Расчет смещения (биполярные транзисторы)
Хотя транзисторные коммутационные схемы работают без смещения, для аналоговых схем работать без смещения – это необычно. Одним из немногих примеров является радиоприемник на одном транзисторе в разделе «Радиочастотные схемы» главы 9 с усиливающим АМ (амплитудная модуляция) детектором. Обратите внимание на отсутствие резистора смещения базы в этой схеме. В этом разделе мы рассмотрим несколько базовых схем смещения, которые могут устанавливать выбранное значение тока эмиттера IЭ. Учитывая величину тока эмиттера IЭ, которую необходимо получить, какие потребуются номиналы резисторов смещения, RБ, RЭ и т.д.
Схема смещения с фиксированным током базы
В простейшей схеме смещения применяется резистор смещения базы между базой и батареей базы Vсмещ. Использовать существующий источник Vпит, вместо нового источника смещения, – очень удобно. Пример данной схемы смещения показан в каскаде аудиоусилителя в детекторном приемнике в разделе «Радиочастотные схемы» главы 9. Обратите внимание на резистор между базой и клеммой батареи. Подобная схема показана на рисунке ниже.
Напишите уравнение закона напряжений Кирхгофа для контура, включающего в себя батарею, RБ и падение напряжения VБЭ на переходе транзистора, на рисунке ниже. Обратите внимание, что мы используем обозначение Vсмещ, хотя на самом деле это Vпит. Если коэффициент β велик, мы можем сделать приближение, что IК = IЭ. Для кремниевых транзисторов VБЭ ≅ 0.7 В.
\[V_ — I_Б R_Б — V_ = 0\]
\[I_Э = (\beta + 1)I_Б \approx \beta I_Б\]
\[I_Э = < V_- V_ \over R_Б / \beta >\]
Коэффициент β малосигнальных транзисторов, как правило, лежит в диапазоне 100–300. Предположим у нас есть транзистор β=100, какое номинал резистора смещения базы потребуется, чтобы достичь тока эмиттера 1 мА?
Решение уравнения IЭ для определения RБ и подстановка значений β, Vсмещ, VБЭ и IЭ дадут результат 930 кОм. Ближайший стандартный номинал равен 910 кОм.
\(\beta = 100 \qquad V_ = 10 В \qquad I_К \approx I_Э = 1 мА \)
Чему будет равен ток эмиттера при резисторе 910 кОм? Что случится с током эмиттера, если мы заменим транзистор на случайный с β=300?
\(\beta = 100 \qquad V_ = 10 В \qquad R_Б = 910 кОм \qquad V_ = 0,7 В\)
При использовании резистора стандартного номинала 910 кОм ток эмиттера изменится незначительно. Однако при изменении β со 100 до 300 ток эмиттера утроится. Это неприемлемо для усилителя мощности, если мы ожидаем, что напряжение на коллекторе будет изменяться от почти Vпит до почти земли. Тем не менее, для сигналов низкого уровня от микровольт до примерно вольта точка смещения может быть отцентрирована для β, равного квадратному корню из (100·300), что равно 173. Точка смещения будет по-прежнему дрейфовать в значительном диапазоне. Однако сигналы низкого уровня не будут обрезаны.
Схема смещения с фиксированным током базы по своей природе не походит для больших токов эмиттера, которые используются в усилителях мощности. Ток эмиттера в схеме смещения с фиксированным током базы не стабилен по температуре. Температурный уход – это результат большого тока эмиттера, который вызывает повышение температуры, которое вызывает увеличение тока эмиттера, что еще больше повысит температуру.
Схема автоматического смещения (с обратной связью с коллектором)
Изменения смещения из-за температуры и коэффициента бета могут быть уменьшены путем перемещения вывода резистора смещения с источника напряжения Vсмещ на коллектор транзистора, как показано на рисунке ниже. Если ток эмиттера будет увеличиваться, увеличится падение напряжения на RК, что уменьшит напряжение VК, что уменьшит IБ, подаваемый обратно на базу. Это в свою очередь уменьшит ток эмиттера, корректируя первоначальное увеличение.
Напишем уравнение закона напряжений Кирхгофа для контура, включающего в себя батарею, RК, RБ и падение напряжения VБЭ. Заменим IК≅IЭ и IБ≅IЭ/β. Решение для IЭ дает формулу IЭ для схемы автоматического смещения при обратной связи с коллектором. Решение для RБ дает формулу RБ для схемы автоматического смещения при обратной связи с коллектором.
\[I_К = \beta I_Б \qquad I_К \approx I_Э \qquad I_Э \approx \beta I_Б \]
\[V_ — I_К R_К — I_Б R_Б -V_ = 0\]
\[V_ — I_Э R_К — (I_Э/ \beta) R_Б -V_ = 0\]
\[V_ -V_ = I_Э R_К + (I_Э/ \beta) R_Б\]
\[V_ -V_ = I_Э (( R_Б / \beta) + R_К)\]
\[I_Э = -V_ \over R_Б / \beta + R_К >\]
\[R_Б = \beta \left[ -V_ \over I_Э > — R_К \right] \]
Найдем необходимый резистор смещения при обратной связи с коллектором для тока эмиттера 1 мА, резистора нагрузки коллектора 4,7 кОм и транзистора с β=100. Найдем напряжение коллектора VК. Оно должно быть примерно посередине между Vпит и корпусом.
\(\beta = 100 \qquad V_ = 10 В \qquad I_К \approx I_Э = 1 мА \qquad R_К = 4,7 кОм \)
\[R_Б = \beta \left[ — V_ \over I_Э > — R_К \right] = 100 \left[ — 4,7 кОм \right] = 460 кОм \]
\[ V_К = V_ — I_К R_К = 10 — (1 мА) (4,7 кОм) = 5,3 В \]
Ближайший стандартный номинал к резистору 460 кОм для автоматического смещения при обратной связи с коллектором равен 470 кОм. Найдем ток эмиттера IЭ для резистора 470 кОм. Пересчитаем ток эмиттера для транзисторов с β=100 и β=300.
\(\beta = 100 \qquad V_ = 10 В \qquad R_К = 4,7 кОм \qquad R_Б = 470 кОм \)
Мы видим, что по мере того как коэффициент бета изменяется от 100 до 300, ток эмиттера увеличивается с 0,989 мА до 1,48 мА. Это лучше, чем в предыдущей схеме смещения с фиксированным током базы, где ток эмиттера увеличился с 1,02 мА до 3,07 мА. При изменении коэффициента бета смещение с обратной связью с коллектором в два раза стабильнее, чем смещение с фиксированным током базы.
