистивные датчики также называют омическими. Это приборы, в которых изменяется сопротивление, если изменяется длина, площадь сечения или удельное сопротивление. Их используют в устройствах для изменения сопротивления, а также при помощи микроконтроллера с его помощью вы можете измерить напряжение. Существуют различные датчики, одним из некоторых является фоторезистор — переменный резистор, сопротивление которого зависит от попадающего на него света.

Переменный резистор в качестве делителя напряжения

Переменный резистор позволяет напряжению изменятьс я более плавно. Работает он так: крайние выводы подключаются к положительному и отрицательному заряду, а из центрального на выходе получается пониженное напряжение

Делитель применяют в различных конструкциях, если нагрузка сети слишком высока для устройства, в датчиках и электронных схемах. Он является одним из основных аспектов электроники, позволяет приспособить параметры сети для механизма. Теперь вы знаете, для чего применяют резисторный делитель, основные для использования вычисления, например, как рассчитать резистор для понижения напряжени я.

Схемы делителей напряжения

Давайте проанализируем простую последовательную схему и определим падение напряжения на отдельных резисторах:

Рисунок 1 Схема последовательной цепиРисунок 2 Табличный метод. Шаг 1

По заданным значениям отдельных сопротивлений мы можем определить общее сопротивление цепи, зная, что последовательные сопротивления суммируются.

Рисунок 3 Табличный метод. Шаг 2

Теперь мы можем использовать закон Ома (I = E/R) для определения общего тока, который, как мы знаем, будет таким же, как ток каждого резистора, поскольку токи во всех частях последовательной цепи одинаковы.

Рисунок 4 Табличный метод. Шаг 3

Теперь, зная, что ток в цепи равен 2 мА, мы можем использовать закон Ома (E = IR) для расчета напряжения на каждом резисторе:

Рисунок 5 Табличный метод. Шаг 4

Должно быть очевидно, что падение напряжения на каждом резисторе пропорционально его сопротивлению, учитывая, что ток одинаков на всех резисторах. Обратите внимание, что напряжение на R2 вдвое больше, чем на R1, так же как сопротивление R2 в два раза больше, чем у R1.

Если бы мы изменили общее напряжение, то обнаружили бы, что эта пропорциональность падений напряжения остается постоянной.

Рисунок 6 Пропорциональность падений напряжения остается постоянной

Несмотря на то, что напряжение источника изменилось, напряжение на R2 по-прежнему ровно вдвое больше, чем на R1. Пропорциональность падений напряжения (соотношение между ними) строго зависит от значений сопротивлений.

При более внимательном наблюдении становится очевидным, что падение напряжения на каждом резисторе также является фиксированной долей напряжения питания. Например, напряжение на R1 составляло 10 вольт при питании от батареи 45 вольт. Когда напряжение аккумулятора было увеличено до 180 вольт (в 4 раза больше), падение напряжения на R1 также увеличилось в 4 раза (с 10 до 40 вольт). Однако соотношение между падением напряжения R1 и общим напряжением не изменилось:

Точно так же ни один из других коэффициентов падения напряжения не изменился с увеличением напряжения питания:

Формула делителя напряжения

По этой причине последовательную цепь часто называют делителем напряжения из-за ее способности пропорционально делить общее напряжение на дробные части с постоянными коэффициентами. Применив немного алгебры, мы можем вывести формулу для определения падения напряжения на последовательном резисторе, не учитывая ничего, кроме общего напряжения, сопротивления отдельного резистора и общего сопротивления.

Падение напряжения на любом резисторе:

Сила тока в последовательной цепи:

Подставляем Eобщ/Rобщ вместо In в первую формулу.

Падение напряжения на любом резисторе в последовательнй цепи:

В схеме делителя напряжения отношение отдельного сопротивления к общему сопротивлению равно отношению отдельного падения напряжения к общему напряжению питания. Эта формула известна как формула делителя напряжения, и это сокращенный метод определения падения напряжения в последовательной цепи без проведения расчетов тока по закону Ома.

