Принцип работы диода Шоттки, что такое диод Шоттки
От обычного диодного элемента он отличается маленьким падением напряжения. Помимо полупроводника, в составе имеет металл. Название – в честь немецкого физика Вальтера Шоттки, открывшего так называемый эффект Шоттки.
На заметку!
В качестве металла для стабилитрона Шоттки может быть карбид вольфрам, карбид кремния, палладий, платина, золото, арсенид галлия и другие.
Конструкция
Отличается диод Шоттки от обыкновенных диодов своей конструкцией, в которой используется металл-полупроводник, а не p-n переход. Понятно, что свойства здесь разные, а значит, и характеристики тоже должны отличаться.
Действительно, металл-полупроводник обладает такими параметрами:
- Имеет большое значение тока утечки,
- Невысокое падение напряжения на переходе при прямом включении,
- Восстанавливает заряд очень быстро, так как имеет низкое его значение.
Диод Шоттки изготавливается из таких материалов, как арсенид галлия, кремний, намного реже, но также может использоваться – германий. Выбор материала зависит от свойств, которые нужно получить, однако в любом случае максимальное обратное напряжение, на которое могут изготавливаться данные полупроводники, не выше 1200 вольт – это самые высоковольтные выпрямители. На практике же намного чаще их используют при более низком напряжении – 3, 5, 10 вольт.
Это означает сдвоенный элемент: два диода в одном корпусе с общим анодом или катодом, поэтому элемент имеет три вывода. В блоках питания используют такие конструкции с общим катодом, их удобно использовать в схемах выпрямителей. Часто на схемах рисуется маркировка обычного диода, но в описании указывается, что это Шоттки, поэтому нужно быть внимательными.
Диодные сборки с барьером Шоттки выпускаются трех типов:
1 тип – с общим катодом,
2 тип – с общим анодом,
3 тип – по схеме удвоения.
Такое соединение помогает увеличить надежность элемента: ведь находясь в одном корпусе, они имеют одинаковый температурный режим, что важно, если нужны мощные выпрямители, например, на 10 ампер.
Но есть и минусы. Все дело в том, что малое падение напряжения (0,2–0,4 в) у таких диодов проявляется на небольших напряжениях, как правило – 50–60 вольт. При более высоком значении они ведут себя как обычные диоды. Зато по току эта схема показывает очень хорошие результаты, ведь часто бывает необходимо – особенно в силовых цепях, модулях питания – чтобы рабочий ток полупроводников был не ниже 10а.
Еще один главный недостаток: для этих приборов нельзя превышать обратный ток даже на мгновение. Они тут же выходят из строя, в то время как кремниевые диоды, если не была превышена их температура, восстанавливают свои свойства.
Но положительного все-таки больше. Кроме низкого падения напряжения, диод Шоттки имеет низкое значение емкости перехода. Как известно: ниже емкость – выше частота. Такой диод нашел применение в импульсных блоках питания, выпрямителях и других схемах, с частотами в несколько сотен килогерц.
Вольтамперная характеристика светодиода (ВАХ)
ВАХ такого диода имеет несимметричный вид. Когда приложено прямое напряжение, видно, что ток растет по экспоненте, а при обратном – ток от напряжения не зависит.
Все это объясняется, если знать, что принцип работы этого полупроводника основан на движении основных носителей – электронов. По этой же самой причине эти приборы и являются такими быстродействующими: у них отсутствуют рекомбинационные процессы, свойственные приборам с p-n переходами. Для всех приборов, имеющих барьерную структуру, свойственна несимметричность ВАХ, ведь именно количеством носителей электрического заряда обусловлена зависимость тока от напряжения.
Как устроен диод Шоттки
Структура элемента включает в себя несколько частей:
- эпитаксиальный слой;
- подложка;
- охранное кольцо;
- металлическая пленка;
- барьер;
- внешний контакт.
Основа, как правило, изготавливается из кремния или арсенида галлия, но если требуется обеспечить схеме высокую устойчивость к изменению температурного режима, используется германий. В качестве материала для напыления применяется палладий, серебро, платина, вольфрам, алюминий или золото. Примечательно, что тыльная сторона полупроводника легируется сильнее. Уровень легирования и разновидность металла оказывают влияние на характеристики выпрямления.
Принцип работы основан на особенностях барьера. В полупроводнике, в контактной области, образуется слой, значительно обедненный электронами, но обладающий вентильными свойствами. Таким образом, появляется барьер для носителей заряда.
В зависимости от мощности существует несколько типов диодов Шоттки:
Исходя из конструктивных особенностей, различают виды для поверхностного или объемного монтажа, а также модули и выпрямительные аналоги. Выбирая выпрямительные компоненты, следует обращать внимание на показатели тока и напряжения, а также материал конструкции и способ монтирования. Также различают 3 вариации диодных сборок: модели с общим анодом, элементы с удвоением и тремя выводами, а также разновидности, которые имеют вывод с общего катода. Для всех типов действует ограничение допустимого обратного напряжения, величиной 1200 вольт.
Разновидности диодов Шоттки
Все полупроводниковые элементы, работающие по принципу барьера Шоттки, делятся по мощности на:
- высокой;
- средней;
- малой мощности.
Сдвоенный диод
На рисунке показан сдвоенный элемент, являющий собой по сути два элемента. Они расположены в едином корпусе, в одно целое соединены катодом или анодом. В этом случае чаще всего имеется три вывода диода. При идентичных параметрах собранных таким образом элементов обеспечивается надежность работы всего устройства, в первую очередь, за счет единой температуры.
Условное обозначение и характеристики
На схеме диод Шоттки имеет особое обозначение. Отличие от обычного состоит в том, что перекладина у треугольника имеет загнутые края. Не один, как у стабилитрона, а оба. И края эти загнуты в разные стороны. На рисунке приведено обозначение по ГОСТу.
