Действующее значение фазного напряжения формула

Трехфазные симметричные цепи

Основными приемниками электрической энергии как по количеству, так и по установленной мощности являются электродвигатели, применяемые для приведения в движение рабочих машин. Трехфазные асинхронные двигатели — наиболее простые, надежные и дешевые. Повсеместное применение их обусловило бурное развитие трехфазных систем — производства, передачи и распределения электрической энергии. Для этой цели применяются трехфазные генераторы, трансформаторы, линии передачи, распределительные сети.

Общие сведения о трехфазных системах

Многофазная система электрических цепей представляет собой совокупность электрических цепей, в которых действуют синусоидальные э. д. с. одинаковой частоты, сдвинутые относительно друг друга по фазе и создаваемые одним источником энергии. Соответствующая этому определению система из трех цепей называется трехфазной.

Трехфазная система э. д .с.

В трехфазном генераторе, в котором имеются три самостоятельные обмотки, сдвинутые относительно друг друга в пространстве на 120°, образуется трехфазная симметричная система э. д .с. Схематично это показано на рис. 20.1 применительно к генератору с одной парой полюсов на статоре и обмотками на роторе. Однако нужно заметить, что в реальных генераторах обмотка переменного тока неподвижна (расположена на статоре), а магнитные полюса вращаются (расположены на роторе). Такая конструкция генератора лучше, а принцип его работы не меняется.

Если число витков в обмотках одинаково, то при вращении ротора во всех обмотках наводятся э. д. с. одинаковой величины. Начальные фазы этих э. д. с. сдвинуты относительно друг друга на 120° в соответствии с пространственным расположением обмоток.

Трехфазные симметричные цепи

Трехфазная симметричная система э. д. с. — это совокупность трех э. д. с., имеющих одинаковую частоту и амплитуду, сдвинутых по фазе относительно друг друга на углы 120°.

Трехфазные симметричные цепи

Признаком нессимметрии трехфазной системы э. д. с. является неравенство амплитуд или неравенство углов сдвига фаз между каждой парой э. д. с.
На рис. 20.1 обмотки показаны в начальном положении (t = 0). При вращении ротора против часовой стрелки уравнения э. д. с. можно записать в следующем виде:

Трехфазные симметричные цепи

Рис. 20.2. Графики и векторная диаграмма симметричной системы э. д. с.

Несвязанная трехфазная система электрических цепей

На схемах замещения обмотки трехфазного генератора обозначают, как показано на рис. 20.3, а, и условно принимают направление э. д .с. от конца к началу обмотки положительным.

Трехфазные симметричные цепи

Если каждую обмотку трехфазного генератора соединить со своим приемником, образуются три независимые цепи, каждая со своим током. Одна такая цепь с ее элементами (обмотка генератора, приемник, соединительные провода) в практике называется фазой. Термин «фаза» употреблен в своем подлинном значении, которое остается в силе и для трехфазных цепей.
В несвязанной трехфазной системе генератор с приемником энергии соединяется шестью проводами. Большое число соединительных проводов — основной недостаток несвязанных систем, которые поэтому и не применяются. Сокращение числа соединительных проводов достигается в связанных системах, где обмотки генератора, как и отдельные фазы приемника, электрически связаны между собой и образуют трехфазные цепи.

Рис. 20.3. Несвязанная трехфазная система электрических цепей

Для этой цели выдающимся русским ученым М. О. Доливо-Добровольским (1862—1919) предложены две схемы соединения: звездой и треугольником, которые применяются и в настоящее время.

Трехфазная цепь называется симметричной, если комплексы сопротивлений всех ее фаз одинаковы. Когда в такой цепи действует симметричная система э. д. с., то токи в фазах равны по величине и сдвинуты по фазе на угол 120°, т. е. получается симметричная трехфазная система токов (рис. 20.3, б).

Нужно отметить, что приемник электрической энергии (электродвигатели, электролампы и т. п.) с генераторами, установленными на электростанциях, обычно непосредственно не связаны.

На пути электроэнергии от генератора к приемникам установлены трансформаторы, с помощью которых в электрической сети неоднократно изменяется напряжение. Для указанных приемников источником электрической энергии чаще всего служат трехфазные трансформаторы, которые по отношению к генераторам сами являются приемниками энергии. Поэтому далее все рассуждения будем относить к -трехфазному источнику, подразумевая при этом генератор или трансформатор.

Соединение звездой при симметричной нагрузке

Трехфазные симметричные цепи

На рис. 20.4 показана связанная система при соединении фаз источника энергии и приемника звездой. Такую систему легко получить из несвязанной системы.

