Переменный электрический ток | теория по физике ? колебания и волны
Свободные электромагнитные колебания в контуре быстро затухают. Поэтому они практически не используются. Наиболее важное практическое значение имеют незатухающие вынужденные колебания. Определение Переменный ток— вынужденные электромагнитные колебания. Ток в осветительной сети квартиры, ток, применяемый на заводах и фабриках, представляет собой переменный ток. В нем сила тока и напряжение изменяются со временем по гармоническому закону. Колебания легко обнаружить с помощью осциллографа. Если на вертикально отклоняющие пластины осциллографа подать напряжение от сети, то временная развертка на экране будет представлять сбой синусоиду: Зная скорость движения луча в горизонтальном направлении (она определяется частотой пилообразного напряжения), можно определить частоту колебаний. Определение Частота переменного тока— это количество колебаний за 1 с. Стандартная частота переменного промышленного тока составляет 50 Гц. Это значит, что на протяжении 1 секунды ток 50 раз течет в одну сторону и 50 раз — в другую. Частота 50 Гц принята для промышленного тока во многих странах мира. В США принята частота 60 Гц. Если напряжение на концах цепи меняется по гармоническому закону, то напряженность электрического поля внутри проводника будет также меняться гармонически. Эти гармонические изменения напряженности поля вызовут гармонические колебания скорости упорядоченного движения заряженных частиц, и, следовательно, гармонические колебания силы тока. Внимание! При изменении напряжения на концах цепи электрическое поле не меняется мгновенно во всей цепи. Изменение поля происходит с большой скоростью, но она не бесконечно большая. Она равна скорости света (3∙10 8 м/с). Переменное напряжение в гнездах розетки осветительной сети создается генераторами на электростанциях. Проволочную рамку, вращающуюся в постоянном однородном магнитном поле, можно рассматривать как простейшую модель генератора переменного тока (см. рисунок ниже). Поток магнитной индукции Ф, пронизывающий проволочную рамку площадью S, пропорционален косинусу угла α между нормалью к рамке и вектором магнитной индукции. Численно магнитный поток определяется формулой: Φ = B S cos . α При равномерном вращении рамки угол α увеличивается пропорционально времени: α = 2 π n t где n — частота вращения. Поэтому поток магнитной индукции меняется гармонически: Φ = B S cos . 2 π n t Здесь множитель 2 π n представляет собой число колебаний магнитного потока за 2 π секунд. Это не что иное, как циклическая частота колебаний: ω = 2 π n Следовательно: Φ = B S cos . ω t Согласно закону электромагнитной индукции ЭДС индукции в рамке равна взятой со знаком «минус» скорости изменения потока магнитной индукции, т.е. производной потока магнитной индукции по времени: e = − Φ ´ = − B S ( cos . ω t ) ´ = B S ω sin . ω t = ε m a x sin . ω t ε m a x — амплитуда ЭДС индукции, равная: ε m a x = B S ω Напряжение в цепи переменного тока может меняться по закону синуса или по закону косинуса: u = U m a x sin . ω t u = U m a x cos . ω t где U m a x — амплитуда напряжения (максимальное по модулю значение напряжения). Сила тока меняется с той частотой, что и напряжение — ω . Но колебания тока необязательно должны совпадать по фазе с колебаниями напряжения. Поэтому в общем случае сила тока i в любой момент времени определяется по формуле: i = I m a x sin . ( ω t + φ с ) где I m a x — амплитуда силы тока (максимальное по модулю значение силы тока), φ с — разность (сдвиг) фаз между колебаниями силы тока и напряжения. Пример №1. Найти напряжение в цепи переменного тока в момент времени t = π, если циклическая частота электромагнитных колебаний равна 300,25 Гц, а амплитуда напряжения составляет 12В. Считать, что напряжения меняется по закону косинуса. u = U m a x cos . ω t = 12 cos . 300 , 25 π = 12 √ 2 2 . . ≈ 8 , 5 ( В ) .