Диод Шоттки на схеме: условное обозначение
Про характеристики уже говорили. Это три основных параметра:
- Падение напряжения при прямом переходе. Для диодов Шоттки оно ниже, чем у обычных кремневых. При мощности обратного пробоя до 100 В оно будет порядка 0,2-0,4 В (у кремниевых в среднем 0,6–07 В).
- Напряжение пробоя. Обычное значение — до 200 В, но есть и изделия с напряжением более 1000 вольт.
- Параметры популярной серии диодов Шоттки 1N58**
- Обратный ток. В нормальных условиях (до 20 °C) он не слишком велик — порядка 0,05 мА, но при повышении температуры резко повышается.
Приведённые параметры — средние. Есть довольно серьёзный разбег и для каждого случая можно подобрать нужные характеристики по каждому из пунктов. Иногда ещё важен такой параметр, как скорость переключения (быстродействие).
Основные характеристики диодов
Для начала вспомним, что такое обычный диод и как он работает. Это полупроводниковый прибор, который стоит из двух зон. При определённых условиях через этот переход перемещаются электроны.
Устройство и обозначение диода
Основное свойство элемента — он пропускает ток в одном направлении, и не пропускает в другом. Диоды Шоттки имеет такие же характеристики, как и обычные. На некоторых заострим внимание поподробнее. Это падение напряжения, обратный ток, обратное напряжение, частота.
Диод Шоттки отличается от обычных кремниевых диодов
Диод Шоттки делают из кремния (Si), арсенида галлия (GaAs) и редко — на основе германия (Ge). Металл в соединении с полупроводником определяет многие параметры диода. Этим металлом, может быть, золото (Au), ралладий (Pd), платина (Pt), вольфрам (W) которые наносятся на полупроводники.
А также как и обычный диод соединение полупроводник-металл обладает односторонней проводимостью с рядом положительных, а также отрицательных качеств.
Вольт-амперная характеристика диода шоттки
Вольт-амперная характеристика диода Шоттки отличается от обычного полупроводникового большей нелинейностью.
Что дает использование соединения металл-полупроводник? Два положительных момента:
-
- Очень небольшое падение напряжения на прямом переходе — 0,2-0,4 В. Для кремниевого диода «среднее» значение этого параметра — 0,7 В. Правда, малое падение напряжения имеют только приборы с небольшим напряжением пробоя — до 100 В. Для более мощных это падение только чуть ниже, чем у кремниевых.
- Высокое быстродействие. То есть, он быстро меняет своё состояние. Переход из открытого состояния в закрытое и обратно происходит за очень короткий промежуток времени и определяется только барьерной ёмкостью. Их применяют в системах коммутации, где важна скорость реакции.
Что такое диод Шоттки и как он обозначается на схеме
Есть у них и минусы. При повышении температуры у них значительно возрастает обратный ток.
Второй недостаток — при превышении максимально допустимого обратного напряжения происходит необратимый пробой. То есть, прибор выходит из строя. Есть и ещё один минус — малое падение прямого напряжения только у диодов Шоттки с малым напряжением пробоя (до сотни вольт). У вариантов с более высоким напряжением потери сравнимы с кремниевыми.
Применение в электронике
Такие свойства, как быстродействие и малое падение напряжения позволяет использовать диоды Шоттки в высокочастотных схемах. Например, в силовых высокочастотных выпрямителях (до сотен килогерц), где они работают как высокочастотные выпрямители. Применяют их и в усилителях звука, так как по сравнению с обычными диодами они дают меньший уровень помех.
Если вы посмотрите на плату источника питания, точно увидите диод Шоттки
Ещё одна область применения — составная часть более сложных полупроводниковых приборов. Например, МОП — транзисторы, диодные сборки и силовые диоды со встроенным диодом Шоттки имеют лучшие характеристики.
Сфера применения изделий велика, но наиболее часто их применяют в блоках питания компьютеров. А также в схемах для модуляции света в приёмниках излучения, солнечных батареях.
Отличия от обычного диода
Данный компонент пропускает электрический ток в одном направлении и не пропускает его в другом, как и другие классические диоды, но обеспечивает высокое быстродействие и малое падение напряжения при переходе.
Важнейшая особенность диода Шоттки – вместо привычного электронно-дырочного перехода применяется принцип контакта между металлическими и различными полупроводниковыми материалами, что положительно влияет на повышение рабочей частоты. Диффузная емкость и процесс рекомбинации не проявляются в области контакта, поскольку в так называемой переходной зоне отсутствуют неосновные носители заряда. Собственная емкость данного слоя при этом стремится к 0.
Таким образом, данные изделия являются СВЧ-диодами различного назначения:
- импульсными;
- лавинно-пролетными;
- смесительными;
- детекторными;
- умножительными;
- параметрическими.
Другая особенность заключается в том, что большая часть диодов Шоттки состоит из низковольтных и чувствительных к статическому напряжению моделей. Однако воспринимать это как категорический недостаток неверно, поскольку это дает возможность использовать данные средства для обработки радиосигналов малой мощности.
Наконец, такие изделия отличаются большей стабильностью при подаче электрического тока, чем прочие аналоги, поскольку в их корпус внедрены кристаллические образования (кремниевая подложка).
Обратное напряжение диода Шоттки
Итак, как вы помните, диод пропускает электрический ток только в одном направлении, а в другом направлении блокирует прохождение электрического тока до какого-то критического значения, называемым обратным напряжением диода.
Это значение можно найти в даташите
обратное напряжение диода
Для каждой марки диода оно разное
Если превысить это значение, то произойдет пробой, и диод выйдет из строя.
Миниатюризация
С развитием микроэлектроники стали широко применяться специальные микросхемы, однокристальные микропроцессоры. Все это не исключает использования навесных элементов. Однако если для этой цели использовать радиоэлементы обычных размеров, то это сведет на нет всю идею миниатюризации в целом. Поэтому были разработаны бескорпусные элементы – smd компоненты, которые в 10 и более раз меньше обычных деталей. ВАХ таких компонентов ничем не отличается от ВАХ обычных приборов, а их уменьшенные размеры позволяют использовать такие запчасти в различных микросборках.