Рис. 20.4. Связанные трехфазные системы электрических цепей при соединении звездой

Концы обмоток источника X, Y, Z соединяются в общую точку N, называемую нулевой точкой или нейтралью. Провода, соединяющие начала А, В и С обмоток источника с приемником (линейные провода), сохраняются; три провода, присоединенные к концам обмоток, заменяются одним. Благодаря этому в приемнике также образуется нулевая точка N’ (нейтраль). Нулевые точки источника энергии и приемника могут быть связаны проводом, который называется нулевым или нейтральным (рис. 20.4, а). В этом случае получается связанная четырехпроводная трехфазная система электрических цепей.
Далее будет показано, что в симметричных трехфазных цепях можно отказаться от нулевого провода, так как ток в нем равен нулю. В этом случае связь между источником и приемником, соединенными звездой, можно осуществлять по трехпроводной схеме (рис. 20.4, б).

Фазные напряжения

Разность потенциалов между линейными зажимами и нейтралью называется фазным напряжением (Трехфазные симметричные цепи, Трехфазные симметричные цепи, Трехфазные симметричные цепи).

Трехфазные симметричные цепи

Фазные напряжения источника есть напряжения между началами и концами фаз, они отличаются от э. д. с. на величину падения напряжения в обмотках. Если сопротивлением обмоток можно пренебречь, то фазные напряжения источника равны соответствующим э. д. с. В симметричной системе они изображаются, так же как и э. д. с., тремя равными по величине векторами, сдвинутыми по фазе на 120° (рис. 20.5, а).

Рис. 20.5. Векторные диаграммы напряжений при соединении обмоток источника звездой

В четырехпроводной и симметричной трехпроводной цепях фазные напряжения в приемнике меньше, чем в источнике, на величину падения напряжения в соединительных проводах. Если сопротивлением проводов можно пренебречь, то фазные напряжения в приемнике считаются такими же, как в источнике.

Линейные напряжения

Разность потенциалов между каждой парой линейных проводов называется линейным напряжением (Трехфазные симметричные цепи, Трехфазные симметричные цепи, Трехфазные симметричные цепи).

Если принять потенциал нулевой точки N источника энергии равным нулю, то потенциалы его линейных зажимов:
Трехфазные симметричные цепи Трехфазные симметричные цепиТрехфазные симметричные цепи
Линейные напряжения:
Трехфазные симметричные цепи
Трехфазные симметричные цепи
Трехфазные симметричные цепи
Переходя к действующим величинам, напишем выражения в комплексной форме:
Трехфазные симметричные цепи
Потенциалы линейных зажимов (или линейных проводов) в каждое мгновение отличаются друг от друга из-за наличия сдвига фаз между фазными напряжениями. Следовательно, линейные напряжения не равны нулю. Их можно определить аналитически по уравнениям (20.3) или графически с помощью векторной диаграммы рис. 20.5.

Из векторной диаграммы видно, что при симметричной системе фазных напряжений система линейных напряжений тоже симметрична: Трехфазные симметричные цепи Трехфазные симметричные цепи Трехфазные симметричные цепиравны по величине и сдвинуты относительно друг друга на 120°. Вместе с тем при прямой последовательности фаз звезда векторов линейных напряжений опережает на 30° звезду векторов фазных напряжений.

Векторную диаграмму удобно выполнить топографической, тогда каждой точке цепи соответствует определенная точка на диаграмме (рис. 20.5, б). Вектор, проведенный между двумя точками топографической диаграммы, выражает по величине и фазе напряжение между одноименными точками цепи.
Действующая величина линейных напряжений легко определяется по векторной диаграмме из треугольника, образованного векторами двух фазных и одного линейного напряжения, например ANB:
Трехфазные симметричные цепи
Обозначая все фазные напряжения Uф, а линейные напряжения Uл получим общее соотношение между линейными и фазными напряжениями в симметричной системе
Трехфазные симметричные цепи

Фазные и линейные токи

В связанной системе (см. рис. 20.4, а), так же как и в несвязанной, каждая фаза представляет собой замкнутую цепь.

В соответствии с положительным направлением э. д. с. в обмотках источника положительное направление токов в линейных проводах — от источника к приемнику, а в нулевом проводе — от приемника к источнику.

В трехфазных цепях различают фазные и линейные токи.
Токи в фазах источника и приемника называют фазными (на рис. 20.4 i’A, i’B, i’С; общее обозначение iф). Токи в линейных проводах называют линейными (iA, iB, iС; общее обозначение iл).

Трехфазные симметричные цепи

При соединении звездой в точках перехода из источника в линию и из линии в приемник нет разветвлений, поэтому фазные и линейные токи одинаковы между собой в каждой фазе:

Задача 20.3.

В каждой фазе трехфазного генератора наводится э. д. с. Е = 127 В. Начертить схему, построить векторную диаграмму и определить линейные напряжения при холостом ходе, если в общую точку соединены зажимы: а) X, Y, Z; б) X, Y, C; в) X, B, Z; г) X, B, C; д)A, B, C. Буквами A, B, C обозначены начала, а X, Y, Z — концы обмоток.