Смещение эмиттера
Вставка резистора RЭ в схему эмиттера, как показано на рисунке ниже, вызывает уменьшение уровня сигнала на выходе, также известное как отрицательная обратная связь. Она препятствует изменениям тока эмиттера IЭ из-за изменений температуры, допустимых отклонений номиналов резисторов, изменений коэффициента бета или допустимых отклонений напряжения питания. Типовые допуски составляют: сопротивление резисторов – 5%, бета – 100-300, источник питания – 5%. Почему резистор эмиттера может стабилизировать изменение тока? Полярность падения напряжения на RЭ обусловлена Vпит на батарее коллектора. Полярность на выводе резистора, ближайшем к (-) клемме батареи, равна (-), а на выводе, ближайшем к клемме (+), равна (+). Обратите внимание, что (-) вывод RЭ подключен к базе через батарею Vсмещ и RБ. Любое увеличение тока через RЭ увеличит величину отрицательного напряжения, приложенного к цепи базы, уменьшая ток базы, что уменьшает ток эмиттера. Это уменьшение тока эмиттера частично компенсирует первоначальное увеличение.
\[V_ — I_Б R_Б — V_ — I_Э R_Э = 0\]
\[I_Э = (\beta+1)I_Б \approx \beta I_Б\]
\[V_ — (I_Э / \beta) R_Б — V_ — I_Э R_Э = 0\]
\[V_ — V_ = I_Э ((R_Б / \beta) +R_Э)\]
\[I_Э = — V_ \over R_Б / \beta +R_Э >\]
\[R_Б / \beta +R_Э = — V_ \over I_Э >\]
\[R_Б = \beta \left[ — V_ \over I_Э > — R_Э \right]\]
Обратите внимание, что на рисунке выше для смещения базы, вместо Vпит, используется батарея базы Vсмещ. Позже мы покажем, что смещение эмиттера более эффективно с меньшей батареей смещения базы. Между тем, напишем уравнение закона напряжений Кирхгофа для контура цепи базы-эмиттера, обращая внимание на полярности компонентов. Подставим IБ≅IЭ/β и решим уравнение для тока эмиттера IЭ. Это уравнение может быть решено для RБ (смотрите выше).
Прежде чем применять формулы RБ и IЭ (смотрите выше), нам нужно выбрать значения резисторов RК и RЭ. RК зависит от источника питания коллектора Vпит и тока коллектора, который мы хотим получить, и который, как мы предполагаем, приблизительно равен току эмиттера IЭ. Обычно точка смещения для VК устанавливается равно половине Vпит. Хотя ее можно было бы установить и выше для компенсации падения напряжения на резисторе эмиттера RЭ. Ток коллектора – это то, что нам необходимо. Он варьируется от микроампер до ампер в зависимости от приложения и параметров транзистора. Мы выберем IК = 1 мА, типовое значение для транзисторной схемы для малых сигналов. Мы вычисляем значение RК и выбираем ближайшее стандартное значение. Как правило, хорошо подходит резистор эмиттера, который составляет 10-50% от резистора нагрузки коллектора.
\[V_К = V_ / 2 = 10/2 = 5 В \]
\[R_К = V_К / I_К = 5/1 мА = 5 кОм \quad \text <(стандартный номинал 4,7 кОм)>\]
\[R_Э = 0,1 R_К = 0,1 (4,7 кОм) = 470 Ом \]
В нашем первом примере используем источник смещения с высоким напряжением Vсмещ = Vпит = 10 В, чтобы показать, почему желательно более низкое напряжение. Определим стандартный номинал резистора. Рассчитаем ток эмиттера для β=100 и β=300. Сравним стабилизацию тока с предыдущими схемами смещения.
\(\beta = 100 \qquad I_Э \approx I_К = 1 мА \qquad V_ = V_ = 10 В \qquad R_Э = 470 Ом \)
\[R_Б = \beta \left[ — V_ \over I_Э > — R_Э \right] = 100 \left[ — 470 \right] = 883 кОм\]
Для рассчитанного сопротивления резистора RБ 883 кОм ближайшим стандартным номиналом является 870 кОм. При β=100 ток эмиттера IЭ равен 1,01 мА.
\(\beta = 100 \qquad R_Б = 870 кОм \)
Токи эмиттера показаны в таблице ниже.
Схема смещения | IЭ при β=100 | IЭ при β=300 |
---|---|---|
Схема смещения с фиксированным током базы | 1,02 мА | 3,07 мА |
Схема смещения с обратной связью с коллектором | 0,989 мА | 1,48 мА |
Смещение эмиттера, Vсмещ = 10 В | 1,01 мА | 2,76 мА |
В приведенной выше таблице показано, что для Vсмещ = 10 В смещение эмиттера не очень хорошо помогает стабилизировать ток эмиттера. Пример со смещением эмиттера лучше, чем предыдущий пример смещения базы, но не намного. Ключом к эффективности смещения эмиттера является снижение напряжения смещения базы Vсмещ ближе к величине смещения эмиттера.
Какую величину смещения эмиттера мы сейчас имеем? Округляя, ток эмиттера, умноженный на сопротивление резистора эмиттера: IЭRЭ = (1 мА)(470) = 0,47 В. Кроме того, нам необходимо превысить VБЭ = 0,7 В. Таким образом, на необходимо напряжение Vсмещ > (0.47 + 0.7) В или > 1.17 В. Если ток эмиттера изменяется, это число изменится по сравнению с фиксированным напряжение смещения базы Vсмещ, что приведет к коррекции тока базы IБ и тока эмиттера IЭ. Нам подойдет VБ > 1.17 В, равное 2 В.
\(\beta = 100 \qquad I_Э \approx I_К = 1 мА \qquad V_ = 10 В \qquad V_ = 2 В \qquad R_Э = 470 Ом \)
\[R_Б = \beta \left[ — V_ \over I_Э > — R_Э \right] = 100 \left[ — 470 \right] = 83 кОм\]
Рассчитанный резистор базы 83 кОм намного меньше, чем предыдущий 883 кОм. Мы выбираем 82 кОм из списка стандартных номиналов. Токи эмиттера при RБ = 82 кОм и коэффициентах β=100 и β=300 равны:
\(\beta = 100 \qquad R_Б = 82 кОм \)
Сравнение токов эмиттера для смещения эмиттера при Vсмещ = 2 В и коэффициентах β=100 и β=300 с предыдущими примерами схем смещения показано в таблице ниже. И здесь мы видим значительное улучшение при 1,75 мА, хотя и не так хорошо, как 1,48 мА при обратной связи с коллектором.