Компоненты smd имеют несколько типоразмеров. Для ручной пайки подходят smd размера 1206. Они имеют размер 3,2 на 1,6 мм, что позволяет их впаивать самостоятельно. Другие элементы smd более миниатюрные, собираются на заводе специальным оборудованием, и самому, в домашних условиях, их паять невозможно.Принцип работы smd компонента также не отличается от его большого аналога, и если, к примеру, рассматривать ВАХ диода, то она в одинаковой степени будет подходить для полупроводников любого размера. По току изготавливаются от 1 до 10 ампер. Маркировка на корпусе часто состоит из цифрового кода, расшифровка которого приводится в специальных таблицах. Протестировать на пригодность их можно тестером, как и большие аналоги.
Металл и полупроводник: особенности контакта
В контактной области полупроводниковых и металлических материалов эффект Шоттки приводит к образованию в полупроводнике слоя, сильно обеднённого электронами. Он обладает вентильными свойствами, присущими полупроводниковому p-n-переходу. Эта зона представляет собой преграду для носителей заряда, поэтому данные радиокомпоненты часто называют диодами с барьером Шоттки.
Элементы отличаются от обычных полупроводниковых вентилей следующими качествами:
- пониженное падение напряжения при прямом смещении;
- незначительная собственная ёмкость;
- малый обратный ток;
- низкое допустимое обратное напряжение.
При прямом смещении разность потенциалов на диоде Шоттки не превышает 0,5 В, тогда как на обычном выпрямительном вентиле падение напряжения составляет около 2-3 В. Это объясняется небольшим сопротивлением переходного участка между полупроводником и металлом. В таблице ниже представлены характеристики диодов Шоттки.
Хорошие частотные характеристики диодов Шоттки обусловлены отсутствием в переходной зоне неосновных носителей заряда. Из-за этого в контактной области не протекают обычные для чисто полупроводникового p-n-перехода процессы диффузии и рекомбинации дырок и электронов.
Следовательно, собственная ёмкость этого слоя стремится к нулю. Данное свойство делает диоды с барьером Шоттки предпочтительными для использования в высоко- и сверхвысокочастотных схемах, а также аппаратуре с импульсными режимами работы – всевозможных цифровых устройствах, системах управления электроникой и импульсных блоках питания.
Падение напряжения на диоде Шоттки
Если же подать прямой ток на диод, то на диоде будет “оседать” напряжение. Это падение напряжения называется прямым падением напряжения на диоде. В даташитах обозначается как Vf , то есть Voltage drop.
прямое падение напряжения на диоде
Если пропустить через такой диод прямой ток, то мощность, которая будет на нем рассеиваться, будет определяться формулой:
Vf – прямое падение напряжение на диоде, В
I – сила тока через диод, А
Поэтому, одним из главных преимуществ диода Шоттки является то, что его прямое падение напряжения намного меньше, чем у простого диода. Следовательно, он будет меньше рассеивать тепло, или простым языком, меньше нагреваться.
Давайте рассмотрим один из примеров. Возьмем диод 1N4007. Его прямое падение напряжения составляет 0,83 Вольт, что типично для простого полупроводникового диода.
падение напряжение на диоде в прямом включении
В настоящий момент через него проходит сила тока, равная 0,5 А. Давайте рассчитаем его рассеиваемую мощность в данный момент. P=0,83 x 0,5 = 0,415 Вт.
Если рассмотреть этот случай через тепловизор, то можно увидеть, что его температура корпуса составила 54,4 градуса по Цельсию.
Теперь давайте проведем тот же самый эксперимент с диодом Шоттки 1N5817. Как вы видите, его прямое падение напряжения составило примерно 0,35 В.
падение напряжения на диоде Шоттки при прямом включении
При прохождении силы тока через диод Шоттки в 0,5 А, мы получим рассеиваемую мощность P=0,5 x 0,35 = 0,175 Вт. При этом тепловизор нам покажет, что температура корпуса уже будет 38,2 градуса.
Следовательно, Шоттки намного эффективнее, чем простой полупроводниковый диод в плане пропускания через себя прямого тока, так как он обладает меньшим падением напряжения, а следовательно, меньше рассеивает тепло в окружающее пространство и меньше нагревается.
Прямое падение напряжения можно также посмотреть и в даташитах. Например, прямое падение напряжения на диоде Шоттки 1N5817 можно найти из графика зависимости прямого тока от падения напряжения на диоде Шоттки
график зависимости прямого тока от напряжения
В нашем случае если следовать графо-аналитическому способу, то мы как раз получаем значение 0,35 В
Диод Шоттки в ВЧ цепях
Также диоды Шоттки обладают быстрой скоростью переключения. Это значит, что мы можем использовать их в высокочастотных (ВЧ) цепях.
Итак, возьмем генератор частоты и выставим синус частотой в 60 Гц
Возьмем диод 1N4007 и диод Шоттки 1N5817. Подключим их по простой схеме однополупериодного выпрямителя
и будем снимать с них показания
Как вы видите, оба они прекрасно справляются со своей задачей по выпрямлению сигнала на частоте в 60 Гц.
Но что будет, если мы увеличим частоту до 300 кГц?
Ого! Диод Шоттки более-менее справляется со своей задачей, что нельзя сказать о простом диоде 1N4007. Простой диод не может справиться со своей задачей не пропускать обратный ток, поэтому на осциллограмме мы видим отрицательный выброс
Отсюда можно сделать вывод: диоды Шоттки рекомендуется использовать в ВЧ цепях.
Обратный ток утечки
Но раз уж диоды Шоттки такие крутые, то почему бы их не использовать везде? Почему мы до сих пор используем простые диоды?