Трехфазные симметричные цепи

Рис. 20.6. К задаче 20.3

Трехфазные симметричные цепи

Рис. 20.7. К задаче 20.3

Трехфазные симметричные цепи

Решение. Схема генератора и векторная диаграмма при соединении в общую точку зажимов X, Y, Z показаны на рис. 20.6. Из векторной диаграммы видно, что линейные напряжения одинаковы:

При соединении в общую точку зажимов X, Y, C (рис. 20.7) фаза С включена началом в нулевой точке, поэтому вектор фазного напряжения этой фазы изображен на векторной диаграмме в положении, повернутом на 180° к нормальному, и обозначен UZ. Из векторной диаграммы следует: UAB = 220 В; UBZ = 127; UZA = 127 В.

Соединение треугольником при симметричной нагрузке

При соединении треугольником из трех обмоток источника образуется замкнутый на себя контур (рис. 20.8, а). Точно так же замкнутый контур создается из трех фаз приемника.

Общие точки двух фаз источника и двух фаз приемника соединяются между собой линейными проводами. Так образуется связанная трехфазная трехпроводная система, в которой каждая обмотка источника соединена с соответствующей фазой приемника парой линейных проводов, каждый из которых обеспечивает такую связь в двух смежных фазах.

Трехфазные симметричные цепи

Рис. 20.8. Связанная трехфазная система электрических цепей при соединении треугольником

Фазные и линейные напряжения

Соединение нескольких обмоток источника в замкнутый контур возможно лишь в том случае, если сумма всех э. д. с. этого контура равна нулю.
Это требование выполняется при таком порядке соединения, когда конец предыдущей обмотки соединяется с началом следующей. Например, конец X фазы А соединен с началом фазы В в общей точке ХВ, конец Y фазы В соединен с началом фазы С в общей точке YС и конец Z фазы С соединен с началом фазы А в общей точке ZА.

Трехфазные симметричные цепи

Симметричная система э. д. с., действующих в контуре, имеет сумму, равную нулю (рис. 20.8, б):

В этом случае при холостом ходе источника ток в его обмотках отсутствует.
При несимметрии системы э. д. с. их сумма не равна нулю, поэтому уже при холостом ходе в обмотках источника образуется ток, который может быть большим даже при малой несимметрии, так как сопротивление обмоток незначительно.

Трехфазные симметричные цепи

Рис. 20.9. Неправильное соединение треугольником обмоток источника

Трехфазные симметричные цепи

Рис. 20.10. Векторные диаграммы напряжений при соединении обмоток источника треугольником.

Трехфазные симметричные цепи

При неправильном включении обмоток, когда две соседние фазы соединены началами или концами (рис. 20.9), сумма э. д. с. в контуре равна удвоенной величине э. д. с. фазы.
Из схемы соединения треугольником видно, что фазные и линейные напряжения совпадают, так как конец одной фазы соединен с началом другой:

Векторную диаграмму напряжений можно построить в виде звезды или в виде замкнутого треугольника векторов (рис. 20.10). В последнем случае диаграмма является топографической.

Фазные и линейные токи

Каждая фаза приемника присоединении треугольником находится под линейным напряжением. Этим обусловлено наличие в приемнике фазных токов iAB, iBC, iСA, положительное направление которых на схеме рис. 20.8 выбрано соответственно положительному направлению э. д. с. в фазах источника.

Точки А’, В’, С’ приемника, так же как и точки А, В, С источника, являются электрическими узлами, поэтому фазные токи отличаются от линейных iA, iB, iС. Для узловых точек А, В, С можно написать уравнения в комплексной форме по первому закону Кирхгофа:
Трехфазные симметричные цепи
При симметричной нагрузке токи во всех фазах одинаковы. Звезда векторов линейных токов сдвинута относительно звезды фазных токов на 30° против вращения векторов, если последовательность фаз — прямая (рис. 20.11, а).
Действующая величина линейных токов определяется по векторной диаграмме из равнобедренного треугольника, образованного векторами двух фазных и одного линейного токов, например из треугольника ANC (рис. 20.11, б):
Трехфазные симметричные цепи

Трехфазные симметричные цепи

Рис. 20.11. Векторные диаграммы токов при соединении приемников треугольником

Трехфазные симметричные цепи

Обозначив все фазные токи Iф, а линейные токи Iл, получим общее соотношение между линейными и фазными токами в симметричной цепи:

Расчет симметричных трехфазных цепей

Формулы (20.4) и (20.8), как уже отмечено, справедливы только для симметричных систем напряжений и токов.

