Действующее значение напряжения прямоугольного сигнала

Действующее значение напряжения меандра

Как вы помните из предыдущей статьи, переменное напряжение — это напряжение, которое меняется со временем. Оно может меняться с каким-то периодом, а может быть хаотичным. Но не стоит также забывать, что и переменное напряжение обладает своими особенными параметрами.

Среднее значение напряжения

Среднее значение переменного напряжения Uср — это, грубо говоря, площадь под осциллограммой относительно нуля за какой-то промежуток времени. Чтобы это понять, давайте рассмотрим вот такую осциллограмму.

Например,чему равняется среднее значение напряжения за эти два полупериода? В данном случае ноль вольт. Почему так? Площади S1 и S2 равны. Но все дело в том, что площадь S2 берется со знаком «минус». А так как площади равны, то в сумме они дают ноль: S1+(-S2)=S1-S2=0. Для бесконечного по времени синусоидального сигнала среднее значение напряжения также равняется нулю.

То же самое касается и других сигналов, например, двухполярного меандра. Меандр — это прямоугольный сигнал, у которого длительности паузы и импульса равны. В этом случае его среднее напряжение также будет равняться нулю.

Средневыпрямленное значение напряжения

Чаще всего используют средневыпрямленное значение напряжения Uср. выпр. То есть площадь сигнала, которая «пробивает пол» берут не с отрицательным знаком, а с положительным.

средневыпрямленное значение напряжения будет уже равняться не нулю, а S1+S2=2S1=2S2. Здесь мы суммируем площади, независимо от того, с каким они знаком.

На практике средневыпрямленное значение напряжения получить легко, использовав диодный мост. После выпрямления синусоидального сигнала, график будет выглядеть вот так:

Для того, чтобы примерно узнать, чему равняется средневыпрямленное напряжение, достаточно узнать максимальную амплитуду синусоидального сигнала Umax и сосчитать ее по формуле:

Среднеквадратичное значение напряжения

Чаще всего используют среднеквадратичное значение напряжения или его еще по-другому называют действующим. В литературе обозначается просто буквой U. Чтобы его вычислить, тут уже простым графиком не отделаешься. Среднеквадратичное значение — это значение постоянного напряжения, который, проходя через нагрузку (скажем, лампу накаливания), выделяет за тот же промежуток времени такое же количество мощности, какое выделит в этой нагрузке переменное напряжение. В английском языке среднеквадратичное напряжение обозначается так: RMS (rms) — root mean square.

Связь между амплитудным и среднеквадратическим значением устанавливается через коэффициент амплитуды Ka:

Вот некоторые значения коэффициента амплитуды Ka для некоторых сигналов переменного напряжения:

Более точные значения 1,41 и 1,73 — это √2 и √3 соответственно.

Как измерить среднеквадратичное значение напряжения

Для правильного замера среднеквадратического значения напряжения у нас должен быть мультиметр с логотипом T-RMS. RMS — как вы уже знаете — это среднеквадратическое значение. А что за буква «T» впереди? Думаю, вы помните, как раньше была мода на одно словечко: «тру». «Она вся такая тру…», «Ты тру или не тру?» и тд. Тру (true) — с англ. правильный, верный.

Так вот, T-RMS расшифровывается как True RMS — «правильное среднеквадратическое значение». Мои токоизмерительные клещи могут замерять этот параметр без труда, так как на них есть логотип «T-RMS».

мультиметр с True RMS

Проведем небольшой опыт. Давайте соберем вот такую схемку:

Выставим на моем китайском генераторе частоты треугольный сигнал с частотой, ну скажем, 100 Герц

генератор частоты

А вот осциллограмма этого сигнала. Внизу, в красной рамке, можно посмотреть его параметры

треугольный сигнал

И теперь вопрос: чему будет равно среднеквадратическое напряжение этого сигнала?

Так как один квадратик у нас равняется 1 Вольт (мы это видим внизу осциллограммы в красной рамке), то получается, что амплитуда Umax этого треугольного сигнала равняется 4 Вольта. Для того, чтобы рассчитать среднеквадратическое напряжение, мы воспользуемся формулой:

Итак, смотрим нашу табличку и находим интересующий нас сигнал:

Для нас не важно, пробивает ли сигнал «пол» или нет, главное, чтобы сохранялась форма сигнала. Видим, что наш коэффициент амплитуды Ka= 1,73.

Подставляем его в формулу и вычисляем среднеквадратическое значение нашего треугольного сигнала

Проверяем нашим прибором, так ли оно на самом деле?

Супер! И в правду Тrue RMS.

Замеряем это же самое напряжение с помощью моего китайского мультиметра

Он меня обманул :-(. Он умеет измерять только среднеквадратическое значение синусоидального сигнала, а у нас сигнал треугольный.

Самый интересный сигнал в плане расчетов — это двуполярный меандр, ну тот есть тот, который «пробивает пол».

Его амплитудное Umax, средневыпрямленное Uср.выпр. и среднеквадратичное напряжение U равняется одному и тому же значению. В данном случае это 1 Вольт.

Вот вам небольшая картинка, чтобы не путаться

среднее, среднеквадратичное и пиковое значения напряжения

  • Сред. — средневыпрямленное значение сигнала. Это и есть площадь под кривой
  • СКЗ — среднеквадратичное напряжение. Как мы видим, для синусоидальных сигналов, оно будет больше, чем средневыпрямленное.
  • Пик. — амплитудное значение сигнала
  • Пик-пик. — размах или двойная амплитаду. Или иначе, амплитуда от пика до пика.

Так что же все-таки показывает мультиметр при измерении переменного напряжения? Показывает он НЕ амплитудное, НЕ среднее и НЕ среднее выпрямленное напряжение, а среднее квадратическое, то есть действующее напряжение! Об этом всегда помним.

Эффективное, действующее напряжение, сила тока. Значение.

