Емкостных делителей напряжения выключателей
Для преобразования переменного напряжения применяется трансформатор, благодаря которому можно сохранить достаточно высокое значение тока. Если необходимо в электрическую цепь подключить нагрузку, потребляющую небольшой ток (до сотен мА), то использование трансформаторного преобразователя напряжения (U) не является целесообразным.
В этих случаях можно использовать простейший делитель напряжения (ДН), стоимость которого существенно ниже. После получения необходимой величины U выпрямляется и происходит подача питания на потребитель. При необходимости для увеличения силы тока (I) нужно использовать выходной каскад увеличения мощности. Кроме того, существуют делители и постоянного U, но эти модели применяются реже остальных.
ДН часто применяются для зарядок различных устройств, в которых нужно получить из 220 В более низкие значения U и токов для разного типа аккумуляторов. Кроме того, целесообразно использовать устройства для деления U для создания электроизмерительных приборов, компьютерной техники, а также лабораторных импульсных и обыкновенных блоков питания.
Емкостный делитель — напряжение
Принцип действия емкостного делителя напряжения ( рис. 6 — 9) заключается в следующем. [32]
Принцип действия емкостного делителя напряжения ( рис. 6 — 7) заключается в следующем. Если между проводом линии и землей включить несколько последовательно соединенных конденсаторов, то напряжение линии относительно земли ( фазное напряжение) распределится между конденсаторами обратно пропорционально их емкости. [33]
Читайте также: ИССЛЕДОВАНИЕ СТАТИЧЕСКИХ ТРИГГЕРОВ
Применяемые на выключателях емкостные делители напряжения также должны отвечать весьма высоким техническим требованиям. Прежде всего конструктивное исполнение конденсаторов должно быть таково, чтобы они выдерживали не только наибольшие напряжения, которые могут возникнуть на отдельных блоках шунтирующего резистора в процессе отключения выключателя, либо напряжения, адекватные испытательным воздействиям на выключатели данного класса напряжений; помимо этого, они должны выдерживать и наибольшие напряжения, которые могут возникнуть на одном или нескольких дуго-гасительных разрывах, контакты которых при выключении смыкаются последними. Координация изоляции выключателя должна быть такой, чтобы уровень изоляции конденсаторов соответствовал электрической прочности одного дугогасительного разрыва, находящегося в полностью отключенном положении, а эта прочность, в свою очередь, была выше напряжения перекрытия изоляции по наружной поверхности. [34]
Принцип работы
Делитель напряжения (ДН) является устройством, в котором осуществляется взаимосвязь выходного и входного U при помощи коэффициента передачи. Коэффициент передачи — отношение значений U на выходе и на входе делителя. Схема делителя напряжения проста и представляет собой цепочку из двух последовательно соединенных потребителей — радиоэлементов (резисторов, конденсаторов или катушек индуктивности). По выходным характеристикам они отличаются.
У переменного тока существуют такие главные величины: напряжение, сила тока, сопротивление, индуктивность (L) и емкость (C). Формулы расчета основных величин электричества (U, I, R, C, L) при последовательном подключении потребителей:
- Значения сопротивлений складываются;
- Напряжения складываются;
- Ток будет вычисляться по закону Ома для участка цепи: I = U / R;
- Индуктивности складываются;
- Емкость всей цепочки конденсаторов: C = (C1 * C2 * .. * Cn) / (C1 + C2 + .. + Cn).
Для изготовления простого резисторного ДН и используется принцип последовательно включенных резисторов. Условно схему можно разделить на 2 плеча. Первое плечо является верхним и находится между входом и нулевой точкой ДН, а второе — нижним, с него и снимается выходное U.
6-3. Емкостные делители напряжения
Кроме рассмотренных выше электромагнитных трансформаторов напряжения, все более широкое применение находят емкостные делители напряжения.
Принцип действия емкостного делителя напряжения (рис. 6-9) заключается в следующем.