Пример использования формулы делителя напряжения

Используя эту формулу, мы можем повторно проанализировать падение напряжения в примере схемы за меньшее количество шагов:

Рисунок 7 Схема последовательной цепи

Компоненты, делящие напряжение

Делители напряжения находят широкое применение в измерительных схемах, где как часть схемы измерения напряжения для «деления» напряжения на точные пропорции используются определенные комбинации последовательных резисторов.

Рисунок 8 Делитель напряжения

Потенциометры как компоненты, делящие напряжение

Одним из устройств, часто используемых в качестве элемента деления напряжения, является потенциометр, который представляет собой резистор с подвижным элементом, перемещаемым ручкой или рычагом. Подвижный элемент, обычно называемый ползунком, вступает в контакт с резистивной полосой материала в любой, выбранной вручную точке:

Рисунок 9 Потенциометр

Контакт ползунка – это обращенная влево стрелка, нарисованная в середине вертикального обозначения резистора. При перемещении вверх он контактирует с резистивной полосой ближе к клемме 1 и дальше от клеммы 2, уменьшая сопротивление от него до клеммы 1 и повышая сопротивление от него до клеммы 2. При перемещении вниз происходит противоположный эффект. Сопротивление, измеренное между клеммами 1 и 2, постоянно для любого положения ползунка.

Рисунок 10 Принцип действия потенциометра

Поворотные и линейные потенциометры

Ниже показано внутреннее устройство двух типов потенциометров: поворотного и линейного.

Линейные потенциометры

Рисунок 11 Конструкция линейного потенциометра

Некоторые линейные потенциометры приводятся в действие прямолинейным движением рычага или ползунковой кнопки. Другие, подобные изображенному на рисунке выше, приводятся в действие поворотным винтом для точной регулировки. Потенциометры последнего типа иногда называют «подстроечниками» потому, что они хорошо работают в приложениях, требующих «подстройки» переменного сопротивления до некоторого точного значения.

Следует отметить, что не все линейные потенциометры имеют такое же назначение выводов, как показано на этом рисунке. У некоторых вывод ползунка находится посередине между двумя крайними выводами.

Поворотный потенциометр

На изображении ниже показана конструкция поворотного потенциометра.

Рисунок 12 Поворотный потенциометр

На фотографии ниже показан реальный поворотный потенциометр с открытыми для удобства просмотра ползунком и резистивным элементом. Вал, который перемещает ползунок, повернут почти до конца по часовой стрелке, поэтому ползунок почти касается левого конечного вывода резистивного элемента:

Рисунок 13 Поворотный потенциометр с открытыми ползунком и резистивным элементом

Вот тот же потенциометр с валом ползунка, перемещенным почти до упора против часовой стрелки, поэтому ползунок теперь находится рядом с другим крайним концом хода:

Рисунок 14 Потенциометр с валом ползунка, повернутым до упора против часовой стрелки

Влияние регулировки потенциометра на схему

Если между внешними выводами (по всей длине резистивного элемента) приложено постоянное напряжение, положение ползунка будет отводить часть приложенного напряжения, измеряемого между контактом ползунка и любым из двух других выводов. Значение коэффициента деления полностью зависит от физического положения ползунка:

Рисунок 15 Потенциометр как переменный делитель напряжения

Важность потенциометров

Как и в случае с фиксированным делителем напряжения, коэффициент деления напряжения потенциометра строго зависит от сопротивления, а не от величины приложенного напряжения. Другими словами, если ручка потенциометра или рычаг перемещается в положение 50 процентов (точное центральное положение), падение напряжения между ползунком и любым крайним выводом будет составлять ровно 1/2 от приложенного напряжения, независимо от того, что с этим напряжением происходит, или каково полное сопротивление потенциометра. Другими словами, потенциометр работает как регулируемый делитель напряжения, где коэффициент деления напряжения устанавливается положением ползунка.