Схема смещения | IЭ при β=100 | IЭ при β=300 |
---|---|---|
Схема смещения с фиксированным током базы | 1,02 мА | 3,07 мА |
Схема смещения с обратной связью с коллектором | 0,989 мА | 1,48 мА |
Смещение эмиттера, Vсмещ = 10 В | 1,01 мА | 2,76 мА |
Смещение эмиттера, Vсмещ = 2 В | 1,01 мА | 1,75 мА |
Как мы можем улучшить эффективность смещения эмиттера? Либо увеличить резистор эмиттера RЭ или уменьшить напряжение источника смещения Vсмещ, или и то, и другое. В качестве примера удвоим сопротивление резистора эмиттера до ближайшего стандартного значения 910 Ом.
\(\beta = 100 \qquad I_Э \approx I_К = 1 мА \qquad V_ = 10 В \qquad V_ = 2 В \qquad R_Э = 910 Ом \)
\[R_Б = \beta \left[ — V_ \over I_Э > — R_Э \right] = 100 \left[ — 910 \right] = 39 кОм\]
Рассчитанное сопротивление RБ = 39 кОм совпадает с одним из значений из стандартного списка номиналов. Пересчитывать IЭ для β = 100 нет необходимости. Для β=300 ток эмиттера равен:
Эффективность схемы смещения эмиттера с резистором эмиттера 910 Ом намного лучше. Смотрите таблицу ниже.
Схема смещения | IЭ при β=100 | IЭ при β=300 |
---|---|---|
Схема смещения с фиксированным током базы | 1,02 мА | 3,07 мА |
Схема смещения с обратной связью с коллектором | 0,989 мА | 1,48 мА |
Смещение эмиттера, Vсмещ = 10 В | 1,01 мА | 2,76 мА |
Смещение эмиттера, Vсмещ = 2 В, RЭ = 470 Ом | 1,01 мА | 1,75 мА |
Смещение эмиттера, Vсмещ = 2 В, RЭ = 910 Ом | 1,00 мА | 1,25 мА |
В качестве упражнения изменим пример смещения эмиттера, вернув резистор эмиттера на 470 Ом, и уменьшив напряжение источника смещения до 1,5 В.
\(\beta = 100 \qquad I_Э \approx I_К = 1 мА \qquad V_ = 10 В \qquad V_ = 1,5 В \qquad R_Э = 470 Ом \)
\[R_Б = \beta \left[ — V_ \over I_Э > — R_Э \right] = 100 \left[ — 470 \right] = 33 кОм\]
Рассчитанное сопротивление RБ = 33 кОм совпадает с одним из значений из стандартного списка номиналов. Поэтому пересчитывать IЭ для β = 100 нет необходимости. Для β=300 ток эмиттера равен:
В таблице ниже приведено сравнение результатов 1 мА и 1,38 мА с предыдущими примерами.
Схема смещения | IЭ при β=100 | IЭ при β=300 |
---|---|---|
Схема смещения с фиксированным током базы | 1,02 мА | 3,07 мА |
Схема смещения с обратной связью с коллектором | 0,989 мА | 1,48 мА |
Смещение эмиттера, Vсмещ = 10 В | 1,01 мА | 2,76 мА |
Смещение эмиттера, Vсмещ = 2 В, RЭ = 470 Ом | 1,01 мА | 1,75 мА |
Смещение эмиттера, Vсмещ = 2 В, RЭ = 910 Ом | 1,00 мА | 1,25 мА |
Смещение эмиттера, Vсмещ = 1,5 В, RЭ = 470 Ом | 1,00 мА | 1,38 мА |
Формулы для смещения эмиттера были повторены ниже с учетом внутреннего сопротивления эмиттера для лучшей точности. Внутреннее сопротивление эмиттера представляет собой сопротивление в цепи эмиттера внутри корпуса транзистора. Это внутреннее сопротивление rЭ оказывает большое влияние, когда (внешний) резистор эмиттера RЭ мал или даже равен нулю. Значение внутреннего сопротивления эмиттера является функцией тока эмиттера IЭ. Формула приведена ниже.
- K=1.38×10 -23 Дж·К −1 – постоянная Больцмана;
- T – температура в Кельвинах, берем ≅300;
- IЭ – ток эмиттера;
- m – для кремния изменяется от 1 до 2.
\[ r_Э = 0,026 В/I_Э = 26 мВ/I_Э \]
Ниже приведен вывод формул с учетом rЭ.
Более точные формулы смещения эмиттера могут быть получены при написании уравнения закона напряжений Кирхгофа для контура цепи базы-эмиттера. В качестве альтернативы, начнем с формулы IЭ, а затем перейдем в к формуле RБ, заменив RЭ на rЭ + RЭ. Результаты показаны ниже.
\[V_ — I_Б R_Б — V_ — I_Э r_Э — I_Э R_Э = 0\]
\[I_Э = (\beta+1)I_Б \approx \beta I_Б\]
\[V_ — (I_Э / \beta) R_Б — V_ — I_Э r_Э — I_Э R_Э = 0\]
\[V_ — V_ = I_Э (R_Б / \beta) + I_Э r_Э + I_Э R_Э\]
\[I_Э = — V_ \over R_Б / \beta + r_Э +R_Э >\]
\[R_Б / \beta + r_Э +R_Э = — V_ \over I_Э >\]
\[R_Б = \beta \left[ — V_ \over I_Э > — r_Э — R_Э \right]\]
\[r_Э = 26 мВ / I_Э \]
Повторим расчет RБ из предыдущего примера, но уже с учетом rЭ, и сравним результаты.
\(\beta = 100 \qquad I_Э \approx I_К = 1 мА \qquad V_ = 10 В \qquad V_ = 2 В \qquad R_Э = 470 Ом \)
\( r_Э = 26 мВ / 1 мА = 26 Ом \)
\[R_Б = \beta \left[ — V_ \over I_Э > — r_Э — R_Э \right] = 100 \left[ — 26 — 470 \right] = 80,4 кОм\]
Включение в расчеты rЭ приводит к более низкому значению сопротивления резистора базы RБ, как показано в таблице ниже. Это значение находится ниже стандартного номинала 82 кОм, а не выше его.
rЭ? | Значение RБ |
---|---|
Без учета rЭ | 83 кОс |
С учетом rЭ | 80,4 кОм |
Конденсатор обхода RЭ
Какая величина емкости должна быть у конденсатора обхода? Она зависит от самой низкой частоты усиливаемого сигнала. Для радиочастот Cобхода может быть небольшим. Для аудиоусилителя с нижней частотой 20 Гц этот конденсатор будет большим. «Эмпирическое правило» для конденсатора обхода состоит в том, что реактивное сопротивление должно составлять 1/10 или меньше от сопротивления резистора эмиттера. Конденсатор должен быть выбран таким образом, чтобы поддерживать самую низкую частоту усиливаемого сигнала. Конденсатор для аудиоусилителя 20 Гц – 20 кГц равен:
Обратите внимание, что внутреннее сопротивление эмиттера rЭ не обходится конденсатором обхода.