Трехфазные электродвигатели имеют три одинаковые фазы обмотки, и создаваемая ими электрическая нагрузка симметрична. Нессимметрию создают однофазные приемники, например лампы электрического освещения и другие бытовые электроприемники. Если при проектировании осветительную нагрузку разделить между фазами поровну, то в процессе эксплуатации нагрузка, как правило, будет несимметричной из-за неодновременности включения ламп.

При большом числе однофазных приемников нессимметрия нагрузки, связанная с неодновременностью их включения, невелика, поэтому линии с напряжением 3; 6 кВ и выше, предназначенные для электроснабжения промышленных предприятий или определенного района (фидерные линии), выполняют трехпроводными независимо от схемы соединения групп приемников (звездой или треугольником).

Цель расчета состоит в определении токов в фазах приемника и проводах линии, а также мощности приемника в целом и в каждой фазе. Может быть поставлена и обратная задача.

Соединение звездой

Трехфазные симметричные цепи

В симметричной цепи комплексы сопротивлений фаз приемника одинаковы и между зажимами приемника действует симметричная система линейных напряжений при любой схеме соединения источника (звездой или треугольником).

Поэтому на расчетной схеме источник (генератор или трансформатор) не показывают и говорят, что приемник включен в трехфазную сеть (см. рис. 21.3, о). (20.8)
В симметричной цепи достаточно провести расчет одной фазы, так как токи и мощности во всех фазах одинаковы.
При известном линейном напряжении Uл фазное напряжение
Трехфазные симметричные цепи
Фазный ток, равный линейному,
Трехфазные симметричные цепи

Соединение треугольником

При соединении треугольником фазное напряжение Трехфазные симметричные цепи
Ток в фазе
Трехфазные симметричные цепи
Линейный ток
Трехфазные симметричные цепи

Определение мощности

Мощность в каждой фазе трехфазной цепи определяется теми же формулами, которые применялись при расчете однофазных цепей.
При симметричной нагрузке фазные напряжения, токи и углы сдвига фаз между ними в каждой фазе одинаковы, поэтому при определении мощности цепи можно написать общие выражения:
Трехфазные симметричные цепи
Учитывая, что при соединении звездой
Трехфазные симметричные цепиТрехфазные симметричные цепи
а при соединении треугольником
Трехфазные симметричные цепиТрехфазные симметричные цепи
мощности можно определять через линейные величины напряжений и токов:
Трехфазные симметричные цепи
При решении задач символическим методом мощность определяется, так же как и в однофазных цепях, произведением соответствующих комплекса напряжения и сопряженного комплекса тока.

Задача 20.9.

К трехфазному трансформатору с линейным напряжением на вторичной обмотке 380 В включены звездой электрические лампы мощностью 40 Вт каждая (по 100 шт. в фазе) и трехфазный двигатель мощностью 10 кВт, имеющий к. п. д. 85%, Трехфазные симметричные цепи
Пренебрегая сопротивлением проводов, определить токи в линии.
Решение. Заданная нагрузка симметрична, так как в каждой фазе включены одинаковые по величине и характеру приемники: осветительная нагрузка Трехфазные симметричные цепии одна фаза двигателя.

Трехфазные симметричные цепи

Рис. 20.12. К задаче 20.9

Расчет можно вести на одну фазу:
Трехфазные симметричные цепи
Ток осветительной нагрузки
Трехфазные симметричные цепи
Ток в фазе двигателя
Трехфазные симметричные цепи
Для нахождения тока в линии нужно сложить токи ламп и двигателя. Эти токи по фазе не совпадают, поэтому разложим их на активные и реактивные составляющие и сложим одноименные составляющие.
Ток в лампах совпадает по фазе с напряжением, поэтому реактивный ток ламп I = 0, активный ток I = I0 = 18,2 А.
Активный ток в фазе двигателя
Трехфазные симметричные цепи
Реактивный ток в фазе двигателя
Трехфазные симметричные цепи
Общий активный ток. в линии
Трехфазные симметричные цепи
Общий реактивный ток в линии
Трехфазные симметричные цепи
Ток в линии
Трехфазные симметричные цепи

Задача 20.12.

Приемник электрической энергии, соединенный треугольником, имеет активное сопротивление R = 12 Ом и емкость С = 199 мкФ. Определить: токи в фазах приемника и в линии, с помощью которой приемник подключен к сети с линейным напряжением U = 220 В и частотой f = 50 Гц; активную, реактивную и полную мощности приемника.
Решение.
Емкостное сопротивление фазы приемника
Трехфазные симметричные цепи
Полное сопротивление фазы приемника
Трехфазные симметричные цепи
Фазное напряжение приемника
Трехфазные симметричные цепи
Фазный ток
Трехфазные симметричные цепи
Линейный ток
Трехфазные симметричные цепи
Мощность приемника:
активная
Трехфазные симметричные цепи
реактивная
Трехфазные симметричные цепи
полная
Трехфазные симметричные цепи

Симметричный режим работы трехфазной цепи

Расчет трехфазной цепи, так же как и расчет всякой сложной цепи, ведется обычно в комплексной форме. Ввиду того что фазные э. д. с. генератора сдвинуты друг относительно друга на 120°, для краткости математической записи применяется фазовый оператор — комплексная величина

Трехфазные симметричные цепи

Умножение вектора на оператор а означает поворот вектора на 120° в положительном направлении (против хода часовой стрелки).