Это применение потенциометра является очень полезным средством получения изменяемого напряжения от источника фиксированного напряжения, такого как аккумулятор. Если для схемы, которую вы собираете, требуется определенная величина напряжения, которая меньше, чем значение напряжения доступной батареи, вы можете подключить внешние выводы потенциометра к этой батарее и «выбрать» для использования в вашей цепи любое необходимое напряжение между ползунком и одним из внешних выводов потенциометра:

Рисунок 16 Применение потенциометра

При таком использовании название «потенциометр» имеет смысл: он «измеряет» (контролирует) приложенный к нему потенциал (напряжение), создавая изменяемый коэффициент деления напряжения. Такое использование трехполюсного потенциометра в качестве переменного делителя напряжения очень популярно в схемотехнике.

Примеры небольших потенциометров

Ниже показано несколько небольших потенциометров, которые обычно используются в бытовом электронном оборудовании, а также любителями и студентами при построении схем:

Рисунок 17 Примеры небольших потенциометров

Меньшие устройства слева и справа предназначены для подключения к беспаечной макетной плате или для пайки в печатную плату. Устройства посередине предназначены для установки на плоской панели с проводами, припаянными к каждому из трех выводов.

Ниже показано еще три потенциометра, более специализированных, чем только что показанный набор:

Рисунок 18 Примеры потенциометров размером побольше

Большое устройство «Helipot» – это лабораторный потенциометр, предназначенный для быстрого и легкого подключения к цепи. Устройство в нижнем левом углу фотографии представляет собой потенциометр того же типа, только без корпуса и поворотного счетного диска. Оба этих потенциометра представляют собой прецизионные устройства, в которых используются многооборотные спиралевидные резистивные ленты и ползунковые механизмы для точной регулировки. Устройство в правом нижнем углу представляет собой потенциометр для монтажа на панели, предназначенный для работы в тяжелых промышленных условиях.

Резюме

  • Последовательные цепи делят общее напряжение питания на отдельные падения напряжения, коэффициенты деления строго зависят от сопротивлений: ERn = Eобщ(Rn/Rобщ)
  • Потенциометр – это элемент переменного сопротивления с тремя точками подключения, часто используемый в качестве регулируемого делителя напряжения.

Делитель напряжения на резисторах: формула расчета

Делитель напряжения, одна из широко используемых схем соединения резисторов. Делитель напряжения позволяет уменьшить выходное напряжение. Например, на вход делителя подается 12 Вольт, а на выходе 3 Вольта, или сколько нужно, но не больше входного напряжения делителя. Схема соединения резисторов, о которой мы говорим, может использоваться только для слаботочной нагрузки, чуть позже я объясню почему. Вот собственно и сама схема делителя:

Делитель напряжения вы все ни один раз видели, например, регулятор громкости. Регулятором громкости является переменный резистор, соединенный по схеме потенциометра.

Потенциометр, можно представить как два резистора, соединённых последовательно, при вращении рукоятки один резистор уменьшает свое сопротивление, другой увеличивает.

В делителе напряжения, входное напряжение полностью падает на двух резисторах. Например, входное напряжение 40 Вольт и если на одном резисторе падает 3 Вольта, то на другом 37 Вольт.

Расчет делителя напряжения.

Читайте также: Индикатор изменения температуры с терморезистором и корпусом из реле

Сразу скажу одно правило, ток, протекающий через резистор R1 и R2 должен быть как минимум в 10 раз больше, чем ток нагрузки (иначе будет просадка напряжения на выходе). Например, если к нашему девайсу будет подсоединена лампа, потребляющая ток 40 мА, то делитель нужно рассчитывать так, чтобы ток, текущий через резисторы R1 и R2 был минимум 400 мА (в 10 и более раз больше).

И еще один нюанс. Ток делителя не только должен быть больше тока нагрузки в 10 раз, но и должен быть меньше тока, выдаваемого источником тока. Вот пример, мы посадили на выход делителя напряжения лампу, потребляющую 200 мА, соответственно ток через делитель потечет как минимум в 10 раз больше (2 Ампер), но если источник тока у нас рассчитан выдавать 1 Ампер, то он просто напросто не вытянет и сгорит, либо сработает защита.

Поэтому есть правило. При расчете делитель напряжения нужно рассчитывать так, чтобы ток через него был как минимум в 10 раз больше тока нагрузки и меньше максимального тока источника.

Отсюда делитель напряжения используют для слаботочных нагрузок.