Смещение делителем напряжения
Устойчивое смещение эмиттера требует низковольтного источника смещения базы (рисунок ниже). Альтернативой источнику базы Vсмещ является делитель напряжения, питаемый источником питания коллектора Vпит.
Технология проектирования заключается в том, чтобы сначала разработать схему смещения эмиттера, затем преобразовать ее в схему смещения базы с помощью делителя напряжения, используя теорему Тевенина. Этапы графически показаны на рисунке ниже. Нарисуем делитель напряжения, не присваивая номиналов резисторов. Отделите делитель от базы (база транзистора является его нагрузкой). Примените теорему Тевенина, чтобы получить эквивалентные одно сопротивление Тевенина RТев и один источник напряжения VТев.
Эквивалентное сопротивление Тевенина – это сопротивление от точки нагрузки (стрелка) при уменьшении напряжения батареи (Vпит) до 0 (земля). Другими словами, R1 || R2. Эквивалентное напряжение Тевенина представляет собой напряжение разомкнутой цепи (снятая нагрузка). Этот расчет осуществляется методом коэффициента деления делителя напряжения. R1 получается путем исключения R2 из пары формул для RТев и VТев. Ниже приведена формула расчета R1, исходя из значений RТев, VТев и Vпит. Обратите внимание, что RТев представляет собой RБ, резистор смещения из схемы смещения эмиттера. Также ниже приведена формула расчета R2, исходя из значений R1 и RТев.
Преобразуем предыдущий пример смещение эмиттера в смещение с помощью делителя напряжения.
Эти значения были ранее выбраны или расчитаны для примера смещения эмиттера.
\(\beta = 100 \qquad I_Э \approx I_К = 1 мА \qquad V_ = 10 В \qquad V_ = 1,5 В \qquad R_Э = 470 Ом \)
\[R_Б = \beta \left[ — V_ \over I_Э > — R_Э \right] = 100 \left[ — 470 \right] = 33 кОм\]
Подстановка значений Vпит, Vсмещ и RБ даст в результате значения R1 и R2 для схемы смещения с делителем напряжения.
\[R_Б = R_ = 33 кОм \]
Значение R1 равно стандартному значению 220 кОм. Ближайшее стандартное значение для R2, равного 38,8 кОм, рано 39 кОм. Это не сильно изменить IЭ, чтобы его рассчитывать.
Задача: Рассчитаем резисторы смещения для каскодного усилителя на рисунке ниже. VБ2 – это напряжение смещения каскада с общим эмиттером. VБ1 – это довольно высокое напряжение 11,5 В, потому что мы хотим, чтобы каскад с общей базой удерживал напряжение на эмиттере на уровне 11,5 – 0,7 = 10,8 В, примерно 11 В. (Это будет 10 В после учета падения напряжения на RБ1.) То есть, каскад с общей базой является нагрузкой, заменяющей резистор, коллектора каскада с общим эмиттером. На нужен ток эмиттера 1 мА.
\( V_ = 20 В \qquad I_Э = 1 мА \qquad \beta = 100 \qquad V_A = 10 В \qquad R_ = 4,7 кОм \)
\( V_ = 11,5 В \qquad V_ = 1,5 В \)
\[ I_Э = — V_ \over R_Б / \beta +R_Э > \]
Задача: Преобразуем резисторы смещения базы в каскодном усилителе в резисторы схемы смещения с делителем напряжения, питающимся от Vпит 20 В.
\[ R_Б = R_ = 80 кОм \]
Транзистор и биполярный транзистор, расчёт транзисторного каскада
Радиоэлементы и радиосхемы, принципы работы
Автор OneScheme.ru На чтение 15 мин Просмотров 750 Опубликовано 01.03.2018
ТРАНЗИСТОР — это полупроводниковый прибор для усиления, генерирования и преобразования электрических колебаний, выполненный на основе монокристаллического полупроводника (Si – кремния, или Gе — германия), содержащего не менее трёх областей с различной — электронной (n) и дырочной (p) — проводимостью. Изобретён в 1948 американцами У. Шокли, У. Браттейном и Дж. Бардином. По физической структуре и механизму управления током различают транзисторы биполярные (чаще называют просто транзисторами) и униполярные (чаще называют полевыми транзисторами). В первых, содержащих два, или более электронно-дырочных перехода, носителями заряда служат как электроны, так и дырки, во вторых — либо электроны, либо дырки. Термн «транзистор» нередко используют для обозначения портативных радиовещательных приёмников на полупроводниковых приборах.
Управление током в выходной цепи осуществляется за счёт изменения входного напряжения или тока. Небольшое изменение входных величин может приводить к существенно большему изменению выходного напряжения и тока. Это усилительное свойство транзисторов используется в аналоговой технике (аналоговые ТВ, радио, связь и т. п.).
Биполярный транзистор
Биполярный транзистор может быть n-p-n и p-n-p проводимости. Не заглядывая во внутренности транзистора, можно отметить разницу проводимостей лишь в полярности подключения в практических схемах источников питания, конденсаторов, диодов, которые входят в состав этих схем. На рисунке справа графически изображены n-p-n и p-n-p транзисторы.
У транзистора три вывода. Если рассматривать транзистор как четырёхполюсник, то у него должно быть два входных и два выходных вывода. Следовательно, какой то из выводов должен быть общим, как для входной, так и для выходной цепи.
Схемы включения транзистора
Схема включения транзистора с общим эмиттером – предназначена для усиления амплитуды входного сигнала по напряжению и по току. При этом входной сигнал, усиливаясь транзистором, инвертируется. Другими словами фаза выходного сигнала поворачивается на 180 градусов. Эта схема, является основной, для усиления сигналов разной амплитуды и формы. Входное сопротивление транзисторного каскада с ОЭ бывает от сотен Ом до единиц килоом, а выходное — от единиц до десятков килоом.
Схема включения транзистора с общим коллектором – предназначена для усиления амплитуды входного сигнала по току. Усиления по напряжению в такой схеме не происходит. Правильнее сказать, коэффициент усиления по напряжению даже меньше единицы. Входной сигнал транзистором не инвертируется.