Активное сопротивление в цепи переменного тока
Пусть цепь состоит из соединительных проводов и нагрузки с малой индуктивностью и большим сопротивлением R (см. рисунок ниже). Внимание!Ранее под величиной R мы понимали электрическое сопротивление. Но правильно его называть сопротивлением активным. Дело в том, что в цепи переменного тока могут быть сопротивления иного характера. Сопротивление же R называется активным, потому что при наличии нагрузки, обладающей этим сопротивлением, цепь поглощает энергию, поступающую от генератора. Эта энергия превращается во внутреннюю энергию проводников — они нагреваются. Будем считать, что напряжение на зажимах цепи меняется по закону косинуса: u = U m a x cos . ω t Для нахождения мгновенного значения силы тока мы можем воспользоваться законом Ома, так как эта величина прямо пропорционально мгновенному значению напряжения: i = u R . . = U m a x cos . ω t R . . = I m a x cos . ω t В проводнике с активным сопротивлением колебания силы тока по фазе совпадают с колебаниями напряжения, а амплитуда силы тока определяется равенством: I m a x = U m a x R . .
Мощность в цепи с резистором
В цепи переменного тока сила тока и напряжения меняются быстро, поэтому количество выделяемой энергии меняется так же быстро. Но заметить эти изменения невозможно. Чтобы найти среднюю мощность на участке цепи за много периодов, достаточно найти среднюю мощность за один период. Определение Средняя за период мощность переменного тока— отношение суммарной энергии, поступающей в цепь за период, к этому периоду. Мощность постоянного тока определяется формулой: P = I 2 R Следовательно, мгновенная мощность в цепи переменного тока на участке с активным сопротивлением R равна: p = i 2 R Подставим в это выражение полученное ранее значение мгновенной силы переменного тока и получим: p = ( I m a x cos . ω t ) 2 R Вспомним из курса математики: cos 2 . α = 1 + cos . 2 α 2 . . Отсюда: p = I 2 m a x 2 . . R ( 1 + cos . 2 ω t ) = I 2 m a x R 2 . . + I 2 m a x R 2 . . cos . 2 ω t График зависимости мгновенной мощности от времени: На протяжении первой четверти периода, когда cos . 2 ω t > 0 , мощность в любой момент времени больше величины I 2 m a x R 2 . . . На протяжении второй четверти периода, когда cos . 2 ω t < 0 , мощность в любой момент времени меньше этой величины. Среднее за период значение cos . 2 ω t = 0 , следовательно, средняя за период мощность равна I 2 m a x R 2 . . . Средняя мощность − p равна: − p = I 2 m a x R 2 . . = − i 2 R Пример №2. Сила переменного тока в цепи меняется по закону i = I m a x cos . ω t . Определить мгновенную мощность в момент времени t = 1 с, если циклическая частота колебаний ω = 100π Гц при сопротивлении R = 10 Ом. Амплитуда силы тока равна 1 А. p = ( I m a x cos . ω t ) 2 R = 10 ( 1 · cos . ( 100 π · 1 ) 2 = 10 ( Д ж )
Действующие значения силы тока и напряжения
Из предыдущей формулы видно, что среднее значение квадрата силы тока равно половине квадрата амплитуды силы переменного тока: − i 2 = I 2 m a x 2 . . Определение Действующее значение силы переменного тока— величина, равная квадратному корню, взятому из среднего значения квадрата тока. Обозначается как I. I = √ − i 2 = I m a x √ 2 Смысл действующего значения силы переменного тока заключается в том, что оно равно силе постоянного тока, выделяющего в проводнике то же количество теплоты, что и переменный ток за это же время. Аналогично определяется действующее значение напряжения U: U = √ − u 2 = U m a x √ 2 . . Именно действующие значения силы тока и напряжения определяют мощность P переменного тока: P = I 2 R = U I Пример №3. Найти мощность переменного тока, если амплитуда силы тока равна 2 А, а сопротивление цепи равно 5 Ом. P = I 2 R I = I m a x √ 2 . . P = ( I m a x √ 2 . . ) 2 R = I 2 m a x 2 . . R = 2 2 2 . . · 5 = 10 ⎛ ⎝ Д ж ⎞ ⎠
Задание EF22720 В идеальном колебательном контуре (см. рисунок) напряжение между обкладками конденсатора меняется по закону UC = U0cos ωt, где U0 = 5 В, ω = 1000π с – 1 . Определите период колебаний напряжения на конденсаторе. Алгоритм решения
1. Записать исходные данные.