Значения действующего напряжения и силы тока. Определение. Соотношение с амплитудой для разной формы. (10+)

Читайте также: Tenstar robot регулятор напряжения инструкция

Понятие эффективных (действующих) значений напряжения и силы тока

Когда мы говорим о переменных напряжении или силе тока, особенно сложной формы, то встает вопрос о том, как их измерять. Ведь напряжение постоянно меняется. Можно измерять амплитуду сигнала, то есть максимум модуля значения напряжения. Такой метод измерения нормально подходит для сигналов относительно гладкой формы, но наличие коротких всплесков портит картину. Еще одним критерием выбора способа измерения является то, для каких целей делается измерение. Так как в большинстве случаев интерес представляет мощность, которую может отдать тот или иной сигнал, то применяется действующее (эффективное) значение.

Вашему вниманию подборка материалов:

Практика проектирования электронных схем Искусство разработки устройств. Элементная база. Типовые схемы. Примеры готовых устройств. Подробные описания. Онлайн расчет. Возможность задать вопрос авторам

Определение действующего (эффективного) значения

Действующее (эффективное) значение напряжения — (по определению) такое напряжение постоянного тока, которое на такой же резистивной нагрузке выделит такую же мощность, как измеряемое переменное напряжение. Соответственно, действующее (эффективное) значение силы тока — (по определению) такое значение силы постоянного тока, при прохождении которого через резистивную нагрузку выделится такую же мощность, что и при прохождении измеряемого тока.

В общем случае действующее напряжение равно среднеквадратичному значения напряжения за период. То есть:

Первая формула — действующее напряжение, вторая — действующая сила тока. Где, Т — период напряжения или тока. U(t) — зависимость напряжения от времени. I(t) — зависимость силы тока от времени.

Для сигналов произвольной формы считать надо именно по этим формулам, но для некоторых стандартных форм напряжения или тока расчеты уже проведены (эти формулы верны как для напряжения, так и для силы тока):

Действующее (эффективное) значение для сигналов стандартной формы

Синусоидальный сигнал (синус, синусоида) [Действующее значение] = [Амплитудное значение] / [Квадратный корень из 2]

Прямоугольный сигнал (меандр) [Действующее значение] = [Амплитудное значение]

Треугольный сигнал [Действующее значение] = [Амплитудное значение] / [Квадратный корень из 3]

Закон Ома и мощность для действующих значений напряжения и силы тока

Эффективное значение напряжения измеряется в Вольтах, а силы тока в Амперах.

Для эффективных значений верен закон Ома: [Действующее значение силы тока, А] = [Действующее значение напряжения, В] / [Сопротивление нагрузки, Ом]

[Рассеиваемая на омической нагрузке мощность, Вт] = [Действующее значение силы тока, А] * [Действующее значение напряжения, В]

К сожалению в статьях периодически встречаются ошибки, они исправляются, статьи дополняются, развиваются, готовятся новые. Подпишитесь, на новости, чтобы быть в курсе.

Если что-то непонятно, обязательно спросите!
Задать вопрос. Обсуждение статьи.

Микроконтроллеры — пример простейшей схемы, образец применения. Фузы (.
Самая первая Ваша схема на микро-контроллере. Простой пример. Что такой фузы.

Практика проектирования электронных схем. Самоучитель электроники.
Искусство разработки устройств. Элементная база радиоэлектроники. Типовые схемы.

Силовой резонансный фильтр для получения синусоиды от инвертора.
Для получения синусоиды от инвертора нами был применен самодельный силовой резон.

Преобразователь однофазного напряжения в трехфазное. Принцип действия.
Принцип действия, сборка и наладка преобразователя однофазного напряжения в трех.

Бесперебойник своими руками. ИБП, UPS сделать самому. Синус, синусоида.
Как сделать бесперебойник самому? Чисто синусоидальное напряжение на выходе, при.

Силовой импульсный преобразователь, источник синуса, синусоиды, синусо.
Принцип работы, самостоятельное изготовление и наладка импульсного силового прео.

Электрическое напряжение. Амплитуда сигнала. Амплитудное. Вольт. Volt.
Понятие напряжения и разности электрических потенциалов. Амплитуда. Единицы изме.

Что показывает вольтметр, или математика розетки

О чем эта статья

Сегодня я ненадолго отступлю от своей обычной темы о визуальном программировании контроллеров и обращусь к теме измерений напряжения прямо в ней, в розетке!

Родилась эта статья из дискуссий за чаем, когда разразился спор среди «всезнающих и всеведающих» программистов о том, чего многие из них не понимают, а именно: как измеряется напряжение в розетке, что показывает вольтметр переменного напряжения, чем отличается пиковое и действующие значения напряжений.

Скорее всего, это статья будет интересна тем, кто начинает творить свои устройства. Но, возможно, поможет и кому-то опытному освежить память.

В статье рассказано о том, какие напряжения есть в сети переменного тока, как их измеряют и о том, что следует помнить при проектировании электронных схем.
Всему дано краткое и упрощённое математическое обоснование, чтобы было ясно не только «как», но и «почему».

Кому не интересно читать про интегралы, ГОСТы и фазы — могут сразу переходить к заключению.

Вступление

Когда люди начинают говорить о напряжении в розетке, очень часто стереотип «в розетке 220В» скрывает от их взора реальное положение дел.

Начнем с того, что согласно ГОСТ 29322-2014, сетевое напряжение должно составлять 230В±10% при частоте 50±0,2Гц (межфазное напряжение 400В, напряжение фаза-нейтраль 230В). Но в том же ГОСТ имеется примечание: «Однако системы 220/380 В и 240/415 В до сих пор продолжают применять».

Согласитесь, что это уже совсем не то однозначное «в розетке 220В», к которому мы привыкли. А когда речь начинает идти о «фазном», «линейном», «действующем» и «пиковом» напряжениях — вообще каша получается знатная. Так сколько же вольт в розетке?

Читайте также: Электромагнитная кнопка пускатель kjd 22 напряжение 250 в ас

Чтобы ответить на этот вопрос начнем с того, как измеряется напряжение в сети переменного тока.

Как измерять переменное напряжение?

Прежде, чем углубиться в дебри цепей переменного тока и напряжения, вспомним школьную физику цепей тока постоянного.