Входной ток (ток делителя) ищется по такой формуле:

Например, у меня входное напряжение 12 Вольт (10 Ампер), мне нужен делитель напряжения, у которого на выходе нагрузка напряжением 3 Вольта и током потребления 20 мА (зацеплю светодиод).

Ток делителя Iвх должен быть минимум в 10 раз больше тока нагрузки, возьму в 20 раз. Получается Iвх = 20 мА*20=400мА.

Найдем теперь сумму резисторов R1 и R2 (Rобщ) зная ток, текущий через них 0,4 Ампер и напряжение на них 12 Вольт. Rобщ=12 Вольт/0,4 Ампер = 30 Ом.

Далее нахожу номинал резистора R2 по следующей формуле:

R2 = (3 Вольта*30 Ом)/12 Вольт = 7,5 Ом.

Теперь нахожуу R1, R1 = Rобщ – R2 = 30 – 7,5 = 22,5 Ом.

Давайте проверим по этой формуле:

Iвх = 3 Вольт / 7,5 Ом = 0,4 Ампер.

Iвх = 12 Вольт / 30 Ом = 0,4 Ампер.

Рассчитаем мощность резисторов.

Читайте также: Rj 45. Всё, что вы хотели знать, но боялись спросить

Напряжение на R2 = 3 Вольт, значит напряжение на R1 = Uвх-Uвых = 9 Вольт (я уже говорил, если на одном падает 3 Вольта, то на втором резисторе делителя падает остальное напряжение).

Мощность ищется по следующей формуле:

P1 = 9 Вольт* 0,4 Ампер = 3,6 Вт (из стандартного ряда 5 Вт);

P2 = 3 Вольт* 0,4 Ампер = 1,2 Вт (из стандартного ряда 2 Вт);

Вот еще несколько формул, вы их можете использовать для расчета делителя напряжение в зависимости от того, какими известными значениями вы владеете.

При расчете мы получили следующие номиналы резисторов, R1 = 22,5 Ом (из стандартного рядя 22 Ом), R2 = 7,5 Ом.

По мощности у меня оба резистора 2 Вт, поэтому R1 у меня сильно греется.

Входное напряжение делителя 12 Вольт.

Напряжение, которое падает на R1 = 22 Ом почти 9 Вольт.

Напряжение, которое падает на R2 = 7,5 Ом (наше выходное напряжение делителя) = 3 Вольта.

Ток, текущий через R1 и R2 (входной ток делителя) = 430 мА.

Светодиод загорается и горит в нормальном режиме, не перегорая.

Если пренебрегать погрешностями резисторов и прибора, то расчет верен.

Читайте также: Пульсация светодиодных ламп: причины и решение проблемы

Виды и принцип действия

В основе принципа действия устройства, уменьшающего нагрузку сети, лежит первый закон Кирхгофа: сумма сходящихся в узле токов равна нулю.

Принцип работы у всех одинаковый: в них есть U исходное: такое же, как в источнике питания и получаемое на выходе из сети, зависящее от соотношения резисторов в плечах делителя. Схема, позволяющая понять принцип действия:

Различают разные устройства, в зависимости от элементов в составе:

  • резистивный — более популярен из-за простоты устройства.
  • ёмкостный;
  • индуктивный.

Важность потенциометров

Как и в случае с фиксированным делителем напряжения, коэффициент деления напряжения потенциометра строго зависит от сопротивления, а не от величины приложенного напряжения. Другими словами, если ручка потенциометра или рычаг перемещается в положение 50 процентов (точное центральное положение), падение напряжения между ползунком и любым крайним выводом будет составлять ровно 1/2 от приложенного напряжения, независимо от того, что с этим напряжением происходит, или каково полное сопротивление потенциометра. Другими словами, потенциометр работает как регулируемый делитель напряжения, где коэффициент деления напряжения устанавливается положением ползунка.