2. Записать формулу Томсона.
Прописные истины для новичков.
Как рассчитать шунт для амперметра? Почему, я намотал вторичную обмотку на 12 вольт, а блок питания у меня выдаёт 16 вольт?. Как измерить, какую мощность выдаёт усилитель низкой частоты? Такие вопросы порой часто возникают от новичков радиолюбителей. Кратко напомним им, чем нужно руководствоваться в своей практической деятельности.
Закон Ома.
Основным законом, которым руководствуются радиолюбители — является Закон Ома.. Георг Симон ОМ Georg Simon Ohm, 1787–1854 Немецкий физик. Родился в Эрлангене 16 марта в 1787 году (по другим источникам он родился в 1789-м). Окончил местный университет. Преподавал математику и естественные науки. В академических кругах его признали достаточно поздно. В 1849 году стал профессором Мюнхенского университета, хотя уже в 1827 году он опубликовал закон, который теперь носит его имя. Помимо электричества занимался акустикой и изучением человеческого слуха. Георг Ом экспериментально установил, что сила тока I, текущего по однородному металлическому проводнику (т. е. проводнику, на который не действуют сторонние силы), пропорционально напряжению U на концах проводника. I = U/R, где R — электрическое сопротивление проводника. Уравнение это выражает закон Ома для участка цепи (не содержащего источника тока). Формулировка этого закона следующая: Сила тока в участке цепи прямо пропорциональна напряжению на концах этого участка и обратно пропорционально его сопротивлению. Единица электрического сопротивления системы СИ называется Ом в честь этого выдающегося ученого. Сопротивление проводника в 1 Ом будет в том случае, если при протекающем по нему токе в 1 Ампер, падение напряжения на нём будет 1 Вольт. Так же при прохождении тока по проводнику, на нём выделяется мощность(он нагревается), и чем больше протекающий по нему ток, тем больше выделяемая на нём мощность. Как Вы должны знать U — это работа, выполняемая при перемещении одного кулона, а ток I — количество кулонов, проходящих за 1 сек. Поэтому произведение тока на напряжение показывает полную работу, выполненную за 1 сек, то есть электрическую мощность или мощность электрического тока в Ваттах. Вывод: поскольку электрическая мощность «P» в одинаковой степени зависит от тока «I» и от напряжения «U», то, следовательно, одну и ту же электрическую мощность можно получить либо при большом токе и малом напряжении, или же, наоборот, при большом напряжении и малом токе. Из всего этого вытекают следующие формулы для расчётов тока, напряжения, сопротивления, мощности. Величины, проставляемые в этих формулах; напряжение в вольтах, сопротивление в омах, ток в амперах, мощность в ваттах.
Последняя формула определяет мощность тока и выведена на основании практических опытов, проделанных в 1841 году Д. П. Джоулем и независимо от него в 1842 году, опытами Э. Х. Ленца. Называется Законом Джоуля — Ленца. Звучит так;
Количество теплоты, выделяемое в единицу времени в рассматриваемом участке цепи, пропорционально произведению квадрата силы тока на этом участке и сопротивлению участка.
Для определения всех этих величин, есть очень интересная диаграмма (таблица), где отражены все эти формулы. В центре искомые величины, а в секторах с соответствующими цветами — варианты решений в зависимости от известных величин.
Имеется ещё более упрощённая диаграмма для определения величин, исходя из закона Ома. Называется в простонародье — треугольник Ома. Выглядит она следующим образом:
В этом треугольнике Ома, нужно закрыть искомую величину, и два других символа дадут формулу для ее вычисления. Закон Ома также применяется ко всей цепи, но в несколько изменённой форме:
Постоянный и переменный ток.