Если мы подключим диод в обратном направлении, то он будет блокировать прохождение электрического тока. Это верно, но не совсем. Очень маленький ток все равно будет проходить через диод. В некоторых случаях это не принимают во внимание. Этот маленький ток называется обратным током утечки. На английский манер это звучит как reverse leakage current.
Он очень мал, но имеет место быть.
Проведем простой опыт. Возьмем лабораторный блок питания, выставим на нем 19 В и подадим это напряжение на диод в обратном направлении
Замеряем ток утечки
обратный ток утечки диода
Как вы видите, его значение составляет 0,1 мкА.
Давайте теперь повторим этот же самый опыт с диодом Шоттки
обратный ток утечки диода Шоттки
Ого, уже почти 20 мкА! Ну да, в некоторых случаях это сущие копейки и ими можно пренебречь. Но есть схемы, где все-таки недопустим такой незначительный ток. Например, в схемах пикового детектора
схема пик детектора
В этом случае эти 20 мкА будут весьма значительны.
Но есть также еще один камень преткновения. С увеличением температуры обратный ток утечки возрастает в разы!
зависимость обратного тока утечки от температуры корпуса диода Шоттки
Поэтому, вы не можете использовать Шоттки везде в схемах.
Но и это еще не все. Обратное напряжение для диодов Шоттки в разы меньше, чем для простых выпрямительных диодов. Это можно также увидеть из даташита. Если для диода 1N4007 обратное напряжение составляет 1000 В
То для диода Шоттки 1N5817 это обратное напряжение уже будет составлять всего-то 20 В
Поэтому, если это напряжение превысит значение, которое описано в даташите, мы в итоге получим:
Низковольтные диоды
Особенность диодов Шоттки состоит в том, что они являются низковольтными. Если приложенная разность потенциалов превышает некоторый допустимый уровень, то в соответствии с квантовыми законами происходит пробой, который в обычном полупроводниковом радиокомпоненте может быть туннельным, лавинным или тепловым. После первых двух диод восстанавливается и продолжает исправно работать. Тепловой пробой означает фатальную поломку.
Мост из диодов Шоттки
Однако чувствительность этих радиокомпонентов не всегда является их недостатком. Например, благодаря этой характеристике диоды с барьером Шоттки используются в особо чувствительных гетеродинах, которые получают способность обрабатывать радиосигналы очень малой мощности.
- Максимальное постоянное обратное напряжение;
- Максимальное импульсное обратное напряжение;
- Максимальный (средний) прямой ток;
- Максимальный импульсный прямой ток;
- Постоянное прямое напряжение на диоде при заданном прямом токе через него;
- Обратный ток диода при предельном обратном напряжении;
- Максимальная рабочая частота диода;
- Время обратного восстановления;
- Общая емкость диода.
В диодах с барьером Шоттки пробой всегда бывает только тепловым. Такова особенность металло-полупроводникового перехода. При большом обратном смещении элемент выходит из строя и нуждается в замене. Этим, кстати, объясняется сильная чувствительность диодов Шоттки к статическому электричеству – при их монтаже и обслуживании радиоаппаратуры с этими элементами необходимо заземлять спецодежду и инструменты.
Диод Шоттки на электросхеме
Производство диодов Шоттки
В качестве полупроводниковой составляющей используются стандартные материалы – кремний, германий и арсенид галлия. На них в процессе изготовления радиокомпонентов напыляются такие металлы, как золото, серебро, палладий, вольфрам. Именно эти элементы таблицы Менделеева обеспечивают достаточно высокий потенциальный барьер, определяющий функциональность диодов Шоттки. Германиевые радиокомпоненты показывают высокую устойчивость к изменению температурного режима, поэтому данный материал чаще кремния и арсенида галлия используется при производстве диодов для мощных схем питания. Зато кремниевые и галлиевые элементы демонстрируют лучшие частотные параметры.
Плюсы и минусы
При работе с устройствами, включающими в себя диод Шоттки, следует учитывать их положительные и отрицательные стороны. Если подключить его в качестве элемента электрической цепи, он будет прекрасно удерживать ток, не допуская его больших потерь.
К тому же, металлический барьер обладает минимальной емкостью. Это значительно увеличивает износостойкость и срок службы самого диода. Падение напряжения при его использовании минимально, а действие происходит очень быстро — стоит только провести подключение.
Однако большой процент обратного тока является очевидным недостатком. Поскольку многие электроприборы обладают высокой чувствительностью, нередки случаи, когда небольшое превышение показателя, всего лишь на пару А, способно надолго вывести прибор из строя. Также, при небрежной проверке напряжения полупроводника, может произойти утечка самого диода.
Отличие от других полупроводников
Достоинство такого стабилитрона в том, что потери напряжения на нем ниже – всего 0,2 – 0, 4 вольта, тогда как, например, у обычных полупроводниковых элементов с кремнием – 0,6–0,7 вольта.
Кроме этого они отличаются более стабильной работой при подаче тока. Внутрь корпуса помещаются специальные кристаллы. Это очень тонкая работа, которую выполняют только запрограммированные роботы.
Наглядно, как отличить стабилитрон Шоттки от остальных с помощью мультиметра:
- https://LampaSveta.com/svetodiody/diod-shottki
- https://electricvdele.ru/elektrooborudovanie/komponenty/diod-shottki.html
- https://www.RadioElementy.ru/articles/diody-shottki-chto-eto-takoe-chem-otlichaetsya-kak-rabotaet/
- https://principraboty.ru/princip-raboty-dioda-shottki-chto-tako-diod-shottki/
- https://elektroznatok.ru/info/elektronika/diod-s-barerom-shottki
- https://www.RusElectronic.com/schottky-diode/
- https://ElectroInfo.net/poluprovodniki/kak-rabotaet-diod-s-barerom-shottki.html
- https://batteryk.com/diod-shottki-printsip-raboty
Диод шоттки отличие от обычного диода
Диоды Шоттки: описание, принцип работы, схема, основные параметры, применение, характеристики
В конце 30-х годов XX века немецкий физик Вальтер Шоттки обнаружил, что внешнее электрическое поле заставляет свободные электроны покидать зону проводимости и в буквальном смысле выходить из твёрдого тела. Данная квантовая зависимость впоследствии была названа именем её первооткрывателя и теперь известна, как эффект Шоттки.