Это применение потенциометра является очень полезным средством получения изменяемого напряжения от источника фиксированного напряжения, такого как аккумулятор. Если для схемы, которую вы собираете, требуется определенная величина напряжения, которая меньше, чем значение напряжения доступной батареи, вы можете подключить внешние выводы потенциометра к этой батарее и «выбрать» для использования в вашей цепи любое необходимое напряжение между ползунком и одним из внешних выводов потенциометра:

Рисунок 16 – Применение потенциометра

При таком использовании название «потенциометр» имеет смысл: он «измеряет» (контролирует) приложенный к нему потенциал (напряжение), создавая изменяемый коэффициент деления напряжения. Такое использование трехполюсного потенциометра в качестве переменного делителя напряжения очень популярно в схемотехнике.

Формула для расчёта делителя напряжения

Как рассчитать резистор для понижения напряжения ?

Для расчёта получаемой в итоге нагрузки, нужно знать следующие данные: U исходное и значение сопротивления в каждом из составных элементов.

Делитель рассчитывается с учётом того, что проходящий через него ток минимум в 10 раз больше, чем на выходе и меньше, чем входящий в сеть.

Можно рассчитать общее сопротивление в резисторах:

В параллельно соединённых резисторах U1=U2, из это можно сделать вывод, что в сети протекает общий ток: I=I1+I2

Найти общий ток можно, зная закон Ома

Характеристики переменных резисторов Делитель напряжения на резисторах Схема делителя напряжения на переменном резисторе Схема делителя напряжения Схема резисторного делителя напряжения Схема делителя напряжения на резисторах

Влияние регулировки потенциометра на схему

Если между внешними выводами (по всей длине резистивного элемента) приложено постоянное напряжение, положение ползунка будет отводить часть приложенного напряжения, измеряемого между контактом ползунка и любым из двух других выводов. Значение коэффициента деления полностью зависит от физического положения ползунка:

Рисунок 15 – Потенциометр как переменный делитель напряжения

Расчет делителя напряжения на резисторах, конденсаторах и индуктивностях

Делитель на резисторах — отличается своей универсальностью: используют при постоянном и переменном токе, но только при пониженном сопротивлении цепи.

Согласно закону Ома и правилу Кирхгофа через всю цепь будет проходить один и тот же ток.

Тогда на каждом из резисторов: U1= I х R1 и U2 = I х R2 Ток в цепи устройства:

Уменьшение на конденсаторах применяют для цепей с высоким переменным током. В нём минимальная потеря энергии на выходе. Реактивное сопротивление конденсатора зависит от его электроёмкости и частоты напряжения в цепи.

Формула для вычисления сопротивления:

Читайте также: Что делать, если включенный светодиодный светильник мигает?

Делитель на индуктивностях используется при переменном низком токе на высоких частотах. Сопротивление катушки переменного тока прямо пропорционально зависит от индуктивности и частоты. У провода катушки имеется активное сопротивление, из-за чего мощность такого прибора больше, чем у аналогов.

Сопротивление катушки находится по формуле:

Поворотные и линейные потенциометры

Ниже показано внутреннее устройство двух типов потенциометров: поворотного и линейного.

Линейные потенциометры

Рисунок 11 – Конструкция линейного потенциометра
Некоторые линейные потенциометры приводятся в действие прямолинейным движением рычага или ползунковой кнопки. Другие, подобные изображенному на рисунке выше, приводятся в действие поворотным винтом для точной регулировки. Потенциометры последнего типа иногда называют «подстроечниками» потому, что они хорошо работают в приложениях, требующих «подстройки» переменного сопротивления до некоторого точного значения.

Следует отметить, что не все линейные потенциометры имеют такое же назначение выводов, как показано на этом рисунке. У некоторых вывод ползунка находится посередине между двумя крайними выводами.

Поворотный потенциометр

На изображении ниже показана конструкция поворотного потенциометра.

Рисунок 12 – Поворотный потенциометр

На фотографии ниже показан реальный поворотный потенциометр с открытыми для удобства просмотра ползунком и резистивным элементом. Вал, который перемещает ползунок, повернут почти до конца по часовой стрелке, поэтому ползунок почти касается левого конечного вывода резистивного элемента:

Рисунок 13 – Поворотный потенциометр с открытыми ползунком и резистивным элементом

Вот тот же потенциометр с валом ползунка, перемещенным почти до упора против часовой стрелки, поэтому ползунок теперь находится рядом с другим крайним концом хода:

Рисунок 14 – Потенциометр с валом ползунка, повернутым до упора против часовой стрелки

Практическое применение параллельного и последовательного соединения

Составные элементы прибора соединяют в цепь, чтобы получить из сети нужную для устройства часть энергии.