Соответственно умножение вектора на множитель а2 означает поворот вектора на, 240° в положительном направлении или, что то же, поворот его на 120° в отрицательном направлении.

Трехфазные симметричные цепи

Трехфазные симметричные цепи

Если э. д. с. фазы А равна то э. д. с. фаз В и С равны соответственно:

Трехфазные симметричные цепи

В простейшем случае симметричного режима работы трехфазной цепи, когда генератор и нагрузка соединены звездой (рис. 12-9, а), векторная диаграмма э. д. с. и токов имеет вид, показанный на рис. 12-9, б.

Ток в каждой фазе отстает от э. д. с. той же фазы на

Трехфазные симметричные цепи

угол где r и х — активное и реактивное сопротивления фаз.

* Кроме того, применяется понятие «фазное напряжение в данном сечении» трехфазной цепи по отношению к какой-либо точке, принимаемой за нуль, например земле, нулевой точке генератора или искусственной нулевой точке.

Ток в фазе А находят так же, как в однофазной цепи, потому что нейтральные точки генератора и нагрузки в симметричном режиме могут быть соединены как имеющие одинаковые потенциалы:

Трехфазные симметричные цепи
Соответственно токи в фазах В и С через ток Трехфазные симметричные цепи

Трехфазные симметричные цепи

Наличие нейтрального провода «не вносит при симметричном режиме никаких изменений, так как сумма токов трех фаз равна нулю и ток в нем отсутствует:

Трехфазные симметричные цепи

Трехфазные симметричные цепи

Таким образом, при симметричном режиме работы трехфазной цепи задача сводится к расчету одной из фаз

аналогично расчету однофазной цепи. При этом сопротивление обратного (нейтрального) провода не учитывается, так как ток в нем и соответственно падение напряжения на нем отсутствуют.

По мере удаления от генератора фазные напряжения, определяемые падениями напряжения до нейтральной точки нагрузки, изменяются по модулю (обычно убывают) и по фазе. Линейные напряжения определяются как разности соответствующих фазных напряжений, например: Трехфазные симметричные цепи Трехфазные симметричные цепиВ любом месте трехфазной линии при симметричном режиме соблюдается следующее соотношение между модулями линейных и фазных напряжений:

Трехфазные симметричные цепи

Трехфазные симметричные цепи

т. e. Трехфазные симметричные цепиопережает по фазе Трехфазные симметричные цепиа на 30°, причем модуль Трехфазные симметричные цепираз превышает Трехфазные симметричные цепи

Трехфазные симметричные цепи

В случае соединения треугольником линейные токи определяются в соответствии с первым законом Кирхгофа как разности фазных токов и при симметричном режиме соблюдается соотношение

Соединение фаз генератора или нагрузки треугольником должно быть для расчета заменено эквивалентным соединением фаз звездой; вследствие этого расчет трехфазной цепи с соединением фаз треугольником приводится в конечном итоге к расчету эквивалентной трехфазной цепи с соединением фаз звездой.

Между сопротивлениями сторон треугольника Трехфазные симметричные цепии лучей звезды Трехфазные симметричные цепиимеет место соотношение Трехфазные симметричные цепивытекающее из формул преобразования треугольника сопротивлений в эквивалентную звезду. Это соотношение справедливо как для сопротивлений симметричной трехфазной нагрузки, так и для сопротивлений симметричного .трехфазного • генератора. При этом фазные э. д. с. эквивалентного генератора, соединенного звездой, берутся в Трехфазные симметричные цепираз меньшими фазных э. д. с. заданного генератора, соединенного треугольником (кроме того, они должны быть сдвинуты на угол 30°). Это легко усмотреть из векторной потенциальной диаграммы напряжений генератора.

Активная мощность симметричной трехфазной нагрузки равна:

Трехфазные симметричные цепи

Ввиду того что при соединении нагрузки звездой Трехфазные симметричные цепиа при соединении нагрузки треугольникомТрехфазные симметричные цепиактивная мощность трехфазной цепи независимо от вида соединения выражается через линейные напряжения и ток следующим образом:

Трехфазные симметричные цепи

Трехфазные симметричные цепи

здесь — угол сдвига фазного тока относительно одноименного фазного напряжения.