Цепи постоянного тока — вещь простая. Если мы возьмем некоторую активную нагрузку (пусть это будет обычная лампа накаливания, как на рисунке) и воткнем ее в цепь постоянного тока, то все, что происходит в нашей цепи будет характеризоваться всего двумя величинами: напряжением на нагрузке U и током, протекающим через нагрузку I. Мощность, которая потребляется нагрузкой однозначно вычисляется по формуле, известной со школы: .

Или, если учесть, что по закону Ома , то мощность P, потребляемую нагрузкой-лампочкой, можно вычислить по формуле .

С переменным напряжением все куда сложнее: в каждый момент времени — оно может иметь разное мгновенное значение. Следовательно, в разные моменты времени, на нагрузке, подключенной к источнику переменного напряжения (например, на лампе накаливания, воткнутой в розетку) будет выделяться разная мощность. Это очень неудобно с точки зрения описания электрической цепи.

Но нам повезло: форма напряжения в розетке синусоидальная. А синусоида, как известно, полностью описывается тремя параметрами: амплитудой, периодом и фазой. В однофазных сетях (а обычная розетка с двумя дырочками именно и есть однофазная сеть) про фазу можно забыть. На рисунке подробно показаны два периода сетевого однофазного напряжения. Того самого, что в розетке.

Рассмотрим, что означают все эти буковки на рисунке.

Период T — это время между двумя соседними минимумами или соседними максимумами синусоиды. Для осветительной сети РФ этот период составляет 20 миллисекунд, что соответствует частоте 50Гц. Частота колебаний напряжения электрической сети выдерживается очень точно, до долей процента.

Очевидно, что в любых двух точках синусоиды, отстоящих друг от друга на целое число периодов, напряжения всегда равны между собой.

Амплитуда Um — это максимальное напряжение, пик синусоиды. Про действующее напряжение поговорим чуть ниже.

Напряжение в розетке (или однофазной сети) описывается формулой

где t — текущий момент времени, Um — амплитуда (или пиковое значение) напряжения, T — период сетевого напряжения.

Если с однофазным переменным напряжением более или менее все ясно, то попробуем посчитать мощность, которая выделяется на нашей любимой лампе накаливания, при втыкании ее прямо в розетку.

Так как лампа накаливания является активной нагрузкой (а это значит, что ее сопротивление не зависит от частоты напряжения и тока), то мгновенная мощность, выделяемая на лампе накаливания, воткнутой в розетку, будет вычисляться по формуле

где t — текущий момент времени, а R — сопротивление лампы накаливания при нагретой спирали. Зная амплитуду переменного напряжения Um, можно записать:

Понятно, что мгновенная мощность — неудобный параметр, да и на практике не особо нужный. Поэтому практически обычно применяется мощность, усредненная за период.
Именно усредненная мощность указана на лампочках, нагревателях и прочих бытовых утюгах.

Рассчитывается усредненная мощность в общем случае по формуле:

А для нашей синусоиды — по гораздо более простой формуле:

Можете сами подставить вместо функцию и взять интеграл, если не верите.

Не думайте, что про мощность я вспомнил просто так, из вредности. Сейчас поймете, зачем она нам была нужна. Переходим к следующему вопросу.

Что же показывает вольтметр?

Для цепей постоянного тока, тут все однозначно — вольтметр показывает единственное напряжение между двумя контактами.

С цепями переменного тока все опять сложнее. Некоторые (и этих некоторых не так мало, как я убедился) считают, что вольтметр показывает пиковое значение напряжения Um, но это не так!

На самом деле, вольтметры обычно показывают действующее или эффективное, оно же среднеквадратичное, напряжение в сети .

Разумеется, речь идет о вольтметрах переменного напряжения! Поэтому, если будете измерять вольтметром напряжение сети, обязательно убедитесь, что он находится в режиме измерения переменного напряжения.

Оговорюсь, что «пиковые вольтметры», показывающие амплитудные значения напряжения, тоже существуют, но на практике при измерении напряжения питающей сети в быту обычно не применяются.

Разберемся, почему такие сложности. Почему бы не измерять просто амплитуду? Зачем выдумали какое-то «действующее значение» напряжения?

А все дело в потребляемой мощности. Я ведь не просто так писал о ней. Дело в том, что действующее (эффективное) значение переменного напряжения равно величине такого постоянного напряжения, которое за время, равное одному периоду этого переменного напряжения, произведет такую же работу, что и рассматриваемое переменное напряжение.

Или, по-простому, лампочка накаливания будет светить одинаково ярко, воткнем ли мы ее в сеть постоянного напряжения 220В или в цепь переменного тока с действующим значением напряжения 220В.

Для тех, кто уже знаком с интегралами или еще не забыл математику, приведу общую формулу расчета действующего напряжения произвольной формы:

Из этой формулы также становится ясно, почему действующее (эффективное) значение переменного напряжения также называют «среднеквадратичным».

Заметим, что подкоренное выражение и есть та самая «усредненная за период мощность», стоит только поделить это выражение на сопротивление нагрузки R.

Читайте также: Расчет падения напряжения несколько нагрузок

Применительно к синусоидальной форме напряжения, страшный интеграл после несложных преобразований превратится в простую формулу:

где — действующее или среднеквадратичное значение напряжение (то самое, которое обычно показывает вольтметр), а Um — амплитудное значение.

Действующее напряжение хорошо тем, что для активной нагрузки, расчет усредненной мощности полностью совпадает с расчетом мощности на постоянном токе:

Это и не удивительно, если вспомнить определение действующего значения напряжения, которое было дано чуть выше.

Ну и, наконец, посчитаем, чему же равна амплитуда напряжения в розетке «на 220В«:

В худшем случае, если у вас сеть на 240В, да еще и с допуском +10%, амплитуда будет аж !

Поэтому, если хотите, чтобы ваши устройства, питающиеся от сети, работали стабильно и не сгорали, выбирайте элементы, которые выдерживают пиковые напряжения не менее 400В. Разумеется, речь идет об элементах, на которые непосредственно подаётся сетевое напряжение.

Отмечу, что для не-синусоидальной формы сигнала действующее значение напряжения рассчитывается по иным формулам. Кому интересно — могут сами взять интегралы или обратиться к справочникам. Нас же интересует питающая сеть, а там всегда должна быть синусоида.