Несмотря на то, что открытие германского учёного относится к области теоретической физики, оно находит применение в практической радиотехнике и лежит в основе функциональности таких радиокомпонентов, как диоды Шоттки. Их отличие от обычных электрических вентилей заключается в отсутствии классического полупроводникового p-n-перехода. Его роль играет контакт между полупроводником и металлом.
Металл и полупроводник: особенности контакта.
В контактной области полупроводниковых и металлических материалов эффект Шоттки приводит к образованию в полупроводнике слоя, сильно обеднённого электронами. Он обладает вентильными свойствами, присущими полупроводниковому p-n-переходу. Эта зона представляет собой преграду для носителей заряда, поэтому данные радиокомпоненты часто называют диодами с барьером Шоттки.
Элементы отличаются от обычных полупроводниковых вентилей следующими качествами:
- пониженное падение напряжения при прямом смещении;
- незначительная собственная ёмкость;
- малый обратный ток;
- низкое допустимое обратное напряжение.
При прямом смещении разность потенциалов на диоде Шоттки не превышает 0,5 В, тогда как на обычном выпрямительном вентиле падение напряжения составляет около 2-3 В. Это объясняется небольшим сопротивлением переходного участка между полупроводником и металлом.
Хорошие частотные характеристики диодов Шоттки обусловлены отсутствием в переходной зоне неосновных носителей заряда. Из-за этого в контактной области не протекают обычные для чисто полупроводникового p-n-перехода процессы диффузии и рекомбинации дырок и электронов. Следовательно, собственная ёмкость этого слоя стремится к нулю. Данное свойство делает диоды с барьером Шоттки предпочтительными для использования в высоко- и сверхвысокочастотных схемах, а также аппаратуре с импульсными режимами работы – всевозможных цифровых устройствах, системах управления электроникой и импульсных блоках питания.
Низковольтные диоды.
Особенность диодов Шоттки состоит в том, что они являются низковольтными. Если приложенная разность потенциалов превышает некоторый допустимый уровень, то в соответствии с квантовыми законами происходит пробой, который в обычном полупроводниковом радиокомпоненте может быть туннельным, лавинным или тепловым. После первых двух диод восстанавливается и продолжает исправно работать. Тепловой пробой означает фатальную поломку.
В диодах с барьером Шоттки пробой всегда бывает только тепловым. Такова особенность металло-полупроводникового перехода. При большом обратном смещении элемент выходит из строя и нуждается в замене. Этим, кстати, объясняется сильная чувствительность диодов Шоттки к статическому электричеству – при их монтаже и обслуживании радиоаппаратуры с этими элементами необходимо заземлять спецодежду и инструменты.
Однако чувствительность этих радиокомпонентов не всегда является их недостатком. Например, благодаря этой характеристике диоды с барьером Шоттки используются в особо чувствительных гетеродинах, которые получают способность обрабатывать радиосигналы очень малой мощности.
Основные параметры.
- Максимальное постоянное обратное напряжение;
- Максимальное импульсное обратное напряжение;
- Максимальный (средний) прямой ток;
- Максимальный импульсный прямой ток;
- Постоянное прямое напряжение на диоде при заданном прямом токе через него;
- Обратный ток диода при предельном обратном напряжении;
- Максимальная рабочая частота диода;
- Время обратного восстановления;
- Общая емкость диода.
Читайте также: Хабаровск саженцы
Производство диодов Шоттки.
В качестве полупроводниковой составляющей используются стандартные материалы – кремний, германий и арсенид галлия. На них в процессе изготовления радиокомпонентов напыляются такие металлы, как золото, серебро, палладий, вольфрам. Именно эти элементы таблицы Менделеева обеспечивают достаточно высокий потенциальный барьер, определяющий функциональность диодов Шоттки.
Германиевые радиокомпоненты показывают высокую устойчивость к изменению температурного режима, поэтому данный материал чаще кремния и арсенида галлия используется при производстве диодов для мощных схем питания. Зато кремниевые и галлиевые элементы демонстрируют лучшие частотные параметры.
Обозначение, применение и параметры диодов Шоттки
К многочисленному семейству полупроводниковых диодов названных по фамилиям учёных, которые открыли необычный эффект, можно добавить ещё один. Это диод Шоттки.
Немецкий физик Вальтер Шоттка открыл и изучил так называемый барьерный эффект возникающий при определённой технологии создания перехода металл-полупроводник.
Основной «фишкой» диода Шоттки является то, что в отличие от обычных диодов на основе p-n перехода, здесь используется переход металл-полупроводник, который ещё называют барьером Шоттки. Этот барьер, так же, как и полупроводниковый p-n переход, обладает свойством односторонней электропроводимости и рядом отличительных свойств.
В качестве материала для изготовления диодов с барьером Шоттки преимущественно используется кремний (Si) и арсенид галлия (GaAs), а также такие металлы как золото, серебро, платина, палладий и вольфрам.
На принципиальных схемах диод Шоттки изображается вот так.
Как видим, его изображение несколько отличается от обозначения обычного полупроводникового диода.
Кроме такого обозначения на схемах можно встретить и изображение сдвоенного диода Шоттки (сборки).
Сдвоенный диод – это два диода смонтированных в одном общем корпусе. Выводы катодов или анодов у них объединены. Поэтому такая сборка, как правило, имеет три вывода. В импульсных блоках питания обычно применяются сборки с общим катодом.
Так как два диода размещены в одном корпусе и выполнены в едином технологическом процессе, то их параметры очень близки. Поскольку они размещены в едином корпусе, то и температурный режим их одинаков. Это увеличивает надёжность и срок службы элемента.