Входное сопротивление транзисторного каскада с ОК бывает от десятков до сотен килоом, а выходное в пределах сотни ом — единиц килоом. Благодаря тому, что в цепи эмиттера находится, как правило, нагрузочный резистор, схема обладает большим входным сопротивлением. Кроме того, благодаря усилению входного тока, она обладает высокой нагрузочной способностью. Эти свойства схемы с общим коллектором используются для согласования транзисторных каскадов — как «буферный каскад». Так как, входной сигнал, не усиливаясь по амплитуде «повторяется» на выходе, схему включения транзистора с общим коллектором ещё называют Эмиттерный повторитель.
Имеется ещё Схема включения транзистора с общей базой. Эта схема включения в теории есть, но в практике она реализуется очень тяжело. Такая схема включения используется в высокочастотной технике. Особенность её в том, что у неё низкое входное сопротивление, и согласовать такой каскад по входу сложно. Опыт в электронике у меня не малый, но говоря об этой схеме включения транзистора, я извините, ничего не знаю! Пару раз использовал как «чужую» схему, но так и не разбирался. Объясню: по всем физическим законам транзистор управляется его базой, вернее током, протекающим по пути база-эмиттер. Использование входного вывода транзистора — базы на выходе — не возможно. На самом деле базу транзистора через конденсатор «сажают» по высокой частоте на корпус, а на выходе её и не используют. А гальванически, через высокоомный резистор, базу связывают с выходом каскада (подают смещение). Но подавать смещение, по сути можно откуда угодно, хоть от дополнительного источника. Всё равно, попадающий на базу сигнал любой формы гасится через тот же самый конденсатор. Чтобы такой каскад работал, входной вывод — эмиттер через низкоомный резистор «сажают» на корпус, отсюда и низкое входное сопротивление. В общем, схема включения транзистора с общей базой — тема для теоретиков и экспериментаторов. На практике она встречается крайне редко. За свою практику в конструировании схем никогда не сталкивался с необходимостью использования схемы включения транзистора с общей базой. Объясняется это свойствами этой схемы включения: входное сопротивление — от единиц до десятков Ом, а выходное сопротивление — от сотен килоом до единиц мегаом. Такие специфические параметры — редкая потребность.
Биполярный транзистор может работать в ключевом и линейном (усилительном) режимах. Ключевой режим используется в различных схемах управления, логических схемах и др. В ключевом режиме, транзистор может находиться в двух рабочих состояниях – открытом (насыщенном) и закрытом (запертом) состоянии. Линейный (усилительный) режим используется в схемах усиления гармонических сигналов и требует поддержания транзистора в «наполовину» открытом, но не насыщенном состоянии.
Для изучения работы транзистора, мы рассмотрим схему включения транзистора с общим эмиттером, как наиболее важную схему включения.
Схема изображена на рисунке. На схеме VT – собственно транзистор. Резисторы R б1 и R б2 – цепочка смещения транзистора, представляющая собой обыкновенный делитель напряжения. Именно эта цепь обеспечивает смещение транзистора в «рабочую точку» в режиме усиления гармонического сигнала без искажений. Резистор R к – нагрузочный резистор транзисторного каскада, предназначен для подвода к коллектору транзистора электрического тока источника питания и его ограничения в режиме «открытого» транзистора. Резистор R э – резистор обратной связи, по своей сути увеличивает входное сопротивление каскада, при этом, уменьшает усиление входного сигнала. Конденсаторы С выполняют функцию гальванической развязки от влияния внешних цепей.
Чтобы Вам было понятнее, как работает биполярный транзистор, мы проведём аналогию с обычным делителем напряжения (см. рис. ниже). Для начала, резистор R 2 делителя напряжения сделаем управляемым (переменным). Изменяя сопротивление этого резистора, от нуля до «бесконечно» большого значения, мы можем получить на выходе такого делителя напряжение от нуля до значения, подаваемого на его вход. А теперь, представим себе, что резистор R 1 делителя напряжения – это коллекторный резистор транзисторного каскада, а резистор R 2 делителя напряжения – это переход транзистора коллектор-эмиттер. При этом, подавая на базу транзистора управляющее воздействие в виде электрического тока, мы изменяем сопротивление перехода коллектор-эмиттер, тем самым меняем параметры делителя напряжения. Отличие от переменного резистора в том, что транзистор управляется слабым током. Именно так и работает биполярный транзистор. Вышеуказанное изображено на рисунке ниже:
Для работы транзистора в режиме усиления сигнала, без искажения последнего, необходимо обеспечить этот самый рабочий режим. Говорят о смещении базы транзистора. Грамотные специалисты тешат себя правилом: Транзистор управляется током – это аксиома. Но режим смещения транзистора устанавливается напряжением база-эмиттер, а не током – это реальность. И у того, кто не учитывает напряжение смещения, никакой усилитель работать не будет. Поэтому в расчётах его значение должно учитываться.
Итак, работа биполярного транзисторного каскада в режиме усиления происходит при определённом напряжении смещения на переходе база-эмиттер. Для кремниевого транзистора значение напряжения смещения лежит в пределах 0,6…0,7 вольт, для германиевого – 0,2…0,3 вольта. Зная об этом понятии, можно не только рассчитывать транзисторные каскады, но и проверять исправность любого транзисторного усилительного каскада. Достаточно мультиметром с высоким внутренним сопротивлением измерить напряжение смещения база-эмиттер транзистора. Если оно не соответствует 0,6…0,7 вольт для кремния, или 0,2…0,3 вольта для германия, тогда ищите неисправность именно здесь – либо неисправен транзистор, либо неисправны цепи смещения или развязки этого транзисторного каскада.
Вышеуказанное, изображено на графике – вольтамперной характеристике (ВАХ).
Большинство из «спецов», посмотрев на представленную ВАХ скажет: Что за ерунда нарисована на центральном графике? Так выходная характеристика транзистора не выглядит! Она представлена на правом графике! Отвечу, там всё правильно, а началось это с электронно-вакуумных ламп. Раньше вольтамперной характеристикой лампы считалось падение напряжения на анодном резисторе. Сейчас, продолжают измерять на коллекторном резисторе, а на графике приписывают буквы, обозначающие падение напряжения на транзисторе, в чём глубоко ошибаются. На левом графике I б – U бэ представлена входная характеристика транзистора. На центральном графике I к – U кэ представлена выходная вольтамперная характеристика транзистора. А на правом графике I R – U R представлен вольтамперный график нагрузочного резистора R к , который обычно выдают за вольтамперную характеристику самого транзистора.
На графике имеет место линейный участок, используемый для линейного усиления входного сигнала, ограниченный точками А и С. Средняя точка – В, является именно той точкой, в которой необходимо содержать транзистор, работающий в усилительном режиме. Этой точке соответствует определённое напряжение смещения, которое при расчётах обычно берут: 0,66 вольт для транзистора из кремния, или 0,26 вольт для транзистора из германия.