Аналогичным образом для реактивной и полной мощностей симметричной трехфазной нагрузки имеем:

Трехфазные симметричные цепи

Трехфазные симметричные цепи

Приведенные выражения не означают, что при пересоединении нагрузки со звезды на треугольник (или наоборот) активная и реактивная мощности не изменяются. При пересоединении нагрузки со звезды на треугольник при заданном линейном напряжении фазные токи возрастут в раз, в линейный ток — в 3 раза и поэтому мощность возрастет в 3 раза.

Трехфазные симметричные цепи

Если нейтральная точка симметричной трехфазной нагрузки выведена, то измерение активной мощности может быть осуществлено одним ваттметром, включенным по схеме рис. 12-10, а (одноименные или так называемые генераторные выводы последовательной и параллельной цепей ваттметра отмечены на рис. 12-10, а звездочками). Утроенное показание ваттметра равно суммарной активной мощности трех фаз.

Если нейтральная точка не выведена или нагрузка соединена треугольником, то можно воспользоваться схемой рис. 12-10, б, где параллельная цепь ваттметра и два добавочных активных сопротивления Трехфазные симметричные цепиравные по величине сопротивлению параллельной цепи ваттметра, образуют искусственную нейтральную точку Трехфазные симметричные цепи

* Следует заметить, что здесь применим только электродинамический или ферродинамический ваттметр, сопротивление параллельной цепи которого является чисто активным. Индукционный ваттметр неприменим по той причине, что сопротивление параллельной цепи такого ваттметра имеет реактивное сопротивление; для создания искусственной нейтральной точки в этом случае потребовались бы реактивные добавочные сопротивления.

Для получения суммарной мощности, как и в предыдущем случае, показание ваттметра утраивается.

Трехфазные симметричные цепи

На рис. 12-11 показан способ измерения реактивной мощности в симметричной трехфазной цепи при помощи одного ваттметра: последовательная цепь ваттметра включена в фазу А, а параллельная — между фазами В и С, причем генераторные выводы ваттметра присоединены к фазам А и В.

Показание ваттметра в этом случае равно:

Трехфазные симметричные цепи

Трехфазные симметричные цепи

Для получения суммарной реактивной мощности показание умножается на

Разделив активную мощность на полную мощность, получим:

Трехфазные симметричные цепи

.
Пример 12-1. Определить ток в генераторе при симметричном режиме работы трехфазной цепи, представленной на рис, 12-12, а.

Трехфазные симметричные цепи

Сопротивления Трехфазные симметричные цеписоединенные треугольником, заменяются эквивалентной звездой из сопротивлений Трехфазные симметричные цепи

При симметричном режиме нейтральные точки генератора и нагрузки, как было указано выше, могут быть объединены. Тогда режим работы каждой фазы, например фазы А, может быть рассмотрен в однофазной расчетной схеме (рис, 12-12, б),

Результирующее сопротивление цепи одной фазы равно:

Трехфазные симметричные цепи
Искомый ток в фазе АТрехфазные симметричные цепи

  1. Электротехника
  2. Основы теории цепей
  • Трехфазные несимметричные цепи
  • Вращающееся магнитное поле
  • Электрические цепи синусоидального тока
  • Электрические цепи несинусоидального тока
  • Принцип действия асинхронного и синхронного двигателей
  • Метод симметричных составляющих
  • Цепи периодического несинусоидального тока
  • Резонанс токов

При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org

Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи

Сайт пишется, поддерживается и управляется коллективом преподавателей

Telegram и логотип telegram являются товарными знаками корпорации Telegram FZ-LLC.

Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.

Что такое фазное и линейное напряжение?

Уровень напряжения является потенциальной характеристикой качества снабжения электрической энергией потребителей. Приборы длительно эксплуатируются при условии работы в допустимом диапазоне мощности сети. Для определения параметров функционирования и подключения различают фазное и линейное напряжение в трехфазных цепях. На выходе от производителя напряжение изменяется для транспортировки, а после обратных преобразовательных этапов приобретает значение, применяемые потребителями.

Что такое фаза?

Фаза является значением тригонометрической функции, например определяющей вид или описывающей волновое или колебательное движение. Величина тождественна углу или аргументу периодической функции. Зависимость целой фазы от координат и времени не всегда бывает линейной и гармонической. Конец проводника, по которому ток поступает в цепь, или зажим представляет собой начало фазы. Изменение вольтажа цепи через временной промежуток является проекцией лучевого вектора на координатную ось.

Что такое фазное и линейное напряжение?

Цепь представляет собой стандартные элементы — энергетический генератор, цепь передачи, приемник. Для понятия, что такое фазное, линейное напряжение, их взаимодействие требуется определение фазы. Положение фазы действует только для магистралей переменного тока. Понятие определятся в виде уравнения сектора векторного вращения с фиксацией одного конца в исходе координат.

Электрические линии отличаются числом фаз: одно-, двух-, трех- и многофазная.