Если между проводом линии электропередачи и землей включить несколько последовательно соединенных конденсаторов, то напряжение линии относительно земли (фазное напряжение) распределится между конденсаторами обратно пропорционально их емкости. Если все конденсаторы имеют одинаковую емкость, то напряжение распределится между ними поровну. Если же емкость конденсаторов различна, то на конденсаторы с меньшей емкостью придется большее напряжение, а на конденсаторы с большей емкостью — меньшее напряжение.
Обычно емкость конденсаторов выбирается таким образом, чтобы при номинальном фазном напряжении на линии Uф, напряжение на нижнем конденсаторе С3 составляло U3 = (0,05
0,1) Uф. Если к конденсатору С3 подключить первичную обмотку трансформатора напряжения ТН, то напряжение на его вторичной обмотке будет пропорционально фазному напряжению линии.
На рис. 6-10 показана принципиальная схема емкостного делителя напряжения типа НДЕ-500, которые устанавливаются на линиях электропередачи напряжением 500 кВ. Конденсатор C1 состоит из трех элементов типа
емкостью по 14 000 пФ, каждый из которых рассчитан на фазное напряжение 97 кВ. Конденсатор отбора С2 типа ОМР-15-0,107 имеет емкость 107 000 пФ и рассчитан на напряжение до 15 кВ.
Номинальное фазное напряжение в сети 500 кВ равно 290 кВ, а допустимое напряжение на три элемента конденсатора C1 составляет 3*97 = 291 кВ. Суммарная емкость трех элементов конденсатора С1 равна 14 000 : 3 = 4 660 пФ, а суммарная емкость конденсаторов С1 и С2 составляет:
Фазное напряжение линии распределится между конденсаторами следующим образом:
Обычно емкостные делители напряжения совмещаются с конденсаторами связи высокочастотной защиты.
Читайте также: Как проверить импульс мультиметром
Устройство отбора напряжения, подключаемое в точку А, состоит из следующих аппаратов: разъединителя Р для включения и отключения устройства отбора, высокочастотного заградителя ВЧЗ для запирания пути токам высокой частоты аппаратов защиты, связи и телемеханики, дросселя Д для настройки контура отбора напряжения в резонанс с конденсатором С2 и трансформатора напряжения ТН с двумя вторичными обмотками. Одна обмотка соединяется с обмотками других фаз в звезду, а вторая — в разомкнутый треугольник.
При настройке контура отбора напряжения в резонанс с конденсатором С2 напряжение на вторичных обмотках в определенных пределах не зависит от их нагрузки.
Показанный на рис. 6-10 фильтр присоединения ФП предназначен для подключения высокочастотных постов защиты.
23.4. ВЫБОР ТРАНСФОРМАТОРОВ НАПРЯЖЕНИЯ
Номинальное напряжение первичной обмотки ТН должно соответствовать номинальному напряжению сети, в которую он включается. Если ТН включается между фазой и землей — то номинальному фазному напряжению. Номинальное вторичное напряжение ТН должно соответствовать номинальному напряжению нагрузки. Нагрузка должна быть равномерно распределена по фазам ТН. Суммарная нагрузка на фазу ТН должна быть меньше допустимой при заданных классе точности и коэффициенте мощности. Сечение проводников, соединяющих ТН с нагрузкой, должно быть таким, чтобы падение напряжения на них составляло доли процента номинального вторичного напряжения.