Фазы, фазы, фазы…

Помимо обычной однофазной осветительной сети

220В все слышали и о трехфазной сети

380В. Что такое 380В? А это межфазное эффективное напряжение.

Помните, я сказал, что в однофазной сети про фазу синусоиды можно забыть? Так вот, в трехфазной сети этого делать нельзя!

Если говорить по простому, то фаза — это сдвиг во времени одной синусоиды относительно другой. В однофазной сети мы всегда могли принять за начало отсчета любой момент времени — на расчеты это не влияло. В трехфазной сети необходимо учитывать насколько одна синусоида отстоит от другой. В трехфазных сетях переменного тока каждая из фаз отстоит от другой на треть периода или на 120 градусов. Напомню, что период измеряется также в градусах и полный период равен 360 градусов.

Если мы возьмем осциллограф с тремя лучами и прицепимся к трем фазам и одному нулю, то увидим такую картину.

«Синяя» фаза — начинается от нуля отсчета. «Красная» фаза — на треть периода (120 градусов) позже. И, наконец «зеленая» фаза начинается на две трети периода (240 градусов) позже «синей». Все фазы абсолютно симметричны друг относительно друга.

Какую именно фазу брать за точку отсчета — не важно. Картина будет одинаковой.

Математически можно записать уравнения всех трех фаз:

«Синяя» фаза:

«Красная» фаза:

«Зеленая» фаза:

Если измерить напряжение между любой из фаз и нулем в трехфазной сети — то получим обычные 220В (или 230В или 240В — как повезет, см. ГОСТ).

А если измерить напряжение между двумя фазами — то получим 380В (или 400В или 415В — не забываем об этом).

То есть трехфазная сеть — многолика. Ее можно использовать как три однофазные сети с напряжением 220В или как одну трехфазную сеть с напряжением 380В.

Откуда взялось 380В? А вот откуда.

Если мы подставим в формулу расчета действующего напряжения наши данные о двух любых фазах, то получим:

Uдф — действующее межфазное, оно же линейное напряжение.

Учитывая, что амплитуда каждой фазы получим, чтодля межфазного напряжения. На рисунке наглядно показано, как образуется межфазное напряжение, которое обозначено F1-F2 из двух фазных напряжений фаз F1 и F2. Напряжение фаз F1 и F2 измеряется относительно нулевого провода. Линейное напряжение F1-F2 измеряется между двумя разными фазными проводами.

Как видим, что действующее межфазное напряжение больше амплитуды синусоидального напряжения одной фазы.

Амплитуда межфазного напряжения составляет:

Для наихудшего случая (сеть 240В и межфазное напряжение 415В, да еще 10% сверху) амплитуда межфазного напряжения составит:

Учтите это при работе в трехфазных сетях и выбирайте элементы, рассчитанные не менее, чем на 650В, если им предстоит работать между двумя фазами!

Надеюсь, теперь понятно что показывает вольтметр переменного тока?

Заключение

Итак, очень кратко, почти на пальцах, мы ознакомились с тем какие напряжения действуют в бытовых сетях переменного тока. Подведем краткие итоги всего, изложенного выше.

  • Фазное напряжение — это напряжение между фазой и нулевым проводом.
  • Линейное или межфазное напряжение — это напряжение между двумя разными фазными проводами одной трехфазной сети.
  • В сетях переменного тока РФ действуют три, хоть и близких, но разных стандарта (фазное/линейное): 220В/380В, 230В/400В и 240В/415В переменного тока с частотой 50Гц.
  • Вольтметр переменного тока обычно показывает действующее (оно же среднеквадратичное, оно же эффективное) напряжение, которое в раза меньше, чем пиковое (амплитудное) напряжение в сети.
  • В наихудшем с точки зрения стандартов случае пиковое фазное напряжение составляет примерно 373В, а пиковое линейное напряжение — 645B. Это следует учитывать при разработке электронных схем.

Надеюсь эта статья помогла кому-то разобраться в теме и ответить для себя на некоторые вопросы.

  • Напряжение
  • Реле
  • Трансформатор
  • Что такое рекуперация на электровозе
  • Чем отличается электровоз от тепловоза
  • Чем глушитель отличается от резонатора
  • Стойки стабилизатора как определить неисправность
  • Стабилизатор поперечной устойчивости как работает

Действующее значение напряжения для прямоугольных импульсов

Действующее значение напряжения для прямоугольных импульсов

Расчет действующего значения выходного напряжения
преобразователя в зависимости от формы сигнала

При использовании ветрогенераторов в качестве источника энергии необходимо иметь промежуточный накопитель энергии. Как правило, для этого используется аккумуляторная батарея с довольно низким выходным постоянным напряжением – 12 или 24 В . В то же время большинство потребительских нагрузок рассчитаны на подключение к сетям переменного тока напряжением 110 – 380 В частотой 45 – 65 Гц . Поэтому требуется преобразователь постоянного напряжения аккумуляторной батареи ( наиболее распространены автомобильные аккумуляторы напряжением 12 В) в переменное напряжение ( чаще всего 220 В 50 Гц) [1, 2].

Нагрузки, подключаемые в сеть переменного тока, могут не иметь блока питания и иметь индуктивный характер (вибрационный насос, электромагнит, электродвигатель ) или резистивный характер (лампа накаливания, нагревательный прибор ).

При наличии блока питания он может быть трансформаторным или бестрансформаторного типа.

Синусоидальная форма выходного сигнала преобразователя при малом коэффициенте гармоник соответствует паспортным требованиям нагрузок, подключаемых в сеть переменного тока , в частности, по соотношению амплитудного и действующего значений напряжения . Однако преобразователь с синусоидальной формой выходного сигнала сложен в конструировании и изготовлении. Желательно упростить преобразователь за счет использования других форм выходного сигнала, поняв условия, при которых такой преобразователь может использоваться для возможно большего количества типов нагрузок.

Форма выходного сигнала наиболее просто реализуемых преобразователей может быть прямоугольной, прямоугольной с паузой, трапецеидальной .