По вольтамперной характеристике транзистора мы видим следующее: при отсутствии, или малом напряжении смещения на переходе база-эмиттер транзистора, ток базы и ток коллектора отсутствуют. В этот момент на переходе коллектор-эмиттер падает всё напряжение источника питания. При дальнейшем повышении напряжения смещения база-эмиттер транзистора, транзистор начинает открываться, появляется ток базы и вместе с ним растёт ток коллектора. При достижении «рабочей области» в точке С, транзистор входит в линейный режим, который продолжается до точки А. При этом, падение напряжения на переходе коллектор-эмиттер уменьшается, а на нагрузочном резисторе R к , наоборот увеличивается. Точка В – рабочая точка смещения транзистора, — это такая точка, при которой на переходе коллектор — эмиттер транзистора, как правило, устанавливается падение напряжения равное ровно половине напряжения источника питания. Отрезок АЧХ от точки С, до точки А называют рабочей областью смещения. После точки А , ток базы и следовательно ток коллектора резко возрастают, транзистор полностью открывается — входит в насыщение. В этот момент, на переходе коллектор-эмиттер падает напряжение обусловленное структурой n-p-n переходов, которое приблизительно равно 0,2…1 вольт, в зависимости от типа транзистора. Всё остальное напряжение источника питания падает на сопротивлении нагрузки транзистора – резисторе R к ., который кроме того, ограничивает дальнейший рост тока коллектора.
По нижним «дополнительным» рисункам, мы видим, как изменяется напряжение на выходе транзистора в зависимости от подаваемого на вход сигнала. Выходное напряжение (падение напряжения на коллекторе) транзистора противофазно (на 180 градусов) к входному сигналу.
Расчёт транзисторного каскада с общим эмиттером (ОЭ)
Прежде чем перейти непосредственно к расчёту транзисторного каскада, обратим внимание на следующие требования и условия:
• Расчёт транзисторного каскада проводят, как правило, с конца (т.е. с выхода);
• Для расчета транзисторного каскада нужно определить падение напряжения на переходе коллектор-эмиттер транзистора в режиме покоя (когда отсутствует входной сигнал). Оно выбирается таким, чтобы получить максимально неискаженный сигнал. В однотактной схеме транзисторного каскада работающего в режиме «A» это, как правило, половина значения напряжения источника питания;
• В эмиттерной цепи транзистора бежит два тока — ток коллектора (по пути коллектор-эмиттер) и ток базы (по пути база-эмиттер), но так как ток базы достаточно мал, им можно пренебречь и принять, что ток коллектора равен току эмиттера;
• Транзистор – усилительный элемент, поэтому справедливо будет заметить, что способность его усиливать сигналы должна выражаться какой-то величиной. Величина усиления выражается показателем, взятым из теории четырёхполюсников — коэффициент усиления тока базы в схеме включения с общим эмиттером (ОЭ) и обозначается он — h 21 . Его значение приводится в справочниках для конкретных типов транзисторов, причём, обычно в справочниках приводится вилка (например: 50 – 200). Для расчётов обычно выбирают минимальное значение (из примера выбираем значение — 50);
• Коллекторное (R к ) и эмиттерное (R э ) сопротивления влияют на входное и выходное сопротивления транзисторного каскада. Можно считать, что входное сопротивление каскада R вх =R э *h 21 , а выходное равно R вых =R к . Если Вам не важно входное сопротивление транзисторного каскада, то можно обойтись вовсе без резистора R э ;
• Номиналы резисторов R к и R э ограничивают токи, протекающие через транзистор и рассеиваемую на транзисторе мощность.
Порядок и пример расчёта транзисторного каскада с ОЭ
Исходные данные:
Питающее напряжение U и.п. =12 В.
Выбираем транзистор, например: Транзистор КТ315Г, для него:
P max =150 мВт; I max =150 мА; h 21 >50.
Напряжение б-э рабочей точки транзистора принимаем U бэ = 0,66 В
1. Определим максимальную статическую мощность, которая будет рассеиваться на транзисторе в моменты прохождения переменного сигнала, через рабочую точку В статического режима транзистора. Она должна составлять значение, на 20 процентов меньше (коэффициент 0,8) максимальной мощности транзистора, указанной в справочнике.
Принимаем P рас.max =0,8*P max =0,8*150 мВт=120 мВт
2. Определим ток коллектора в статическом режиме (без сигнала):
3. Учитывая, что на транзисторе в статическом режиме (без сигнала) падает половина напряжения питания, вторая половина напряжения питания будет падать на резисторах:
Учитывая существующий ряд номиналов резисторов, а также то, что нами выбрано соотношение R к =10*R э , находим значения резисторов :
R к = 270 Ом; R э = 27 Ом.
4. Найдем напряжение на коллекторе транзистора без сигнала.
5. Определим ток базы управления транзистором:
6. Полный базовый ток определяется напряжением смещения на базе, которое задается делителем напряжения R б1 ,R б2 . Ток резистивного базового делителя должен быть на много больше (в 5-10 раз) тока управления базы I б , чтобы последний не влиял на напряжение смещения. Выбираем ток делителя в 10 раз большим тока управления базы:
R б1 ,R б2 : I дел. =10*I б = 10 * 0,8 мА = 8,0 мА.
Тогда полное сопротивление резисторов
R б1 +R б2 =U и.п. /I дел. = 12 В / 0,008 А = 1500 Ом.
7. Найдём напряжение на эмиттере в режиме покоя (отсутствия сигнала). При расчете транзисторного каскада необходимо учитывать: напряжение база-эмиттер рабочего транзистора не может превысить 0,7 вольта! Напряжение на эмиттере в режиме без входного сигнала примерно равно:
U э =I к0 *R э = 0,02 А * 27 Ом= 0,54 В,
где I к0 — ток покоя транзистора.
8. Определяем напряжение на базе
Отсюда, через формулу делителя напряжения находим:
R б2 = (R б1 +R б2 )*U б /U и.п. = 1500 Ом * 1,2 В / 12В = 150 Ом R б1 = (R б1 +R б2 )-R б2 = 1500 Ом — 150 Ом = 1350 Ом = 1,35 кОм.
По резисторному ряду , в связи с тем, что через резистор R б1 течёт ещё и ток базы, выбираем резистор в сторону уменьшения: R б1 =1,3 кОм.
9. Разделительные конденсаторы выбирают исходя из требуемой амплитудно-частотной характеристики (полосы пропускания) каскада. Для нормальной работы транзисторных каскадов на частотах до 1000 Гц необходимо выбирать конденсаторы номиналом не менее 5 мкФ.