Электрические аппараты — Емкостные делители напряжения
23.3. ЕМКОСТНЫЕ ДЕЛИТЕЛИ НАПРЯЖЕНИЯ
Помимо электромагнитных ТН для понижения высокого напряжения могут быть использованы емкостные делители. Принципиальная схема подобного устройства, понижающего напряжение сети 500 кВ, приведена на рис. 23.9. Делитель Д состоит из конденсаторной батареи С1 и конденсатора С2. В чисто емкостной цепочке (цепь ТН АХХ разомкнута) напряжение U$ делится обратно пропорционально значениям емкостей. Емкость С2 на порядок больше С1, и ток цепочки определяется конденсатором С1. Емкость С2 выбирается так, чтобы напряжение на ней Uc2 находилось в пределах 4—12 кВ. Для дальнейшего понижения напряжение через реактор Р подается на ТН нормального исполнения и низкой стоимости. Нагрузка, имеющая номинальное напряжение 1-00 В, включается на вторичную обмотку этого трансформатора напряжения. Если в схеме отсутствует реактор Р, то с ростом нагрузки уменьшается входное сопротивление трансформатора напряжения и выходное напряжение начинает падать. Если реактор настроен в резонанс с емкостью С1+С2 при частоте сети / = 50 Гц, то выходное напряжение мало зависит от нагрузки.
Рис. 23.9.
Емкостный делитель
Для выявления основных свойств делителя примем, что ТН идеальный и погрешности не вносит. Если пренебречь током холостого хода трансформатора напряжения, то схема рис. 23.9 может быть преобразована в схему рис. 23.10. Трансформатор и нагрузку можно заменить сопротивлением нагрузки Z’v приведенным к первичной обмотке трансформатора напряжения.
Разновидности
Разным сопротивлением выдерживается разная нагрузка. Но при этом существуют делители, отличающиеся не только по своим основным, но и по дополнительным параметрам. Несмотря на все эти нюансы и тонкости, главным является один — электрическое сопротивление.
Резисторные
Могут использоваться и для постоянного, и для переменного тока. Резисторы предназначены для низкого напряжения. Их нельзя использовать, если речь заходит о питании мощных машин. Самый простой вариант исполнения предусматривает последовательное соединение двух резисторов.
Резисторные делители напряжения
Как рассчитать делитель напряжения на резисторах? Для этого используется первый закон Кирхгофа и положения Ома. Так, величина тока, протекающая через резисторы, будет одинаковой. И для каждого из них необходимо рассчитывать получаемое значение. Падение при этом прямо пропорциональное величинам тока и сопротивления.
Емкостные
Это устройство предусматривает, что решено подключать конденсаторы для деления. Простейшая схема также состоит из двух элементов, соединённых последовательно. Такое решение популярно, если делается многоуровневый инвертор напряжения. Без них немыслимо ни одно направление силовой электроники. Например, работа электроподвижного состава.
Расчёт значения емкостного делителя
Читайте также: Маркировка полимерных конденсаторов расшифровка. Советские керамические и пленочные конденсаторы
Расчет емкостного делителя напряжения в теории является более лёгким делом, нежели его реализация на практике. Ведь на пути стоит сложность невозможности обеспечения ситуации, когда конденсаторы разряжаются равномерно. Из-за этого, как бы не старались, не получиться добиться, чтобы напряжение распределялось поровну. Так, чем сильнее разряжен один конденсатор, тем ощутимее разница будет на другом. Ведь напряжение в этом случае определяется как результат деления заряда на емкость.
Вам это будет интересно Назначение, устройство и принцип работы АВР
Создаваемые с конденсаторами схемы работают очень нестабильно. При их создании всегда должно предусматриваться создание узлов подзарядки. Они используются для выравнивания напряжения на конденсаторах.
Индуктивные
Широко применяются в измерительных устройствах. Являются масштабными электромагнитными преобразователями. В процессе работы могут возникать погрешности. Их источник — неравенство активных сопротивления и индуктивностей из-за рассеяния разных секций обмоток, переход напряжения на коммутационные и соединительные элементы, шунтирующие взаимовоздействия обмоток, проявление емкости нагрузки и паразитных факторов. Если возникают проблемы с самого начала, вероятнее всего, проблема именно в последнем.
Индуктивные делители
Важно! Дополнительно паразитные емкости являются основной причиной возникновения частотной погрешности, что ограничивается использование индуктивных делителей напряжения на высоких частотах. Самые простейшие варианты имеют довольно много недостатков. Но использование на индуктивных делителях напряжений микропроцессоров позволяет использовать алгоритм уравновешивания.