Пример работы делителя напряжения на фоторезисторе.

Исходное сопротивление меняется от 1кОм в момент полного освещения до 10кОм при отсутствии света, то можно увеличить диапазон сопротивления. При добавлении резисторов с R=5,6кОм, исходящее напряжение меняется следующим образом:

Освещённость R1 (кОм) R2(кОм) R2/(R1+R2) U выходное (В)
Яркая 5,6 1 0,15 0,76
Тусклая 5,6 7 0,56 2,78
Темнота 5,6 10 0,67 3,21

Таким образом, увеличивается диапазон выходного напряжения, и оно становится подходящим для большинства сетей.

Потенциометры

Потенциометры используют в качестве делителя в системе с постоянным током. Их применяют в основном для изменения отдельных параметров в механизме.

Ограничения в применении

Из приведенных в таблице примеров расчетов хорошо видно, как значительно увеличиваются потери при уменьшении сопротивления цепи. Энергия расходуется впустую для нагрева окружающей среды. При большой мощности рассеивания приходится использовать принудительные системы охлаждения, пассивные радиаторы.

В приведенных расчетах не учитывалась нагрузка. Если добавить соответствующее реальным условиям сопротивление, образуются дополнительные потери в параллельной цепи.

Влияние сопротивления нагрузки

На первой части рисунка изображен типовой делитель, обеспечивающий выходное напряжение 5 V. При потреблении тока 0,01 А сопротивление нагрузки составит 0,5 кОм. Пользуясь формулой расчета для параллельной цепи, несложно выяснить суммарное значение R = 1/(1/R2 + 1/Rнагрузки) = 0,25 кОм. Это добавление уменьшит плановое значение Uвых до 3,46 V.

Уменьшением R2 можно снизить вредное влияние на выходное напряжение (4,75 V). Однако такой способ, приведенный на второй части рисунка, сопровождается значительными потерями энергии. Ток будет проходить по участку с меньшим сопротивлением, не выполняя полезные функции. В данном примере необходимо выбрать R1, рассчитанный на мощность не менее 2 Вт, чтобы обеспечить надежную работу устройства.

Переменный резистор в качестве делителя напряжения

Переменный резистор позволяет напряжению изменяться более плавно. Работает он так: крайние выводы подключаются к положительному и отрицательному заряду, а из центрального на выходе получается пониженное напряжение

Делитель применяют в различных конструкциях, если нагрузка сети слишком высока для устройства, в датчиках и электронных схемах. Он является одним из основных аспектов электроники, позволяет приспособить параметры сети для механизма. Теперь вы знаете, для чего применяют резисторный делитель, основные для использования вычисления, например, как рассчитать резистор для понижения напряжения.

Потенциометры как компоненты, делящие напряжение

Одним из устройств, часто используемых в качестве элемента деления напряжения, является потенциометр, который представляет собой резистор с подвижным элементом, перемещаемым ручкой или рычагом. Подвижный элемент, обычно называемый ползунком, вступает в контакт с резистивной полосой материала в любой, выбранной вручную точке:

Рисунок 9 – Потенциометр

Контакт ползунка – это обращенная влево стрелка, нарисованная в середине вертикального обозначения резистора. При перемещении вверх он контактирует с резистивной полосой ближе к клемме 1 и дальше от клеммы 2, уменьшая сопротивление от него до клеммы 1 и повышая сопротивление от него до клеммы 2. При перемещении вниз происходит противоположный эффект. Сопротивление, измеренное между клеммами 1 и 2, постоянно для любого положения ползунка.