Кратко напомню — постоянный ток (DC), это такой ток, который в течении определённого промежутка времени не изменяет своей величины и направления. Переменный ток (AC) — это ток, который в течении определённого промежутка времени периодически изменяется как по величине, так и по направлению.
На рисунке выше, на графиках изображены диаграммы постоянного (а), и переменного (б) тока. Промежуток времени, на протяжении которого совершается полный цикл изменения тока, называется периодом. Период обозначается буквой Т и измеряется в секундах. Промежуток времени, на протяжении которого совершается половина полного цикла изменения тока, называется полупериодом. Следовательно, период изменения тока (ЭДС или напряжения) состоит из двух полупериодов. Совершенно очевидно, что все периоды одного и того же переменного тока равны между собой. В течение одного периода своего изменения,ток дважды достигает максимального значения. Максимальное значение переменного тока (ЭДС или напряжения) называется его амплитудой или амплитудным значением тока.
Действующее (эффективное) и амплитудное значение переменного синусоидального тока (напряжения).
Переменный синусоидальный ток в течение периода имеет различные мгновенные значения. Возникает вопрос, как же его измерять? Для его измерения и введено понятие — «Действующее (или эффективное) значение» переменного тока.
Что же такое действующее (или эффективное) и амплитудное значение переменного тока? Как Вам попроще объяснить, чтобы было понятно. Действующее (эффективное) значение переменного тока равно такому постоянному току, который, проходя через то же сопротивление, что и переменный ток, за то же время, выделяет такое же количество энергии. То есть если к какой либо активной нагрузке (нагревательный элемент, лампа накаливания, резистор и т.д.) подключить переменный ток, который за определённый промежуток времени (например 10 секунд) выделит на активной нагрузке то-же количество энергии, тепла на нагревательном элементе, резисторе, или разогреет спираль лампы накаливания до точно такой же светоотдачи, что и постоянный ток какой-то определённой величины за тот же промежуток времени (тоже 10 секунд) — то тогда действующее (эффективное) значение такого переменного тока будет равняться величине постоянного тока.
Все электроизмерительные приборы (амперметры, вольтметры), отградуированы для измерения действующего значения синусоидального тока или напряжения.
Что такое «Амплитудное значение» переменного тока? Если объяснять попроще, то это самое максимальное значение (величина) синусоидального тока на самом пике (максимуме) синусоиды. Амплитудное значение переменного тока можно измерить электронно — лучевым осциллографом, так как все осциллографы откалиброваны на измерение амплитудных значений.
Поскольку действующее значение переменного синусоидального тока пропорционально квадратному корню из площади, то оно получается в 1,41 раза меньше его амплитудного значения. Проще говоря — если измерить величину переменного тока (напряжения) электроизмерительными приборами, отградуированными для измерения переменного синусоидального тока (напряжения), то есть например замерить величину переменного напряжения на вторичной обмотке трансформатора, — то амплитудное значение напряжения на этой обмотке будет соответственно в 1,41 раз больше замеренного. Это справедливо только для переменного синусоидального тока (напряжения).
Все конденсаторы в выпрямительных фильтрах соответственно заряжаются до величины амплитудного значения.
Можно посчитать, что при действующем напряжении сети 220 В, амплитудное его значение будет составлять 310 вольт (220 помножить на 1,41).
Отсюда вытекает, что если собрать выпрямитель переменного действующего напряжения 220 вольт, то конденсаторы фильтра необходимо применять на рабочее напряжение не менее чем на 350 вольт, так как они заряжаются до амплитудного (максимального) значения переменного напряжения, а ещё лучше не менее 400 вольт, для обеспечения надёжности работы выпрямителя.
Для действующего значения переменного синусоидального напряжения (тока) — справедливы формулы для расчётов сопротивлений, мощности, действующих токов и напряжений — приведённые выше в Законе Ома для постоянного тока.