При этом возникает проблема выбора параметров сигнала, в частности, амплитудного значения напряжения. Для нагрузок с бестрансформаторным блоком питания , построенном по схеме выпрямитель-фильтр-преобразователь, максимальное амплитудное значение любого сигнала независимо от его формы может составлять 310 В, причем, как правило, это значение может быть существенно уменьшено .

Для нагрузок резистивного типа (ламп накаливания), рассчитанных на синусоидальное напряжение с действующим значением 220 В, амплитудное напряжение 310 В для сигнала прямоугольной формы без паузы является чрезмерным ( действующее значение сигнала прямоугольной формы равно его амплитудному значению, в данном случае 310 В), и его необходимо уменьшить .

Рассмотрим случай трансформаторного блока питания . Полоса пропускания трансформаторов по частоте весьма широкая (до тысяч герц), поэтому напряжение на выходе трансформатора будет иметь прямоугольную форму. Так как стоящие дальше по схеме стабилизаторы рассчитаны на использование переменного напряжения с амплитудным значением (приведенным ко входу) 310 В, то применение прямоугольного напряжения с амплитудным значением 310 В будет перегружать трансформатор, а при меньших значениях амплитуды ухудшатся условия работы стабилизаторов.

Величину действующего напряжения для периодического сигнала Ud = U(t) с периодом T и круговой частотой w = 2 p /T можно рассчитать по формуле:

Для синусоидального сигнала с периодом T, круговой частотой w = 2 p /T и амплитудным значением U :

Для прямоугольного сигнала с периодом T, круговой частотой w = 2 p /T и амплитудным значением U :

Для прямоугольного сигнала с паузой ( период T , круговая частота w = 2 p /T, длительность импульса положительной и отрицательной полярности t , длительность паузы T/2 – t ) с амплитудным значением U :

Для такого сигнала соотношение (2) достигается при t = T/4 , т. е. длительность импульса с положительной полярностью и длительность импульса с отрицательной полярностью t должна быть равна половине полупериода, а длительность паузы должна быть равна длительности импульса t . При этом действующее значение напряжения Ud будет равно действующему значению напряжения синусоидального сигнала с такой же амплитудой.

Для трапецеидального сигнала с периодом T, круговой частотой w = 2 p /T и амплитудным значением U :

Читайте также: Предельное напряжение разряда аккумулятора

Здесь t – длительность вершины импульса.

При t = T/8 ( четвертой части полупериода) действующее значение напряжения Ud будет таким же, как для случая синусоидального сигнала с такой же амплитудой U :

Принимая в качестве критерия соотношение для амплитудного и действующего значения выходного напряжения преобразователя как для случая синусоидального сигнала (2)

можно сделать вывод, что приемлемой формой выходного сигнала преобразователя является прямоугольная с паузой, когда длительность как отрицательного, так и положительного импульса равна длительности паузы (половина полупериода), или трапецеидальная, когда длительность плоской вершины импульса составляет четвертую часть полупериода . Выходной сигнал трапецеидальной формы предпочтительнее, так как коэффициент гармоник для него меньше.

Таким образом, возможно конструирование преобразователя с выходным сигналом трапецеидальной формы частотой 50 Гц, у которого длительность плоской вершины импульса составляет четвертую часть полупериода. Амплитуда выходного напряжения должна быть около 310 В. Действующее значение напряжения при этом будет равно 220 В. Такой преобразователь подходит по своим параметрам для большинства применяемых типов нагрузок.

  • Амплитуда — максимальное абсолютное значение.
  • Электрическое напряжение — разность электрических потенциалов в соответствующих точках.

11.12.2003
12.01.2006
17.04.2006
17.06.2010

Электрические и временные параметры прямоугольных импульсов

Периодические и непериодические сигналы, форма которых отличается от синусоидальной, обычно называют импульсными сигналами . Процессы генерации, преобразования, а также вопросы практического применения импульсных сигналов относятся сегодня ко многим областям электроники.

Так, например, ни один современный блок питания не обходится без расположенного на его печатной плате генератора прямоугольных импульсов, такого например как на микросхеме TL494, выдающей импульсные последовательности с параметрами, подходящими для текущей нагрузки.

Поскольку импульсные сигналы могут иметь различную форму, то и называют различные импульсы в соответствии с похожей по форме геометрической фигурой: прямоугольные импульсы, трапецеидальные импульсы, треугольные импульсы, пилообразные импульсы, ступенчатые, и импульсы разных других форм. Между тем, наиболее часто практически применяются именно прямоугольные импульсы . О их параметрах и пойдет речь в данной статье.

Конечно, термин «прямоугольный импульс» несколько условен. В силу того что ничего идеального в природе не бывает, как не бывает и идеально прямоугольных импульсов. На самом деле реальный импульс, который принято называть прямоугольным, может иметь и колебательные выбросы (на рисунке показаны как b1 и b2), обусловленные вполне реальными емкостными и индуктивными факторами.

Выбросы эти могут, конечно, отсутствовать, однако существуют электрические и временные параметры импульсов, отражающие в числе прочего «неидеальность их прямоугольности».

Прямоугольный импульс имеет определенную полярность и рабочий уровень. Чаще всего полярность импульса положительна, поскольку подавляющее большинство цифровых микросхем питаются положительным, относительно общего провода, напряжением, и следовательно мгновенное значение напряжения в импульсе всегда больше нуля.

Но есть, например, компараторы, питаемые двухполярным напряжением, в таких схемах можно встретить разнополярные импульсы. Вообще микросхемы, питаемые напряжением отрицательной полярности, не так широко применяются, как микросхемы с обычным положительным питанием.

В последовательности импульсов рабочее напряжение импульса может принимать низкий или высокий уровень, причем один уровень с течением времени сменяет другой. Уровень низкого напряжения обозначают U0, уровень высокого U1. Наибольшее мгновенное значение напряжения в импульсе Ua или Um, относительно начального уровня, называется амплитудой импульса .

Разработчики импульсных устройств зачастую оперируют активными импульсами высокого уровня, такими как показанный на рисунке слева. Но иногда практически целесообразно применить в качестве активных импульсы низкого уровня, для которых исходное состояние — высокий уровень напряжения. Импульс низкого уровня показан на рисунке справа. Называть импульс низкого уровня «отрицательным импульсом» — безграмотно.