В России популярна трехфазная сеть для питания потребителей, которые представлены бытовыми строениями или промышленными объектами. Подключение отличается преимуществами по сравнению с электроснабжающей однофазной цепью:

  • экономичность из-за выгодного применения материалов;
  • возможность транспортировки большого объема электричества;
  • включение в рабочую цепь электрогенераторов и двигателей высокой мощности;
  • создание разных показателей напряжения в зависимости от варианта включения потребляющей нагрузки в электрическую линию.

Работа в трехфазной цепи зависит от взаимного соотношения ее компонентов. Показатели напряжения зависят от фазы (угла наклона векторного луча к координатной плоскости оси). Вольтаж определяется по земельному потенциалу, который равен нулю. Из-за этого кабель с присутствующим вольтажом именуют фазным, а заземляющий провод — нулевым. Угол фазы единичного вектора не имеет особой значимости, т. к. в линии он делает полный оборот на 360° за 1/50 часть секунды. Во внимание берется междуфазный угол относительности 2 векторов.

В сети с применением реактивных деталей угол берется между векторными показателями электротока и вольтажа, он носит название сдвига фазы. Если значения подключенных нагрузок со временем не изменяются, то величина сдвига будет всегда постоянной. Неизменность показателя используется в расчете электрической линии и анализа работы.

Читайте также: Как правильно сделать контур заземления в частном доме — расчёт схемы и монтаж

Что такое фазное и линейное напряжение?

При намотке на катушке множества оборотов провода номинальное напряжение увеличивается пропорционально числу витков. Явление привело к разработке генераторов, обеспечивающих потребителей электричеством. Для эффекта от применения магнитного поля иногда устанавливают несколько бобин. Статорное магнитное поле за поворот ротора пересекают одновременно 3 катушки, что ведет к увеличению мощности генератора. Это позволяет запитать сразу 3 пользователей.

Что такое фазное напряжение?

В трехфазных магистралях большинства государств размер напряжения равен 220 вольт. Фазный вольтаж измеряется в промежутке между фазами в начале и конце провода. Практически это величина посередине нулевого проводника и напряженного кабеля. При подсоединении по типу звезды значения линейных токов и фазного электричества не отличаются.

Фазное напряжение — это напряжение между нулевым проводом и одним из фазных (220 В).

Симметричная система исключает присутствие нейтральной жилы, при несимметричном способе нулевой кабель поддерживает соразмерность с источником. Во втором варианте часто в цепь включаются приборы освещения, и требуется независимое функционирование 3 рабочих кабелей, тогда выводы приемника объединяются по типу треугольника.

Межфазное напряжение используется в многоквартирном секторе с магазинами или офисами на первых этажах. Так можно запитать торговые площадки силовыми кабелями в целях обеспечения 380 вольт. В высотках подключение обеспечивает лифты, эскалаторы, промышленные холодильники. Разводка выполняется относительно просто, учитывая, что в жилье идет ноль и жила под нагрузкой, а на общественные помещения ответвляются 3 рабочих кабеля и нейтральная жила.

Отличие трехфазного тока от однофазного состоит в том, что показатель сети — это линейная мощность, а параметры, имеющие отношение к нагрузке, представляют собой фазный вольтаж. От станции к потребителю проводится линия, включающая рабочие жилы и нулевой провод. Для снижения утечек при прохождении по цепи в начале и конце сети ставятся преобразователи, но картина от этого не изменяется. Нейтральный провод фиксирует и транспортирует пользователю заявленный потенциал, полученный на выходе. Мощность в проводе под нагрузкой создается, исходя из значения в нейтрали.

Величина напряжения фазы выявляется и возникает относительно центра подключения обмоток — нейтрального провода. В симметричной относительно нагрузок схеме трехфазной цепи через ноль передается ток с минимальными показателями. На выводе такой линии провода под нагрузкой окрашиваются в общепринятые стандартные цвета:

  • жила L1 — коричневый;
  • провод L2 — черный;
  • кабель L3 — серый;
  • нулевая оплетка N — синий;
  • желтый или зеленый — предусмотрен для заземления.

Читайте также: Как рассчитать стоимость для оплаты электроэнергии по счетчику и по нормативу

Такие мощные линии проводятся к крупным потребителям — целым микрорайонам, заводам. Для небольших приемников монтируется однофазная линия, включающая нагруженный провод и дополнительный ноль. При равномерном распределении мощности в однофазных ответвлениях появляется равновесие в трехфазной конструкции. Для прокладки составляющих ветвей принимается напряжение фазы одной жилы относительно нейтрали.

Что такое линейное напряжение?

В трехфазной магистрали можно выделить дополнительное напряжение, при подсоединении перемычку между 2 нагруженными кабелями. Значение его выше, т. к. является проекцией на плоскость координат 2 векторов, составляющих угол 120° между собой. Довесок к значению фазового напряжения составляет 73% или рассчитывается как √3-1. Общепринятое линейное напряжение в электролинии всегда составляет 380 вольт.