Рисунок 10 – Принцип действия потенциометра

Как работает

На практике использование устройств несколько сложнее, чем просто рассчитать требуемые значения для элементов. Использование схемы замещения для делителей напряжения усложняет реалистичный учет фазовых и амплитудных характеристик. Эта проблема может быть решена исключительно экспериментальным путём. Затруднительно так сделать только если наблюдаются очень высокие частоты.

Графическое изображение работы

В качестве доступной альтернативы используется экспериментальное определение реакции схемы на прямоугольный импульс. Его суть — наблюдение за состоянием, когда на входе происходит скачкообразное изменение напряжения. При единичном воздействии можно наблюдать особенности работы благодаря переходной функции измерительной схемы.

Реакция определяется двумя способами:

  • Первый предполагает, что на вход полностью собранной схемы подают периодически импульсы с амплитудой в 100В (50 или 100 раз в секунду). Фронт их нарастания должен составлять меньше 10-9 с. Получение таких импульсов не является делом сложным. Для этого можно воспользоваться механическими коммутаторами с герконом или ртутным реле. На выходе схемы измеряется реакция посредством осциллографа, на котором присутствует широкополосной усилитель, величина пропускания которого составляет до 109 Гц.
  • Второй способ используется для схем, у которых напряжение составляет несколько десятков киловольт. В таком случае делают крутой срез посредством малоиндуктивного искрового промежутка, помещенного в условия сжатого газа. На выходе с помощью обычного осциллографа записывается реакция. Также вместо среза часто обращаются к использованию разряда заряженного кабеля и волнового сопротивления через искровой промежуток.

Описывая работу делителей напряжения, нельзя обойти вниманием постоянную времени. Чтобы правильно измерять показатели быстропротекающих процессов, необходимо добиться различия в 5-10 раз. Постоянная времени делителя должна быть меньше характеристического времени процесса. Если не получить разницу в 5-10 раз, то будут фиксироваться различные искажения. Наиболее вероятные — это затягивание фронта вместе с уменьшением амплитуды сигнала на выходе в сравнении с расчетными показателями.

Важно! При выборе делителя в первую очередь внимание обращают на его возможное влияние, оказываемое на источник напряжения, равно как и искажения основного параметра при измерении. Например, в случае использования обычных ГИН допустимыми считаются резисторные, емкостные и смешанные устройства, но только при соблюдении оговоренных условий. К таковым относятся значения емкости плеча высокого напряжения и сопротивление.

Вам это будет интересно Расцветка шин по фазам

Примеры небольших потенциометров

Ниже показано несколько небольших потенциометров, которые обычно используются в бытовом электронном оборудовании, а также любителями и студентами при построении схем:

Рисунок 17 – Примеры небольших потенциометров

Меньшие устройства слева и справа предназначены для подключения к беспаечной макетной плате или для пайки в печатную плату. Устройства посередине предназначены для установки на плоской панели с проводами, припаянными к каждому из трех выводов.

Ниже показано еще три потенциометра, более специализированных, чем только что показанный набор:

Рисунок 18 – Примеры потенциометров размером побольше

Большое устройство «Helipot» – это лабораторный потенциометр, предназначенный для быстрого и легкого подключения к цепи. Устройство в нижнем левом углу фотографии представляет собой потенциометр того же типа, только без корпуса и поворотного счетного диска. Оба этих потенциометра представляют собой прецизионные устройства, в которых используются многооборотные спиралевидные резистивные ленты и ползунковые механизмы для точной регулировки. Устройство в правом нижнем углу представляет собой потенциометр для монтажа на панели, предназначенный для работы в тяжелых промышленных условиях.

Читайте также: «Умный дом»: сравнение проводной и беспроводной технологий

Определение

Делителем напряжения называется прибор или устройство, которое понижает уровень выходного напряжения относительно входного, пропорционально коэффициенту передачи (он будет всегда ниже нуля). Такое название он получил, потому что представляет собой два и более последовательно соединенных участка цепи.

Они бывают линейными и нелинейными. При этом первые представляют собой активное или реактивное сопротивление, в которых коэффициент передачи определяется соотношением из закона Ома. К ярко выраженным нелинейным делителям относят параметрические стабилизаторы напряжения. Давайте разберемся как устроен это прибор и зачем он нужен.