Читайте также: Как узнать какое напряжение переменное или постоянное

Перепад напряжения в прямоугольном импульсе называют фронтом, который представляет собой быстрое (соизмеримое по времени со временем протекания переходного процесса в цепи) изменение электрического состояния.

Перепад с низкого уровня к высокому уровню, то есть положительный перепад, называют передним фронтом или просто фронтом импульса. Перепад от высокого уровня к низкому, или отрицательный перепад, называют срезом, спадом или просто задним фронтом импульса.

Передний фронт обозначают в тексте 0.1 или схематически _|, а задний фронт 1.0 или схематически |_.

В зависимости от инерционных характеристик активных элементов, переходный процесс (перепад) в реальном устройстве всегда занимает некоторое конечное время. Поэтому полная длительность импульса включает в себя не только времена существования высокого и низкого уровней, но также времена длительности фронтов (фронта и среза), которые обозначаются Тф и Тср. Практически в любой конкретной схеме время фронта и спада можно увидеть при помощи осциллографа.

Так как в реальности моменты начала и окончания переходных процессов в перепадах очень точно выделить непросто, то принято считать за длительность перепада промежуток времени, во время которого напряжение изменяется от 0,1Ua до 0,9Ua (фронт) или от 0,9Ua до 0,1Ua (срез). Так и крутизна фронта Кф и крутизна среза Кс.р. задаются в соответствии с данными граничными состояниями, и измеряются в вольтах в микросекунду (в/мкс). Непосредственно длительностью импульса называют промежуток времени, отсчитываемый от уровня 0,5Ua.

Когда рассматривают в общем процессы формирования и генерации импульсов, то фронт и срез принимают по длительности за ноль, поскольку для грубых расчетов эти малые временные промежутки оказываются не критичны.

Импульсная последовательность — это импульсы, следующие друг за другом в определенном порядке. Если паузы между импульсами и длительности импульсов в последовательности равны между собой, то это периодическая последовательность. Период следования импульсов Т — это сумма длительности импульса и паузы между импульсами в последовательности. Частота f следования импульсов — это величина обратная периоду.

Периодические последовательности прямоугольных импульсов, кроме периода Т и частоты f, характеризуются еще парой дополнительных параметров: коэффициентом заполнения DC и скважностью Q. Коэффициент заполнения — это отношение времени длительности импульса к его периоду.

Скважность — это отношение периода импульса ко времени его длительности. Периодическая последовательность скважности Q=2, то есть такая, у которой время длительности импульса равно времени паузы между импульсами или у которой коэффициент заполнения равен DC=0,5, называется меандром.

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Подписывайтесь на наш канал в Telegram!

Просто пройдите по ссылке и подключитесь к каналу.

Не пропустите обновления, подпишитесь на наши соцсети:

Среднеквадратичное значение

В зарубежной терминологии применяется аббревиатура RMS (rms) — root mean square.
В математике для набора чисел x1, x2, . xn количеством n среднеквадратичное значение (rms) определяется выражением:

Например, для чисел 2,3 и 6 среднеквадратичным значением будет квадратный корень из (2²+3²+6²)/3. √(49/3) = 4.04

Среднеквадратичным значением двух или нескольких чисел является квадратный корень из среднеарифметического значения квадратов этих чисел.

Для любой непрерывной функции в интервале T1T2 среднеквадратичное значение можно рассчитать по формуле:

Среднеквадратичное значение применяется в расчётах, где существует пропорциональная зависимость не самих переменных значений, а их квадратов.

Читайте также: Что такое напряжение электрического тока просто

Действующее значение напряжения и тока

В качестве примера можно рассмотреть квадратичную зависимость мощности или работы электрического тока от значений тока или напряжения.

P = I²R; A = I²Rt; P = U²/R; A = U²t/R

Величина постоянного напряжения или тока является его среднеквадратичным значением.
Среднеквадратичное значение переменного тока равно величине постоянного тока, действие которого произведёт такую же работу в активной (резистивной) нагрузке за время периода.
Определяющим фактором здесь является среднее (среднеарифметическое) значение мощности P avg или работы A avg, пропорциональное квадрату значения тока.
Так же среднеквадратичное значение переменного напряжения за период равносильно по своему воздействию на активную нагрузку такому же значению постоянного напряжения.

Среднеквадратичное значение переменного напряжения или тока часто называют действующим или эффективным.

Величину переменного напряжения или тока, в большинстве случаев, выражают его среднеквадратичным значением и измеряют приборами электромагнитного типа или специальными среднеквадратичными измерителями — True RMS.

Примечание:
Электромагнитные приборы используют для измерения переменного тока и напряжения в промышленных установках. Усилие, создаваемое измерительной катушкой в электромагнитном приборе, пропорционально квадрату тока, поэтому не меняется по направлению.
Угол отклонения стрелки определится некоторым средним усилием F, которое будет пропорционально среднеквадратичному значению тока.

Расчёт действующего значения

В качестве примера рассчитаем среднеквадратичное значение синусоидального напряжения.

Запишем выражение U rms с применением интеграла функции U = U ampsin(t) для одного периода 2π :

Вынесем U amp из под знака радикала. Воспользуемся табличным интегралом , перепишем и решим последнее выражение с применением формулы Ньютона-Лейбница:

Так как sin(2π), sin(4π) и sin(0) равны нулю, вычисляем RMS синусоиды следующим образом:

В результате решения в итоге получим:

Расчёт RMS для напряжения или тока треугольной и пилообразной формы можно рассмотреть на примере одного периода T для функции , представленной на рисунке:

Выразим U rms искомой функции с помощью определённого интеграла:

Используя табличный интеграл и формулу Ньютона-Лейбница, получаем:

В итоге преобразований получим:

Ток или напряжение любой сложной формы можно рассмотреть, как набор функций в пределах периода. Тогда значением RMS будет квадратный корень из среднеарифметического значения интегралов для квадрата каждой функции, ограниченной её интервалом времени в периоде.
Например, для множества функций F1(t) , F2(t) , . , F n(t) в соответствующих им интервалах времени (0 — T1), (T1T2), . (T nT), составляющих период T, действующее напряжение (RMS) определится выражением:

Для вариантов однополярного или двуполярного напряжения пилообразной и треугольной формы в периоде 2T или 4T, представленных на рисунке ниже, T и U amp имеют те же расчётные величины, что и в рассмотренном случае c функцией , а интегралы, определённые в интервалах, равных T, для квадратов используемых функций , будут иметь одно и то же значение

Следовательно, вышеуказанные варианты однополярного или двуполярного напряжения пилообразной и треугольной формы будут иметь среднеквадратичное значение .