Линейное напряжение — это напряжение между двумя фазными проводами (380 В).

Напряжение вычисляется в промежутке фаз или между их выводами. При монтаже схемы появляются трудности, заключающиеся в неточности при расчете проводника, что иногда вызывает аварию. Схемы подключения различаются вариантами объединения нагруженных жил и источника электричества. Преимущества однофазной сети:

  • безопасность эксплуатации оборудования, т. к. опасность в плане поражения исходит от 1 кабеля;
  • схема применяется для осуществления эффективной разводки, выбора принципа эксплуатации, расчета параметров и выполнения измерений.

Расчеты в системе простые, выполняются с учетом стандартных физических формул. Для замеров показателей цепи используется мультиметр. Характеристики подключения к фазе определяются с помощью специальных вольтметров, токовых датчиков.

Линейное напряжение возникает при прохождении электрического тока в подводнике при объединении источника энергии и приемника. При понижении мощности на участке между выходом генератора и потребителем параметры фазного вольтажа также изменяются. Зная линейные показатели, нетрудно высчитать значение фазного напряжения.

  • при разводке проводов профессиональных устройств не требуется, достаточно отвертки с встроенным индикатором;
  • при соединении проводов не используется ноль — из-за нейтральной жилы нет опасности поражения током;
  • схема применима для постоянных сетей и линий с переменным током;
  • однофазное соединение выполняется в трехфазной линии, но не наоборот.

Использование линейного и фазного напряжения

Электрические цепи бывают постоянного и переменного тока. Чаще для соединения источника электричества с потребителем используются трехфазные цепи переменного тока. Такой тип тока имеет ряд преимуществ:

  • ниже затраты на передачу энергии;
  • возможность создания электродвижущей силы для функционирования асинхронного оборудования (лифтов, подъемников);
  • можно одновременно использовать линейное и фазное напряжение.

Читайте также: Типовые схемы подключения АВР — определение, принцип работы

Для подключения генераторов в магистраль используют принцип треугольника или звезды. В первом варианте обмотки подсоединяются последовательно, начало фазы и конец другой фазы соединены. Схема позволяет повысить напряжение в несколько раз. Во втором случае начальные участки обмоток объединяются в общую точку, повышение мощности не происходит.

Классификация электросети по составу рабочих элементов:

  • активная;
  • пассивная;
  • линейная;
  • нелинейная.

Используя 4 кабеля в магистрали, можно, варьируя подключения, использовать одновременно линейные и фазные токи, что расширяет область применения. Трехфазные магистрали считаются универсальными, т. к. подключается большая нагрузка, например, к сети в 10 вольт. Если подсоединить к линии соответствующий приемник, например, трехфазный электрический двигатель, то его механическая мощность достигнет величин, в 3 раза превышающих показатели однофазного агрегата.

Что такое фазное и линейное напряжение?

В многоквартирном секторе основными приемниками являются бытовые устройства и приборы, питающиеся от сети 220 В. Требуется равномерное разделение между проводами с нагрузкой, поэтому квартиры подключаются по шахматной схеме. В частном домостроении принята концепция рассредоточения нагрузки на каждый кабель от всех домашних приборов и оборудования. Учитываются проводниковые токи, передающиеся во время включения максимального числа устройств.

Включая в сеть с 1 или 3 фазами одинаковые электрические двигатели, можно получить разницу в мощности его работы. Если дополнительно выбрать эффективный способ подключения, то показатели на выходе повысятся втрое. Учитывая соотношение между фазными и линейными токами, следует рассчитывать обмотки на повышенные значения. Относительный показатель разницы зарядов между нагруженными проводами всегда больше аналогичного значения между фазой и нулем. Основное отличие линейных характеристик напряжения и мощности фазы состоит в параметрах получаемого вольтажа.

Классическим примером применения обоих видов напряжения является соединение при установке трехфазного генератора. Используются вторичные обмотки и первичные обвивки, соединяемые по одной из схем. Связь линейного напряжения и значения фазы при соединении по типу треугольника помогает выравнивать ток, и обе мощности становятся почти одинаковыми. Аналогично подсоединяются двигатели, преобразователи и трансформаторы.

Вариант звезды предполагает подсоединение контактов всех обмоток к одной цепи с применением перемычек. В проводниках проходит ток с показателями этой сети, а напряжение передается на активные выводы и контакты.

Как перевести амперы в киловаты?

Что такое шаговое напряжение и как покинуть опасную зону

Как перевести амперы в ватты и обратно?

Как самостоятельно подключить электроплиту?

Технические характеристики и область применения кабеля КГ

Провод ПВ 3: Технические характеристики, область применения