Ответим на вопросы в начале статьи;
Как рассчитать шунт для амперметра? Большинство отечественных измерительных головок для амперметров, рассчитываются на полное отклонение при подведении к ним напряжения в 75 мВ (0,075 вольта). У них на шкале имеется надпись «НШ — 75 мВ», или «Наружный шунт 75 мв», или что-то подобное. Нам стало известно две величины, а именно — необходимый нам ток полного отклонения и напряжение полного отклонения измерительной головки. Например, нам нужно рассчитать шунт на 20 ампер. По Закону Ома 0,075 делим на 20 = 0,00375 Ом. Изготовить такой шунт можно из медной проволоки, посмотрев её удельное сопротивление по таблице ЗДЕСЬ . Только необходимо брать проволоку, диаметром желательно не менее 1,5 мм, так как шунт при большом токе будет греться, и показания прибора будет изменяться (при нагреве проволоки увеличится её внутреннее сопротивление).
Почему из 12 вольт переменного напряжения, стало около 16 вольт постоянного — надеюсь Вам стало понятно. У переменного напряжения 12 вольт (действующее его значение) — амплитудное значение будет в 1,41 раз больше, то есть 16,92 вольта, минус около вольта падение напряжения на диодах. В итоге получается около 16 вольт — до которых и заряжаются электролитические конденсаторы фильтра.
Как правильно измерить мощность УНЧ? Давайте для начала вспомним теорию. Выходная мощность усилителей НЧ измеряется на синусоидальном сигнале. У идеального двухтактного выходного каскада, максимальное амплитудное значение синусоидального сигнала на выходе может приблизиться к величине равной половине напряжения источника питания. У каскада по мостовой схеме, выходное напряжение может приблизиться к величине напряжения источника питания. Говоря другими словами, у автомобильной магнитолы при напряжении питания 13,5 вольт, для двухтактного выходного каскада максимальное выходное напряжение (синус) будет 6,5 вольт, а его действующее значение 4,6 вольта, для мостовой схемы соответственно 13 В. и 9,2 вольта. Возьмём минимальную нагрузку для этих усилителей 2 Ома, соответственно максимальная выходная мощность (исходя из Закона Джоуля — Ленца) для первой магнитолы, которую она выдаст теоретически — будет 10,6 ватта, для второй — 42,3 ватта (это для нагрузки 2 Ома). На практике не более 10 и не более 40, или и того меньше. Для 4-х Ом соответственно ещё в два раза меньше. Я не говорю уже об искажениях, здесь мы просто измеряем максимальную выходную мощность.
В бытовых условиях измерять выходной сигнала усилителя (при подаче на вход синусоидального сигнала), лучше обычными «цешками» или бытовыми «цифровиками», так как они сразу измеряют действующее значение синусоидального сигнала. На выход усилителя лучше включать при замерах эквивалент нагрузки, то есть сопротивления с мощностью рассеивания, не менее максимально расчётной мощности усилителя, и с сопротивлением, равному сопротивлению предполагаемой нагрузки (это, что-бы не раздражать себя и соседей звуками во время замеров). Дальше, зная максимальное выходное напряжение и сопротивление нагрузки, рассчитываем мощность по вышеприведённым формулам, то есть напряжение в квадрате делённое на сопротивление нагрузки. Так, что если Вы в магазине увидите подобный аппарат, и продавец Вас будет уверять, что на канал он выдаёт по 60-80 ватт — это развод, рекламный ход и т.д., если только для питания этого усилителя не применяется повышающий преобразователь.
Расчет цепей переменного тока упрощается, если пользоваться понятием действующего (эффективного) значения переменного тока.
Действующее значение переменного тока равно значению такого эквивалентного постоянного тока, который, проходя через то же сопротивление, что и переменный ток, выделяет в нем за период переменного тока то же количество тепла.
Согласно ГОСТ действующие значения обозначаются прописными буквами, т. е ток I , напряжение U.
На шкалах измерительных приборов всегда наносятся действующие значения тока или напряжения.
Если ток изменяется по синусоидальному закону, то действующее значение его составляет 0,707 амплитудного значения тока, т. е.
I = ( Iм : √2) = Iм: 1,41 = 0,707 Iм
То же соотношение имеет место и для синусоидального напряжения, т. е.