В заключении рассмотрим пример вычисления действующего значения положительных прямоугольных импульсов длительностью T i .

Выразим U rms одного периода T, как квадратный корень из среднеарифметического значения интегралов, определённых в интервалах 0 — T i и T iT для квадратов всех значений периода.

В результате получаем значение RMS, равное произведению амплитуды импульсов U amp на квадратный корень из коэффициента заполнения (T i / T).

В качестве дополнительного материала предлагаем рассмотреть расчёт средеквадратичного значения напряжения накала кинескопа цветного телевизора, исходя из амплитуды и формы напряжения.

Замечания и предложения принимаются и приветствуются!

Прописные истины для новичков.

Как рассчитать шунт для амперметра?
Почему, я намотал вторичную обмотку на 12 вольт, а блок питания у меня выдаёт 16 вольт?.
Как измерить, какую мощность выдаёт усилитель низкой частоты?
Такие вопросы порой часто возникают от новичков радиолюбителей. Кратко напомним им, чем нужно руководствоваться в своей практической деятельности.

Закон Ома.

Основным законом, которым руководствуются радиолюбители — является Закон Ома..
Георг Симон ОМ
Georg Simon Ohm, 1787–1854
Немецкий физик. Родился в Эрлангене 16 марта в 1787 году (по другим источникам он родился в 1789-м). Окончил местный университет. Преподавал математику и естественные науки. В академических кругах его признали достаточно поздно. В 1849 году стал профессором Мюнхенского университета, хотя уже в 1827 году он опубликовал закон, который теперь носит его имя. Помимо электричества занимался акустикой и изучением человеческого слуха.
Георг Ом экспериментально установил, что сила тока I, текущего по однородному металлическому проводнику (т. е. проводнику, на который не действуют сторонние силы), пропорционально напряжению U на концах проводника.
I = U/R, где R — электрическое сопротивление проводника.
Уравнение это выражает закон Ома для участка цепи (не содержащего источника тока). Формулировка этого закона следующая:
Сила тока в участке цепи прямо пропорциональна напряжению на концах этого участка и обратно пропорционально его сопротивлению.
Единица электрического сопротивления системы СИ называется Ом в честь этого выдающегося ученого. Сопротивление проводника в 1 Ом будет в том случае, если при протекающем по нему токе в 1 Ампер, падение напряжения на нём будет 1 Вольт.
Так же при прохождении тока по проводнику, на нём выделяется мощность(он нагревается), и чем больше протекающий по нему ток, тем больше выделяемая на нём мощность.
Как Вы должны знать U — это работа, выполняемая при перемещении одного кулона, а ток I — количество кулонов, проходящих за 1 сек. Поэтому произведение тока на напряжение показывает полную работу, выполненную за 1 сек, то есть электрическую мощность или мощность электрического тока в Ваттах.
Вывод: поскольку электрическая мощность «P» в одинаковой степени зависит от тока «I» и от напряжения «U», то, следовательно, одну и ту же электрическую мощность можно получить либо при большом токе и малом напряжении, или же, наоборот, при большом напряжении и малом токе.
Из всего этого вытекают следующие формулы для расчётов тока, напряжения, сопротивления, мощности.
Величины, проставляемые в этих формулах; напряжение в вольтах, сопротивление в омах, ток в амперах, мощность в ваттах.

Последняя формула определяет мощность тока и выведена на основании практических опытов, проделанных в 1841 году Д. П. Джоулем и независимо от него в 1842 году, опытами Э. Х. Ленца. Называется Законом Джоуля — Ленца. Звучит так;

Количество теплоты, выделяемое в единицу времени в рассматриваемом участке цепи, пропорционально произведению квадрата силы тока на этом участке и сопротивлению участка.

Для определения всех этих величин, есть очень интересная диаграмма (таблица), где отражены все эти формулы.
В центре искомые величины, а в секторах с соответствующими цветами — варианты решений в зависимости от известных величин.

Имеется ещё более упрощённая диаграмма для определения величин, исходя из закона Ома. Называется в простонародье — треугольник Ома.
Выглядит она следующим образом:

В этом треугольнике Ома, нужно закрыть искомую величину, и два других символа дадут формулу для ее вычисления.
Закон Ома также применяется ко всей цепи, но в несколько изменённой форме:

I = <\varepsilon \over <R+r data-lazy-src=

На рисунке выше, на графиках изображены диаграммы постоянного (а), и переменного (б) тока.
Промежуток времени, на протяжении которого совершается полный цикл изменения тока, называется периодом. Период обозначается буквой Т и измеряется в секундах.
Промежуток времени, на протяжении которого совершается половина полного цикла изменения тока, называется полупериодом. Следовательно, период изменения тока (ЭДС или напряжения) состоит из двух полупериодов. Совершенно очевидно, что все периоды одного и того же переменного тока равны между собой.
В течение одного периода своего изменения,ток дважды достигает максимального значения.
Максимальное значение переменного тока (ЭДС или напряжения) называется его амплитудой или амплитудным значением тока.

Действующее (эффективное) и амплитудное значение переменного синусоидального тока (напряжения).

Переменный синусоидальный ток в течение периода имеет различные мгновенные значения. Возникает вопрос, как же его измерять? Для его измерения и введено понятие — «Действующее (или эффективное) значение» переменного тока.