Как рассчитать делитель напряжения
В электронике и сложных электрических цепях часто требуется деление входящего напряжения. Для этих целей в схему вносится устройство, которое называется делитель. Статья даст описание, что такое делитель напряжения, для чего нужен этот элемент и где он применяется. Будут приведены различные варианты этого устройства, формулы, а так же способы расчета его параметров.
Определение
Делитель электрического напряжения — это схема из комбинации электронных компонентов, необходимая для разделения действующего входящего напряжения на части и для дальнейшей передачи этих частей к разным участкам схемы. Его используют очень часто в усилителях различного предназначения.
Делители напряжения могут быть построены с использованием различных элементов. В их роли могут выступать резисторы, конденсаторы, катушки индуктивности. Независимо из каких компонентов построено устройство, оно состоит из 2 основных частей:
- Верхнее плечо. Оно включает в себя участок с положительным значением и точкой подключения к следующему участку цепи.
- Нижнее плечо. Оно состоит из участка с нулем, является средней точкой цепи.
Оба плеча имеют строго последовательное соединение. Сумма напряжений их выходов равна общему входящему значению за вычетом небольшой величины рассеивания.
Делитель на резисторах
Чтобы понять, как работает делитель напряжения, необходимо рассмотреть этот простой элемент, построенный с использованием резисторов. Такое устройство может использоваться для деления переменного или постоянного тока. Простейший прибор состоит из 2 резисторов с последовательным соединением. Принцип работы будет следующим:
- На контакты «U» подается ток от источника, определенной величины.
- При условии, если резисторы равны по своему сопротивлению, на выходе «U1» и «U2» напряжение будет разделено пополам, а их сумма будет равна величине входящего напряжения.
Первоначальный расчет величины делается с использованием выражения: U=I·R.
В таких устройствах основную роль играет всем нам известный закон Ома. Согласно ему, должно сохраняться условие, при котором снижение напряжения имеет прямую пропорциональность величине сопротивления резисторов.
Принимая во внимание первый закон Кирхгофа, входящая величина напряжения будет равна величине токов, протекающих через резисторы. Ниже приведена схема резисторного делителя напряжения.
Определить величину падения напряжения на каждом резисторе можно по формулам, которые представлены ниже:
Отсюда можно сделать вывод о величине на обоих концах цепи:
Далее можно определить значение тока в цепи, используя выражение:
Значение напряжения на каждом резисторе вычисляется по отдельным формулам:
Если резистивный делитель напряжения состоит из резисторов с разными сопротивлениями, выражение поможет рассчитать величину для каждого элемента отдельно. Для примера можно выполнить следующее вычисление:
- U=50 В.
- Сопротивление резистора R1=5 кОм.
- Сопротивление резистора R2=5 кОм.
- Необходимо найти величину напряжения на выходах U1, U2.
Для начала необходимо найти силу тока, протекающего по данной цепи: I=50/(5000+5000)=0.005 А=5 мА.
Далее можно узнать величину падения напряжения для каждого резистора по формуле: U1=0.005×5000=25 вольт.
Так как оба резистора имеют одинаковое сопротивление, выходная величина «U2» также равна 25 В. Теперь проведем простой расчет с разными значениями сопротивлений.
Сначала найдем силу тока: I=50/(5000+3000)=0.00625 А=6.25 мА.
Далее отдельно вычислим значение падения напряжения:
- U1=0.00625×5000=31.25 В.
- U2=0.00625×3000=18.75 В.
Рассчитанная величина имеет коэффициент рассеивания, который равен 2 вольта, поэтому точные значения как в примере увидеть не получится.
Благодаря данным формулам можно рассчитать любой неизвестный параметр делителя, но также необходимо помнить, что входной ток делителя должен быть минимум в 10 раз больше тока нагрузки и меньше максимального тока источника. Например, с нагрузкой в 20 мА, входящий ток должен быть больше 200 мА и источник рассчитан на такой же ток или больше. Поэтому не часто можно встретить делитель в схемах с большой нагрузкой.