У диодов Шоттки есть два положительных качества: весьма малое прямое падение напряжения (0,2-0,4 вольта) на переходе и очень высокое быстродействие.
К сожалению, такое малое падение напряжения проявляется при приложенном напряжении не более 50-60 вольт. При дальнейшем его повышении диод Шоттки ведёт себя как обычный кремниевый выпрямительный диод. Максимальное обратное напряжение для Шоттки обычно не превышает 250 вольт, хотя в продаже можно встретить образцы, рассчитанные и на 1,2 киловольта (VS-10ETS12-M3).
Так, сдвоенный диод Шоттки (Schottky rectifier) 60CPQ150 рассчитан на максимальное обратное напряжение 150V, а каждый из диодов сборки способен пропустить в прямом включении 30 ампер!
Также можно встретить образцы, выпрямленный за полупериод ток которых может достигать 400А максимум! Примером может служит модель VS-400CNQ045.
Очень часто в принципиальных схемах сложное графическое изображение катода попросту опускают и изображают диод Шоттки как обычный диод. А тип применяемого элемента указывают в спецификации.
К недостаткам диодов с барьером Шоттки можно отнести то, что даже при кратковременном превышении обратного напряжения они мгновенно выходят из строя и главное необратимо. В то время как кремниевые силовые вентили после прекращения действия превышенного напряжения прекрасно самовосстанавливаются и продолжают работать. Кроме того обратный ток диодов очень сильно зависит от температуры перехода. На большом обратном токе возникает тепловой пробой.
К положительным качествам диодов Шоттки кроме высокого быстродействия, а, следовательно, малого времени восстановления можно отнести малую ёмкость перехода (барьера), что позволяет повысить рабочую частоту. Это позволяет использовать их в импульсных выпрямителях на частотах в сотни килогерц. Очень много диодов Шоттки находят своё применение в интегральной микроэлектронике. Выполненные по нано технологии диоды Шоттки входят в состав интегральных схем, где они шунтируют переходы транзисторов для повышения быстродействия.
Читайте также: Держатель для гигиенического душа grohe
В радиолюбительской практике прижились диоды Шоттки серии 1N581x (1N5817, 1N5818, 1N5819). Все они рассчитаны на максимальный прямой ток (IF(AV)) – 1 ампер и обратное напряжение (VRRM) от 20 до 40 вольт. Падение напряжения (VF) на переходе составляет от 0,45 до 0,55 вольт. Как уже говорилось, прямое падение напряжения (Forward voltage drop) у диодов с барьером Шоттки очень мало.
Также достаточно известным элементом является 1N5822. Он рассчитан на прямой ток в 3 ампера и выполнен в корпусе DO-201AD.
Также на печатных платах можно встретить диоды серии SK12 – SK16 для поверхностного монтажа. Они имеют довольно небольшие размеры. Несмотря на это SK12-SK16 выдерживают прямой ток до 1 ампера при обратном напряжении 20 – 60 вольт. Прямое падение напряжения составляет 0,55 вольт (для SK12, SK13, SK14) и 0,7 вольт (для SK15, SK16). Также на практике можно встретить диоды серии SK32 – SK310, например, SK36, который рассчитан на прямой ток 3 ампера.
Применение диодов Шоттки в источниках питания.
Диоды Шоттки активно применяются в блоках питания компьютеров и импульсных стабилизаторах напряжения. Среди низковольтных питающих напряжений самыми сильноточными (десятки ампер) являются напряжения +3,3 вольта и +5,0 вольт. Именно в этих вторичных источниках питания и используются диоды с барьером Шоттки. Чаще всего используются трёхвыводные сборки с общим катодом. Именно применение сборок может считаться признаком высококачественного и технологичного блока питания.
Выход из строя диодов Шоттки одна из наиболее часто встречающихся неисправностей в импульсных блоках питания. У него может быть два «дохлых» состояния: чистый электрический пробой и утечка. При наличии одного из этих состояний блок питания компьютера блокируется, так как срабатывает защита. Но это может происходить по-разному.
В первом случае все вторичные напряжения отсутствуют. Защита заблокировала блок питания. Во втором случае вентилятор «подёргивается» и на выходе источников питания периодически то появляются пульсации напряжения, то пропадают.
То есть схема защиты периодически срабатывает, но полной блокировки источника питания при этом не происходит. Диоды Шоттки гарантированно вышли из строя, если радиатор, на котором они установлены, разогрет очень сильно до появления неприятного запаха. И последний вариант диагностики связанный с утечкой: при увеличении нагрузки на центральный процессор в мультипрограммном режиме блок питания самопроизвольно отключается.
Следует иметь в виду, что при профессиональном ремонте блока питания после замены вторичных диодов, особенно с подозрением на утечку, следует проверить все силовые транзисторы выполняющие функцию ключей и наоборот: после замены ключевых транзисторов проверка вторичных диодов является обязательной процедурой. Всегда необходимо руководствоваться принципом: беда одна не приходит.
Проверка диодов Шоттки мультиметром.
Проверить диод Шоттки можно с помощью рядового мультиметра. Методика такая же, как и при проверке обычного полупроводникового диода с p-n переходом. Но и тут есть подводные камни. Особенно трудно проверить диод с утечкой. Прежде всего, элемент необходимо выпаять из схемы для более точной проверки. Достаточно легко определить полностью пробитый диод. На всех пределах измерения сопротивления неисправный элемент будет иметь бесконечно малое сопротивление, как в прямом, так и в обратном включении. Это равносильно короткому замыканию.
Сложнее проверить диод с подозрением на «утечку». Если проводить проверку мультиметром DT-830 в режиме «диод», то мы увидим совершенно исправный элемент. Можно попробовать измерить в режиме омметра его обратное сопротивление. На пределе «20кОм» обратное сопротивление определяется как бесконечно большое. Если же прибор показывает хоть какое-то сопротивление, допустим 3 кОм, то этот диод следует рассматривать как подозрительный и менять на заведомо исправный. Стопроцентную гарантию может дать полная замена диодов Шоттки по шинам питания +3,3V и +5,0V.