Что же такое действующее (или эффективное) и амплитудное значение переменного тока?
Как Вам попроще объяснить, чтобы было понятно.
Действующее (эффективное) значение переменного тока равно такому постоянному току, который, проходя через то же сопротивление, что и переменный ток, за то же время, выделяет такое же количество энергии.
То есть если к какой либо активной нагрузке (нагревательный элемент, лампа накаливания, резистор и т.д.) подключить переменный ток, который за определённый промежуток времени (например 10 секунд) выделит на активной нагрузке то-же количество энергии, тепла на нагревательном элементе, резисторе, или разогреет спираль лампы накаливания до точно такой же светоотдачи, что и постоянный ток какой-то определённой величины за тот же промежуток времени (тоже 10 секунд) — то тогда действующее (эффективное) значение такого переменного тока будет равняться величине постоянного тока.

Все электроизмерительные приборы (амперметры, вольтметры), отградуированы для измерения действующего значения синусоидального тока или напряжения.

Что такое «Амплитудное значение» переменного тока?
Если объяснять попроще, то это самое максимальное значение (величина) синусоидального тока на самом пике (максимуме) синусоиды.
Амплитудное значение переменного тока можно измерить электронно — лучевым осциллографом, так как все осциллографы откалиброваны на измерение амплитудных значений.

Поскольку действующее значение переменного синусоидального тока пропорционально квадратному корню из площади, то оно получается в 1,41 раза меньше его амплитудного значения.
Проще говоря — если измерить величину переменного тока (напряжения) электроизмерительными приборами, отградуированными для измерения переменного синусоидального тока (напряжения), то есть например замерить величину переменного напряжения на вторичной обмотке трансформатора, — то амплитудное значение напряжения на этой обмотке будет соответственно в 1,41 раз больше замеренного.
Это справедливо только для переменного синусоидального тока (напряжения).

Все конденсаторы в выпрямительных фильтрах соответственно заряжаются до величины амплитудного значения.

Можно посчитать, что при действующем напряжении сети 220 В, амплитудное его значение будет составлять 310 вольт (220 помножить на 1,41).

Отсюда вытекает, что если собрать выпрямитель переменного действующего напряжения 220 вольт, то конденсаторы фильтра необходимо применять на рабочее напряжение не менее чем на 350 вольт, так как они заряжаются до амплитудного (максимального) значения переменного напряжения, а ещё лучше не менее 400 вольт, для обеспечения надёжности работы выпрямителя.

Для действующего значения переменного синусоидального напряжения (тока) — справедливы формулы для расчётов сопротивлений, мощности, действующих токов и напряжений — приведённые выше в Законе Ома для постоянного тока.

Ответим на вопросы в начале статьи;

Как рассчитать шунт для амперметра?
Большинство отечественных измерительных головок для амперметров, рассчитываются на полное отклонение при подведении к ним напряжения в 75 мВ (0,075 вольта). У них на шкале имеется надпись «НШ — 75 мВ», или «Наружный шунт 75 мв», или что-то подобное.
Нам стало известно две величины, а именно — необходимый нам ток полного отклонения и напряжение полного отклонения измерительной головки.
Например, нам нужно рассчитать шунт на 20 ампер. По Закону Ома 0,075 делим на 20 = 0,00375 Ом.
Изготовить такой шунт можно из медной проволоки, посмотрев её удельное сопротивление по таблице ЗДЕСЬ . Только необходимо брать проволоку, диаметром желательно не менее 1,5 мм, так как шунт при большом токе будет греться, и показания прибора будет изменяться (при нагреве проволоки увеличится её внутреннее сопротивление).

Почему из 12 вольт переменного напряжения, стало около 16 вольт постоянного — надеюсь Вам стало понятно. У переменного напряжения 12 вольт (действующее его значение) — амплитудное значение будет в 1,41 раз больше, то есть 16,92 вольта, минус около вольта падение напряжения на диодах. В итоге получается около 16 вольт — до которых и заряжаются электролитические конденсаторы фильтра.

Как правильно измерить мощность УНЧ?
Давайте для начала вспомним теорию.
Выходная мощность усилителей НЧ измеряется на синусоидальном сигнале. У идеального двухтактного выходного каскада, максимальное амплитудное значение синусоидального сигнала на выходе может приблизиться к величине равной половине напряжения источника питания.
У каскада по мостовой схеме, выходное напряжение может приблизиться к величине напряжения источника питания.
Говоря другими словами, у автомобильной магнитолы при напряжении питания 13,5 вольт, для двухтактного выходного каскада максимальное выходное напряжение (синус) будет 6,5 вольт, а его действующее значение 4,6 вольта, для мостовой схемы соответственно 13 В. и 9,2 вольта.
Возьмём минимальную нагрузку для этих усилителей 2 Ома, соответственно максимальная выходная мощность (исходя из Закона Джоуля — Ленца) для первой магнитолы, которую она выдаст теоретически — будет 10,6 ватта, для второй — 42,3 ватта (это для нагрузки 2 Ома). На практике не более 10 и не более 40, или и того меньше. Для 4-х Ом соответственно ещё в два раза меньше. Я не говорю уже об искажениях, здесь мы просто измеряем максимальную выходную мощность.

В бытовых условиях измерять выходной сигнала усилителя (при подаче на вход синусоидального сигнала), лучше обычными «цешками» или бытовыми «цифровиками», так как они сразу измеряют действующее значение синусоидального сигнала. На выход усилителя лучше включать при замерах эквивалент нагрузки, то есть сопротивления с мощностью рассеивания, не менее максимально расчётной мощности усилителя, и с сопротивлением, равному сопротивлению предполагаемой нагрузки (это, что-бы не раздражать себя и соседей звуками во время замеров). Дальше, зная максимальное выходное напряжение и сопротивление нагрузки, рассчитываем мощность по вышеприведённым формулам, то есть напряжение в квадрате делённое на сопротивление нагрузки.
Так, что если Вы в магазине увидите подобный аппарат, и продавец Вас будет уверять, что на канал он выдаёт по 60-80 ватт — это развод, рекламный ход и т.д., если только для питания этого усилителя не применяется повышающий преобразователь.

—>Категория : Начинающим | —>Просмотров : 606274 | —>Добавил : spb-nik

Понравилась статья — нажми на кнопку!