Резисторный делитель электрического напряжения страдает от потерь, связанных с рассеиванием. Это связано с тем, что резисторы при работе нагреваются и часть тока при этом просто преобразуется в тепловую энергию.
Делитель на конденсаторах
Делитель электрического напряжения на конденсаторах может использоваться только в цепях переменного тока. Конденсаторы используются, как емкостные реактивные сопротивления.
В делителях конденсаторного типа должно сохраняться правило зависимости сопротивления от частоты и емкости самих конденсаторов. Если используется ёмкостный делитель, то расчет сопротивления конденсатора делается с помощью формулы:
Данная формула состоит из следующих значений:
- Xc — реактивное сопротивление;
- π — число пи, которое равно 3.1415;
- f — частота тока, Гц;
- С — емкость, Фарад;
Для подобных схем должно сохраняться условие: сопротивление всегда меньше емкости. Исходя из этого, можно сделать вывод, что чем больше ёмкостные характеристики конденсатора, тем меньше степень падения напряжения. Расчет выходящего напряжения с двумя конденсаторами можно сделать следующим образом:
Конденсаторный тип устройств более устойчивый, чем делитель напряжения на резисторах. При его работе прослеживается практически нулевая потеря при рассеивании. Причина этого эффекта в качестве и составе самого диэлектрика.
Дополнение схем
При создании схем УНЧ, инженерам необходимо занижение высоковольтного значения тока для обеспечения нормальной работы транзистора. Справится с этой задачей помогает делитель. Например, такое резисторное устройство используется для питания базового контакта транзистора. Таким образом создается обратная отрицательная связь по электрическому току, которая возникает благодаря наличию резистора R3. Схема усилителя каскада по схеме с ОЭ представлена на рисунке ниже.
При проектировании стабилизаторов используется стабилитрон, как часть балансного делителя. Такая схема помогает снизить нагрузку на устройство, значительно выровнять выходной ток. Стабилитрон, как и диод работает на пробой, если обратный ток достигает определенной величины.
Основное отличие заключается в том, что при повышении порогового значения, в стабилитроне не происходит теплового, электрического пробоя из-за линейной разности потенциалов.
Заключение
В статье была дана информация, как произвести расчет делителя напряжения, описаны разновидности этих устройств, формулы расчета. Зная, зачем используется делитель, можно применять это устройство для создания простых и сложных электронных схем с занижением напряжения до необходимых значений.
Видео по теме
Делитель напряжения
Делитель напряжения — это это цепь, состоящая из двух и более пассивных радиоэлементов, которые соединены последовательно.
Делитель напряжения на резисторах
Давайте разберем самый простой делитель напряжения, состоящий из двух резисторов. Эти два резистора соединим последовательно и подадим на них напряжение. Напряжение может быть как постоянное, так и переменное.
Подавая напряжение на эту цепь, состоящую из двух резисторов, у нас получается, что цепь становится замкнутой, и в цепи начинает течь электрический ток с какой-то определенной силой тока, которая зависит от номиналов резисторов.
Итак, мы знаем, что при последовательном соединении сила тока в цепи одинакова. То есть какая сила тока протекает через резистор R1, такая же сила тока течет и через резистор R2. Как же вычислить эту силу тока? Оказывается, достаточно просто, используя закон Ома: I=U/R.
Так как наши резисторы соединены последовательно, то и их общее сопротивление будет выражаться формулой
То есть в нашем случае мы можем записать, что
Как найти напряжение, которое падает на резисторе R2?
Так как ток для обоих резисторов общий, то согласно закону Ома
Подставляем вместо I формулу
и получаем в итоге
Для другого резистора ситуация аналогичная. На нем падает напряжение
Для него формула запишется
Давайте докажем, что сумма падений напряжений на резисторах равняется напряжению питания, то есть нам надо доказать, что U=UR1 +UR2 . Подставляем значения и смотрим.