Читайте также: Варианты ландшафтного дизайна дачного участка своими руками
Где ещё в электронике используются диоды Шоттки? Их можно обнаружить в довольно экзотических приборах, таких как приёмники альфа и бета излучения, детекторах нейтронного излучения, а в последнее время на барьерных переходах Шоттки собирают панели солнечных батарей. Так, что они питают электроэнергией и космические аппараты.
Диод Шоттки — полупроводниковый диод с малым падением напряжения при прямом включении. Назван в честь немецкого физика Вальтера Шоттки. В специальной литературе часто используется более полное название — Диод с барьером Шоттки.
В диодах Шоттки в качестве барьера Шоттки используется переход металл-полупроводник, в отличие от обычных диодов, где используется p-n-переход. Переход металл-полупроводник обладает рядом особенных свойств (отличных от свойств полупроводникового p-n-перехода). К ним относятся: пониженное падение напряжения при прямом включении, высокий ток утечки, очень маленький заряд обратного восстановления. Последнее объясняется тем, что по сравнению с обычным p-n-переходом у таких диодов отсутствует диффузия, связанная с инжекцией неосновных носителей, т.е. они работают только на основных носителях, а их быстродействие определяется только барьерной ёмкостью.
Диоды Шоттки изготавливаются обычно на основе кремния (Si) или арсенида галлия (GaAs), реже — на основе германия (Ge). Выбор металла для контакта с полупроводником определяет многие параметры диода Шоттки. В первую очередь — это величина контактной разности потенциалов, образующейся на границе металл-полупроводник. При использовании диода Шоттки в качестве детектора она определяет его чувствительность, а при использовании в смесителях — необходимую мощность гетеродина. Поэтому чаще всего используются металлы Ag, Au, Pt, Pd, W, которые наносятся на полупроводник и дают величину потенциального барьера 0,2. 0,9 эВ.
Допустимое обратное напряжение выпускаемых диодов Шоттки ограничено 1200 вольтами (CSD05120 и аналоги), на практике большинство диодов Шоттки применяются в низковольтных цепях при обратном напряжении порядка единиц и нескольких десятков вольт.
Свойства диодов Шоттки [ править | править код ]
Номенклатура диодов Шоттки [ править | править код ]
Диоды Шоттки — составные части современных дискретных полупроводниковых приборов:
- МОП-транзисторы со встроенным обратным диодом Шоттки (впервые выпущены компанией International Rectifier под торговой маркой FETKY в 1996) — основной компонент синхронных выпрямителей. В отличие от обычного МОП-транзистора, обратный диод которого отличается высоким прямым падением напряжения и посредственными временны́ми характеристиками (так как представляет собой обычный диод на p-n переходе, образуемый областями стока и подложкой, объединённой с истоком), использование обратного диода Шоттки позволяет строить силовые синхронные выпрямители с частотой преобразования в сотни кГц и выше. Существуют приборы этого класса со встроенными драйверами затворов и устройствами управления синхронным выпрямлением.
- Так называемые ORing [3] -диоды и ORing-сборки — силовые диоды и диодные сборки, применяемые для объединения параллельных источников питания общей нагрузки в устройствах повышенной надёжности (логическое ИЛИ по питанию). Отличаются особо низким, нормируемым прямым падением напряжения. Например, специализированный миниатюрный диод MBR140 (30 В, 1 А) при токе 100 мА имеет прямое падение напряжения не более 360 мВ при +25 °C и 300 мВ при +85 °C. ORing-диоды характеризуются относительно большой площадью p-n-перехода и низкими удельными плотностями тока.
Понравилась статья? Поделись с друзьями!
Падение напряжения на диоде: что, почему, как и подробные факты
В этой статье мы обсудим падение напряжения на диоде, почему оно возникает и как его рассчитать. Диод — это полупроводниковый прибор, который позволяет протекать току в одном направлении и ограничивает протекание тока с другой стороны.
Падение напряжения на диоде в основном относится к падению напряжения прямого смещения. Это происходит в диоде, присутствующем в электрической цепи, когда через него проходит ток. Это прямое падение напряжения смещения является результатом действия обедненной области, образованной PN-переходом под действием приложенного напряжения.
Что такое падение напряжения на диоде?
Падение напряжения на диоде является результатом протекания тока от анода к катоду. Когда диод находится в прямом смещении, падение потенциала на нем известно как падение напряжения на диоде или прямое падение напряжения.
В идеале не должно быть никакого падения напряжения на диоде, когда он пропускает ток и работает, чтобы генерировать выходное напряжение постоянного тока. В реальной жизни небольшое падение напряжения происходит из-за прямого сопротивления и прямого напряжения пробоя. Для кремния падение напряжения на диоде составляет около 0.7 Вольт.
Сколько падает напряжение на диоде?
Любой диод падает определенное количество напряжения на своих клеммах. Падение напряжения на диоде 0.7 В означает, что напряжение через резистор или нагрузку, присутствующую в цепи, составляет (напряжение питания — 0.7) вольт.
Падение напряжения на разных диодах разное. Обычно оно колеблется от 0.6 до 0.7 вольт для небольшого кремниевого диода. Для диодов Шоттки значение падения напряжения составляет 0.2 Вольта. Для светоизлучающих диодов или светодиодов падение напряжения колеблется в пределах 1.4-4 Вольта. Германиевые диоды имеют падение напряжения 0.25-0.3 вольта.
Почему на диоде падает напряжение?
Диод в прямом смещении выбирает подходящий уровень напряжения, чтобы он мог подтолкнуть электронные заряды к PN-переходу. Это можно сказать аналогично «поднятию» каждого шара с пола на верхнюю часть стола.