На нижних частотах амплитудно-частотная характеристика (АЧХ) каскада зависит от времени перезаряда разделительных конденсаторов через другие элементы каскада, в том числе и элементы соседних каскадов. Ёмкость должна быть такой, чтобы конденсаторы не успевали перезаряжаться. Входное сопротивление транзисторного каскада много больше выходного сопротивления. АЧХ каскада в области нижних частот определяется постоянной времени t н =R вх *C вх , где R вх =R э *h 21 , C вх — разделительная входная емкость каскада. C вых транзисторного каскада, это C вх следующего каскада и рассчитывается она так же. Нижняя частота среза каскада (граничная частота среза АЧХ) f н =1/t н . Для качественного усиления, при конструировании транзисторного каскада необходимо выбирать, чтобы соотношение 1/t н =1/(R вх *C вх ) н в 30-100 раз для всех каскадов. При этом чем больше каскадов, тем больше должна быть разница. Каждый каскад со своим конденсатором добавляет свой спад АЧХ. Обычно, достаточно разделительной емкости 5,0 мкФ. Но последний каскад, через Cвых обычно нагружен низкоомным сопротивлением динамических головок, поэтому емкость увеличивают до 500,0-2000,0 мкФ, бывает и больше.
Спад АЧХ в области верхних частот определяется постоянной времени перезаряда t в =R вых *C к =R к C к , где C к — паразитная емкость коллекторного перехода (указывается в справочниках). Для звуковых частот, емкость коллекторного перехода незначительна, поэтому паразитной ёмкостью можно пренебречь.
Расчёт ключевого режима транзисторного каскада
Расчёт ключевого режима транзисторного каскада производится абсолютно так же, как и ранее проведённый расчёт усилительного каскада. Отличие заключается только в том, что ключевой режим предполагает два состояния транзистора в режиме покоя (без сигнала). Он, или закрыт (но не закорочен), или открыт (но не перенасыщен). При этом, рабочие точки «покоя», находятся за пределами точек А и С изображённых на ВАХ. Когда на схеме в состоянии без сигнала транзистор должен быть закрыт, необходимо из ранее изображённой схемы каскада удалить резистор R б1 . Если же требуется, чтобы транзистор в состоянии покоя был открыт, необходимо в схеме каскада увеличить резистор R б2 в 10 раз от расчётного значения, а в отдельных случаях, его можно удалить из схемы.
Расчёт транзисторного каскада окончен.
Как работает усилитель на транзисторе
Транзистор — это полупроводниковый прибор, который позволяет генерировать, создавать и усиливать электрические колебания. С помощью него можно усилить любой электрический сигнал. Разберем типовую. схему включения биполярного n-p-n транзистора.
Разбор схемы
Это моно-усилитель мощности звуковой частоты.
Транзистор VT1 является главным элементом в схеме усилителя. Поэтому схема называется транзисторный УНЧ (усилитель низкой частоты).
В данном случае используется n-p-n транзистор. Он включен по схеме с общим эмиттером (ОЭ). Эта схема позволяет выжить максимум из транзистора. Она усиливает и напряжение, и ток одновременно. Итого максимальная мощность.
Как именно определяется схема включения? Входящий сигнал подается на базу и эмиттер, а выходящий снимается с коллектора и эмиттера. То есть, по сути, общий контакт эмиттер. Поэтому схема называется с общим эмиттером. Эмиттер – это силовая часть транзистора, которая позволяет усилить сигнал по максимуму.
Данная схема имеет один каскад усиления.
Что такое каскад
Каскад – это по сути этап усиления, который не зависит от другого. Бывают и двухкаскадные усилители. То есть, например, в схеме есть два транзистора. Один работает как предусилитель, и передает усиленный сигнал на вход второго. Поэтому схема называется двухкаскадной. Они не зависят друг от друга, но первый каскад передает сигнал на второй, что позволяет увеличить мощность сигнала.
Как питаемся схема
От качества питания зависит и качество усиления. С какими бы выдающимися характеристиками не был транзистор, если питание плохо отфильтровано или недостаточное, то усиление будет советующего качества.
На клеммы Х3 и Х4 подключается питание 6 В.
Эта схема может питаться и от аккумулятора. Однако, несмотря на то, что аккумулятор – это источник с минимальным шумом, у аккумулятора тоже есть свое сопротивление.
И чтобы оно не мешало и не влияло на работу усилителя, нужен сглаживающий и накопительный конденсатор.
Электролитический конденсатор С3 накапливает энергию источника питания, что позволяет улучшить качество усиления. Чем выше емкость – тем лучше. Естественно, у такого правила есть ограничения. Если поставить слишком большую емкость, то будет большая нагрузка на источник питания.
К тому же, электролитические конденсаторы должны разряжаться после выключения. Тем более, есть предел для увеличения емкости для схемы. Если в эту схему подключить конденсатор емкостью 1 фарад (1 000 000 мкФ), то уровень шума на выходе усилителя будет такой же, как и при 1000 мкФ. Это связано с тем, что у транзистора так же есть и свои «шумы», отсутствие экранировки на входе, динамические искажения и другие параметры.
Во время проектирования схемы все эти параметры рассчитываются. Здесь в схеме у конденсатора С3 емкость 47 микрофарад – этого достаточно для нашего транзистора, поскольку у него не большая мощность, которую он может выдать. Можно поставить и большую емкость, например, 1000 микрофарад. Главное не нежно ставить конденсатор с меньшим пределом по напряжению. Если поставить конденсатор менее 6 В (питание схемы), то конденсатор начнет нагреваться и даже может взорваться.
Вход усилителя
Вход усилителя – это клеммы Х1 и Х2.
Х2 это минус входа, а Х1 – плюс. Так как схема на один канал, то УНЧ называется моно.
Можно подключить как левый канал, так и правый и оба сразу.
Фильтрация входного сигнала
Электролитический конденсатор С1 позволяет отделить постоянную составляющую входящего сигнала от переменной.
По-простому, он пропускает только переменный сигналю. Если сигнала нет, или вход усилителя замкнут, то без этого конденсатора транзистор может перейти в режим насыщения (максимальное усиление), и на выходе появится неприятный хрип.
Не путайте этот эффект со свистом. Свист – это влияние положительной обратной связи, а в данном случае будет режим насыщения из-за короткого замыкания на входе. И на выходе усилителя будет слышен именно хрип, а не свит или звук.
Емкость конденсатора подобрана под частоту звукового сигнала. Звук начинается от 20 Гц и до 16 кГц.
Рабочая точка и смещение базы
Для того, чтобы транзистор не искажал входной сигнал, нужно его для начала чуть-чуть приоткрыть.