что и требовалось доказать.
Эта формула также работает и для большого количества резисторов.
На схеме выше мы видим резисторы, которые соединены последовательно. Чему будет равняться Uобщ ? Так как резисторы соединены последовательно, следовательно, на каждом резисторе падает какое-то напряжение. Сумма падений напряжения на всех резисторах будет равняться Uобщ . В нашем случае формула запишется как
Как работает делитель напряжения на практике
Итак у нас имеются вот такие два резистора и наш любимый мультиметр:
Замеряем сопротивление маленького резистора, R1=109,7 Ом.
Замеряем сопротивление большого резистора R2=52,8 Ом.
Выставляем на блоке питания ровно 10 Вольт. Замер напряжения производим с помощью мультиметра.
Цепляемся блоком питания за эти два резистора, запаянные последовательно. Напомню, что на блоке ровно 10 Вольт. Показания амперметра на блоке питания тоже немного неточны. Силу тока мы будем замерять в дальнейшем также с помощью мультиметра.
Замеряем падение напряжения на большом резисторе, который обладает номиналом в 52,8 Ом. Мультиметр намерял 3,21 Вольта.
Замеряем напряжение на маленьком резисторе номиналом в 109,7 Ом. На нем падает напряжение 6,77 Вольт.
Ну что, с математикой, думаю, у всех в порядке. Складываем эти два значения напряжения. 3,21+6,77 = 9,98 Вольт. А куда делись еще 0,02 Вольта? Спишем на погрешность щупов и средств измерений. Вот наглядный пример того, что мы смогли разделить напряжение на два разных напряжения. Мы еще раз убедились, что сумма падений напряжений на каждом резистора равняется напряжению питания, которое подается на эту цепь.
Сила тока в цепи при последовательном соединении резисторов
Давайте убедимся, что сила тока при последовательном соединении резисторов везде одинакова. Как измерить силу тока постоянного напряжения, я писал здесь. Как видим, мультиметр показал значение 0,04 А или 40 мА в начале цепи, в середине цепи и даже в конце цепи. Где бы мы не обрывали нашу цепь, везде одно и то же значение силы тока.
Переменный резистор в роли делителя напряжения
Для того, чтобы плавно регулировать выходное напряжение, у нас есть переменный резистор в роли делителя напряжения. Его еще также называют потенциометром.
Его обозначение на схеме выглядит вот так:
Принцип работы такой: между двумя крайними контактами постоянное сопротивление. Сопротивление относительно среднего контакта по отношению к крайним может меняться в зависимости от того, куда мы будем крутить крутилку этого переменного резистора. Этот резистор рассчитан на мощность 1Вт и имеет полное сопротивление 330 Ом. Давайте посмотрим, как он будет делить напряжение.
Так как мощность небольшая, всего 1 Вт, то мы не будем нагружать его большим напряжением. Мощность, выделяемая на каком-либо резисторе рассчитывается по формуле P=I 2 R. Значит, этот переменный резистор может делить только маленькое напряжение при маленьком сопротивлении нагрузки и наоборот. Главное, чтобы значение мощности этого резистора не вышло за грани. Поэтому я буду делить напряжение в 1 Вольт.
Для этого выставляем на блоке напряжение в 1 Вольт и цепляемся к нашему резистору по двум крайним контактам.
Крутим крутилку в каком-нибудь произвольном направлении и останавливаем ее. Замеряем напряжение между левым и средним контактом и получаем 0,34 Вольта.
Замеряем напряжение между средним и правым контактом и получаем 0,64 Вольта
Суммируем напряжение и получаем 0,34+0,64=0,98 Вольт. 0,02 Вольта опять где-то затерялись. Скорее всего на щупах, так как они тоже обладают сопротивлением. Как вы видите, простой переменный резистор мы можем использовать в роли простейшего делителя напряжения.
Похожие статьи по теме «делитель напряжения»