Разница в уровне энергии, необходимой для перемещения электронных зарядов через PN-переход, вызывает падение напряжения. Кроме того, в диоде есть некоторое сопротивление, ответственное за определенное падение напряжения. Падение напряжения из-за сопротивления зависит от допустимой скорости тока на PN-переходе.
Как рассчитать падение напряжения на диоде?
Падение напряжения на разных диодах разное. Для кремниевого диода оно составляет примерно 0.7 Вольта, для германиевого диода — 0.3 Вольта, а для диод шоттки это около 0.2 вольта. Светодиоды имеют различные значения падения напряжения.
Теперь, если мы хотим рассчитать падение напряжения на любом другом элементе в цепи, нам нужно вычесть падение напряжения на диодах между этим элементом и источником из напряжения источника. Таким образом, падение напряжения на этом элементе равно (напряжение источника — сумма падений напряжения на диоде).
Как понизить напряжение с помощью диода?
Стабилитроны хороши для снижения напряжения. Тем не менее, тривиальный метод снижения напряжения с помощью диодов заключается в последовательном подключении нескольких диодов к источнику питания. Каждый диод вызывает падение напряжения почти на 0.7 Вольта.
Диоды допускают только однонаправленный поток электричества, но диод будет проводить электричество только тогда, когда питание достигает порога. Стандартный порог кремниевого диода составляет 0.6 вольта. … После последовательного включения каждого диода напряжение падает на 0.6 вольта. Используя эту технику, мы можем понизить напряжение в цепи с помощью диодов.
Часто задаваемые вопросы
Как понизить напряжение стабилитроном?
Диод Зенера — это особый случай диодов, который позволяет току течь в обратном направлении при определенном напряжении, известном как напряжение Зенера. Это также может уменьшить обратное напряжения и работать как эффективный регулятор напряжения.
Чтобы использовать стабилитрон для снижения напряжения, мы должны подключить его параллельно нагрузке в цепи. Напряжение питания должно быть выше напряжения стабилитрона, а диод должен иметь обратное смещение. Это соединение помогает снизить обратное напряжение до определенного значения и действует как регулятор напряжения.
«стабилитрон (вшиваемый)» by необудущее под лицензией CC BY-NC-SA 2.0
Формула падения напряжения на диоде
Для простоты прямое падение напряжения на диоде принято равным 0.7 В. Теперь, если в цепи имеется только один диод вместе с нагрузкой, падение напряжения на нагрузке равно (напряжение питания — 0.7) Вольт.
В случае последовательного включения в цепь нескольких диодов падение напряжения на нагрузке равно (напряжение питания — количество диодов * 0.7). Например, на рисунке 1 падение напряжения на диоде D1= (5-0.7) = 4.3 В. Падение напряжения на диоде D2= (5-2 * 0.7) = 3.6 В. Падение напряжения на диоде D3 = (5-3 * 0.7) = 2.9 В.
изображение 1
График падения напряжения на диоде
«Светодиодные светодиоды» by чувак под лицензией CC BY 2.0
Падение напряжения на диоде в зависимости от температуры
Падение напряжения на диоде – это разность потенциалов на выводах рабочего диода. Падение напряжения зависит от температурного коэффициента диода и поведения других элементов в цепи.
Положительный или отрицательный температурный коэффициент соответственно увеличивает или уменьшает падение напряжения на диоде. Большинство кремниевых диодов имеют отрицательный температурный коэффициент, что означает, что падение напряжения уменьшается с повышением температуры. Стабилитрон имеет положительный температурный коэффициент, что увеличивает падение напряжения.
Падение напряжения на диоде в зависимости от тока
Компания падение напряжения через диод увеличивается с током нелинейным образом. Но поскольку дифференциальное сопротивление меньше, увеличение происходит очень медленно. Мы можем рассмотреть характеристики прямого напряжения и тока.
Из кривой ВАХ видно, что большое увеличение тока первоначально приводит к пренебрежимо малому увеличению напряжения. Затем напряжение повышается быстрее и, в конце концов, очень быстро возрастает. Кривая IV показывает экспоненциальный рост напряжения с током. К тому времени, когда Vd пересекает 0.6/0.7 В, оно быстро увеличивается.
«Файл: Зависимость тока от напряжения для полупроводникового диодного выпрямителя.svg» by Hldsc под лицензией CC BY-SA 4.0
При падении напряжения на диоде с PN-переходом?
Когда ток проходит через любой компонент, присутствующий в цепи, происходит падение напряжения. Точно так же, когда ток проходит через диод при прямом смещении, возникает падение напряжения, известное как прямое падение напряжения.
Диод с p-n переходом не может послать ток от перехода в обратное смещение из-за очень высокого сопротивления. P-n-переход действует как разомкнутая цепь, поэтому падение напряжения на этом идеальном диоде с p-n-переходом остается прежним. Оно равно напряжению аккумулятора.
Кроме того, пожалуйста, нажмите, чтобы узнать о Органические светодиоды.
Привет. Я Кошики Банерджи получил степень магистра в области электроники и коммуникаций. Я энтузиаст электроники и в настоящее время посвящен области электроники и связи. Мой интерес заключается в изучении передовых технологий. Я с энтузиазмом учусь и работаю с электроникой с открытым исходным кодом. Идентификатор LinkedIn- https://www.linkedin.com/in/kaushikee-banerjee-538321175
Последние посты
Гипохлорит представляет собой анионную группу с химической формулой ClO-. Его относят к сложным эфирам хлорноватистой кислоты (HClO), связанным с помощью ковалентных взаимодействий. Давайте рассмотрим факты о ClO-. Гипохлорит.
Оксид магния с эмпирической формулой MgO представляет собой белое гигроскопичное твердое вещество, а йодистый водород (HI) представляет собой сильную кислоту. Давайте подробно разберемся с реакцией HI + MgO. Реакция.
report this ad
О НАС
Мы являемся группой профессионалов отрасли из различных областей образования, таких как наука, инженерия, английская литература, и создаем универсальное образовательное решение, основанное на знаниях.
report this ad
report this ad