Это можно сделать при помощи делителя напряжения из двух резисторов R1 и R2. Этот делитель напряжения позволяет приоткрыть транзистор VT1 для того, чтобы входной сигнал не тратил свою электрическую энергию на его открытие.
Ток, который протекает через R1 и R2 поступает на базу транзистора VT1, который потом уходит через эмиттер, тем самым его открывая. Это называется базовое смещение транзистора, то есть его открытие. Напряжение смещения определяет рабочую точку. В данном случае усилитель А класса.
Как определяется класс усилителя
Класс усилителя определяется его рабочей точкой. Рабочая точка выбирается с помощью вольтамперной характеристики транзистора. Чем выше напряжение подается на вход транзистора, тем больше ток, тем выше рабочая точка.
Например, точка по центру это А класс.
А класс самый качественный из усилителей. Он усиливает как положительные, так и отрицательные полуволны входного сигнала. В то же время, у этого класса есть существенный недостаток. Это ограничение мощности и снижение энергоэффективности. Дело в том, что пока на вход УНЧ не поступает входной сигнал, он работает все время, пока он включен.
Получается, что при это расходуется лишняя электроэнергия. Поэтому, еще рабочая точка называется точкой покоя, когда усилитель не усиливает входной сигнал.
Также от рабочей точки зависит и чувствительность усилителя.
Еще есть B класс, AB и D. Они отличаются друг от друга по эффективности усиления и наличию искажений. Все зависит от используемой схемы.
Например. D класс вообще не открывает транзистор, однако с точки зрения энергоэффективности – это самый лучший выбор. Транзистор в покое не потребляет ничего, он включается только при подаче входного сигнала. И при этом если на вход подается аналоговый звуковой сигнал, то он искажается. Такой класс не подойдет для схемы, которую разбираем в этой статье.
Поэтому, схемотехники и инженеры изобрели цифровые усилители. У них аналоговый сигнал преобразовывается в цифровой, и только потом подается на вход усилителя. Транзистор не искажает входной цифрой сигнал. После усиления сигнал снова преобразовывается в аналоговый с наименьшими потерями и искажениями.
А режим АВ применяется в схемах, где есть несколько транзисторов, которые работают на свои полуволны. Есть схемы, где один транзистор усиливает только положительные полуволны, а второй только отрицательные. Такие усилители называются двухтактными.
Стабилизация работы схемы
Когда полупроводник нагревается, его сопротивление уменьшается. Транзистор сделан из полупроводника, и соответственно его p-n переходы тоже.
При работе схемы УНЧ ток течет через транзистор, и он нагревается. Обычно вся мощность рассеивается на коллекторе. И тем не менее, характеристики транзистора резко меняются, поскольку сопротивление его p-n переходом резко снижается по мере повышения температуры.
Чтобы стабилизировать работу транзистора, нужно сбалансировать его сопротивление другим источником. Это можно сделать при помощи дополнительного сопротивления.
Когда сопротивление транзистора VT1 уменьшается, резистор R3 забирает часть напряжения на себя и не позволяет увеличить ток в цепи.
Благодаря этому транзистор:
- не закрывается;
- не переходит в режим насыщения;
- не искажает сигнал;
- и не перегревается.
Это называется термостабилизация работы усилителя.
А чтобы в нормальном режиме работы, когда VT1 не нагревается, резистор R3 не уменьшал мощность схемы, в цепь включен шунтирующий электролитический конденсатор C2. Через него переменная составляющая входного сигнала проходит без потерь.
Выход усилителя
На выход к усилителю можно подключить как другой усилитель, который усилит сигнал еще больше, так и динамическую головку.
Динамическая головка — это обычный динамик. Он воспроизведёт звук с выхода транзистора VT1.
Однако и тут есть много нюансов.
Самое важное касается согласование сопротивления нагрузки и сопротивления усилителя.
Если сопротивление выхода транзистора намного больше, чем у динамической головки, то он не сможет передать всю мощность. Как минимум большая часть напряжения останется на его контактах.
Для данной схемы нужен динамик с сопротивлением около 1 кОм.
Если поставить меньше, например, на 4 Ома, то и половина мощности не воспроизведется, а коллектор VT1 начнет еще сильнее нагреваться.
Согласование сопротивлений входа, выхода и нагрузки усилителя рассчитывается на этапе проектирования схемы. Поэтому не следует их нарушать.
Как протекает ток по схеме
В начальный момент времени, при подключении питания, электролитический конденсатор С3 заряжается, и начинят питать коллектор и эмиттер транзистора VT1. А также ток проходит через делитель напряжения.
Делитель напряжения R1, R2 смещает базу VT1. Начинает течь ток смещения база-эмиттер (Б-Э), тем самым устанавливается рабочая точка УНЧ.
Когда входной сигнал поступает на клемму Х1, он проходит С1 и через делитель поступает на базу VT1 и частично уходит через эмиттер.
Входной сигнал притягивается коллектором VT1 и тем самым усиливается.
Та часть переменного сигнала, которая перешла на эмиттер транзистора, усиливается эмиттерными током. Он свободно проходит через С2, который в паре с R3 стабилизирует режим работы усилителя от перегрева и искажений.
В итоге входной сигнал усиленный коллекторно-эмиттерным (К-Э) током VT1 поступает на выход, то есть на динамическую головку BF1.
От чего зависит мощность схемы
У этой схемы есть ограничения. Можно поменять VT1 КТ315 на более мощный, у которого коэффициент усиления будет выше, но этот лимит усиления не бесконечный.
В первую очередь, все зависит от используемого транзистора. Если поменять его на более мощный, то и усиление будет выше. Но следует помнить, что чем мощнее транзистор, тем мощнее нужен входной сигнал. К тому же, придется сделать перерасчет всех компонентов. И подключать предусилитель, собирать схему блока питания, а это уже будет совсем другая схема.
У транзисторов есть ряд параметров, которые влияют на схему. Это коэффициент усиления по току (h21э), напряжению, мощности. А также важный параметр — это рассеиваемая мощность на коллекторе. С повышением мощности потребуется радиатор для отвода тепла.
Как собрать схему
Схему можно собрать на текстолите или на макетной плате. Перейдите по ссылке на эту статью, в ней подробнее описывается процесс сборки и проверки схемы.
Используйте качественные детали и хороший припой. Она рабочая. Это вообще классическая схема включения биполярного транзистора с общим эмиттером.
Также на сайте есть и другие схемы усилителей, которые не сложны в сборке и не дорогие по стоимости деталей.
Как проверить работу схемы
Достаточно прикоснуться до входа УНЧ отверткой, и на выходе послышаться треск. Это переменная наводка, которая усилится схемой.