Проверь хорошо ли Вы знаете науки
Докажем правильность приведенных соотношений. Количество тепла, выделенного постоянным током I в сопротивлении r за период переменного тока Т:
Q’ = I 2 rT
Количество тепла, выделенного переменным током в том же сопротивлении за период Т, может быть выражено через среднее значение мощности Р переменного тока
I 2 rT=РТ.
В последнем выражении согласно данному выше определению значение эквивалентного постоянного тока I равно действующему значению переменного тока. Таким образом, действующее значение тока
Мгновенная мощность при синусоидальном токе p = i 2 r = I 2 мr sin 2 ωt
или, приняв во внимание, что sin 2 α = (11 : 2) — (1 : 2) cos 2α, получим:
p = ( I 2 мr : 2) — ( I 2 мr : 2) cos 2ωt
Мгновенная мощность при синусоидальном токе может быть представлена суммой двух слагаемых постоянной ½ I 2 мr и переменной, изменяющейся по периодическому синусоидальному закону.
Среднее значение мощности синусоидального тока будет равно постоянной слагаемой
так как среднее значение за пер и синусоидальной слагаемой ½ I 2 мr cos 2ωt равно нулю.
Действующее значение переменного синусоидального тока
Так как действующие значения синусоидальных токов и
напряжений в √2 раз меньше амплитудных значений, то вектор, выражающий в одном масштабе амплитудное значение, в другом масштабе представляет действующее значение той же величины. В дальнейшем выбор масштабов векторов будет производиться, исходя из действующих значений.
Пример 5-4. Вольтметр,, включенный в сеть, показал напряжение 380 в.
Определить амплитуду напряжения сети:
UM= √2 U = 1,41 • 380=536 в.
ОБЩИЕ ЗАМЕЧАНИЯ О ЦЕПЯХ ПЕРЕМЕННОГО ТОКА
Любая электрическая цепь обладает параметрами: .сопротивлением r, индуктивностью L и емкостью С,
В цепи постоянного тока при неизменном напряжении будут неизмененными: ток, мощность и запас энергии в электрическом и магнитном полях.
При переменном напряжении на зажимах цепи в ней будет проходить переменный ток, будет изменяться и энергия электрического и магнитного полей. В технике встречаются цели, физические явления в которых определяются наличием одного из параметров r, L или С, тогда как другие параметры выявлены слабо и влиянием их можно пренебречь.
Например, лампу накаливания, нагревательный прибор, реостат можно рассматривать как цепь с сопротивлением r , влиянием емкости и индуктивности которой можно пренебречь.
Цепь ненагруженного трансформатора можно рассматривать как индуктивность, пренебрегая влиянием сопротивления и емкости этой цепи.
Наконец, кабель, работающий вхолостую, можно рас сматривать как емкость, так как влияние индуктивности и сопротивления этой цепи незначительны.
Статья на тему Действующие значения тока
Похожие страницы:
Период и частота переменного тока Большим преимуществом переменного тока, обеспечивающим ему повсеместное применение, является возможность просто и почти без потерь.
Соединения серы с галогенами При пропускании хлора в расплавленную серу образуется однохлористая сера, представляющая собой оранжевую жидкость, кипящую при 138°.
Содержание статьи1 ИЗМЕРЕНИЕ ТОКА И НАПРЯЖЕНИЯ1.1 Схемы включения амперметра и вольтметра1.2 Магнитоэлектрические амперметры и вольтметры1.3 Выпрямительные амперметры и вольтметры1.4 Термоэлектрические.
Содержание статьи1 ЦЕПЬ С ИНДУКТИВНОСТЬЮ1.1 Напряжение и ток1.2 Индуктивное сопротивление1.3 Мощность1.4 Зависимость между э. д. с. и магнитным потоком ЦЕПЬ.
Справочник слаботочные электрические реле , названия рэле .
Ионизирующее действие растворителей Кроме воды, имеются и другие растворители, например муравьиная кислота, винный спирт, ацетон, в которых также происходит диссоциация.
Понравилась статья поделись ей
Leave a Comment
Для отправки комментария вам необходимо авторизоваться.