Входные/выходные дискретные сигналы в электроэнергетике: принципы, модули и микросхемы
Микропроцессорные устройства релейной защиты, автоматики или АСУ ТП электрических станций невозможно реализовать без модулей дискретных входов и выходов, от которых напрямую зависит взаимодействие оборудования и надежность всей системы в целом. Интегральные решения для этой цели предлагают Infineon, Maxim Integrated и Texas Instruments.
Область применения дискретных входов и выходов
Микропроцессорные устройства релейной защиты и автоматики давно не являются экзотикой и активно внедряются при строительстве или реконструкции объектов энергетики. Архитектура таких устройств в точности повторяет архитектуру программируемых логических контроллеров (ПЛК), коими они, по сути, и являются.
Ни один микропроцессорный терминал не может выполнять возложенные на него функции без развитой системы ввода и вывода данных. Сегодня речь пойдет о входных и выходных дискретных сигналах.
На физическом уровне ввод/вывод дискретных сигналов осуществляется с помощью одного (digital I/O) или двух (digital input, digital output) независимых модулей, каждый из которых объединяет некоторое количество входных или выходных ячеек. Одна ячейка – это один дискретный сигнал, то есть сигнал, который может принимать только одно из нескольких определенных заранее значений. Для организации системы релейной защиты и автоматики электрической станции или подстанции используются только дискретные логические сигналы. Они могут иметь лишь два значения: логический ноль или логическую единицу. Значение входного дискретного сигнала определяется уровнем напряжения на клеммах ячейки, а выходного – состоянием реле или ключа.
Давайте разберемся, какие данные передаются с помощью дискретных сигналов. Условно эти данные можно разделить на три группы:
- входы для получения информации о состоянии силового электрического оборудования и выходные реле для управления первичными коммутационными аппаратами;
- входы/выходы для организации взаимодействия между различными микропроцессорными устройствами релейной защиты и автоматики;
- входы устройств АСУ ТП электрических станций и подстанций для сбора информации о текущем режиме работы электроустановок и входы устройств АСУ ТП для передачи команд терминалом релейной защиты и автоматики.
Силовая, или технологическая, сторона энергетики объединяет оборудование, участвующее в производстве электричества и его транспортировке в места потребления. Сюда относятся генераторы, трансформаторы, распределительные устройства, линии электропередач и многое другое. Любой из элементов этой энергосистемы должен быть защищен от повреждения. Необходимо, чтобы аварийное оборудование отключалось как можно скорее. Идентификация повреждения может осуществляться по электрическим параметрам – значениям тока и напряжения в различных точках системы. Но существуют и другие детекторы аварий – различные технологические защиты. Это неэлектрические реле, срабатывающие под действием каких-либо иных физических факторов. Например, газовая защита трансформатора замыкает контакты тогда, когда в баке трансформатора начинается бурное образование газов, которое свидетельствует о наличии короткого замыкания внутри него; дуговая защита замыкает свои контакты под действием ярких вспышек света, характерных для искровых или дуговых разрядов на сборных шинах; реле минимального давления элегаза (гексафторид серы – SF6) изменяет свое состояние при утечке элегаза и, как следствие, снижении качества изоляции оборудования. Существует огромное количество технологических защит, каждая из которых, срабатывая, замыкает свои контакты и тем самым посылает терминалам релейной защиты сигнал об аварийном или опасном режиме работы того или иного оборудования.
Для того чтобы создать надежную и эффективную электрическую сеть, приходится круглосуточно следить за режимом работы всех ее компонентов и, при необходимости, отключать ненужные участки или подключать дополнительные. Все эти переключения выполняются с помощью так называемых коммутационных аппаратов: силовых выключателей и разъединителей. Выключатель отличается от разъединителя тем, что первый может отключать участок, по которому протекает электрический ток, а второй – нет. Выключатели используются, в том числе, и для отключения огромных сверхтоков во время аварийных коротких замыканий. Для того чтобы включить или отключить выключатель, необходимо подать напряжение на его электромагнит включения или отключения. Через электромагнит потечет ток и создаст магнитный поток, под действием которого разблокируется механизм пружинного привода и произойдет резкое включение или отключение.
Микропроцессорные устройства, выполняющие функцию управления силовыми выключателями, воздействуют на электромагниты включения и отключения, которые представляют собой довольно большую индуктивную нагрузку. Выходные реле таких устройств могут воздействовать на электромагниты выключателей напрямую или через установленные отдельно промежуточные реле. В первом случае выходные реле должны иметь соответствующие коммутационные характеристики, которые зависят от типа коммутационного аппарата и марки его привода. Ориентировочно такие контакты должны иметь возможность пропускать ток до 30 А в течении 0,2 с, а также должны быть способны разорвать индуктивную нагрузку мощностью до 25 Вт с постоянной времени затухания 0,04 с.
Важно обладать информацией о том, включен или отключен тот или иной выключатель или разъединитель в данный момент. Конструкцией любого современного коммутационного аппарата предусмотрено наличие так называемых блок-контактов. Это контакты, предназначенные для использования в системах релейной защиты и автоматики, которые дублируют положение главных контактов. Другими словами, они замкнуты, когда выключатель или разъединитель включен, и разомкнуты в ином случае.
Система АСУ ТП электрической станции или подстанции объединяет мощные промышленные компьютеры для обработки большого количества входящей информации, средства визуализации (экраны, мониторы, мнемосхемы), а также оборудование для сбора данных, неотъемлемой частью которого являются модули дискретных входов и выходов.
Обмен информацией между различными устройствами релейной защиты и автоматики, а также передача данных в устройства АСУ ТП с помощью дискретных входов/выходов включает в себя данные о состоянии самих микропроцессорных устройств, данные о состоянии защищаемых электроустановок, а также различные управляющие логические сигналы, такие как блокировка работы, запуск защиты, запуск записи осциллограммы аварийного процесса, команда на управление коммутационными аппаратами и так далее. Источниками сигналов в данном случае выступают дискретные выходы одних микропроцессорных терминалов, а приемником сигналов – дискретные входы других микропроцессорных терминалов или устройств АСУ ТП. Передача команд от устройств АСУ ТП к терминалам релейной защиты осуществляется через дополнительные промежуточные реле.
Питание ячеек дискретных входов/выходов
Во всех описанных выше случаях контакты технологических реле, блок-контакты коммутационных аппаратов, дискретные выходы терминалов релейной защиты и автоматики и контакты промежуточных реле работают в режиме сухого контакта, а в качестве источника питания используют аккумуляторные батареи и выпрямительные блоки питания цепей АСУ ТП.
Аккумуляторные батареи совместно с выпрямительным зарядно-подзарядным устройством являются источником постоянного оперативного тока напряжением, как правило, 220 В. Такой уровень напряжения обусловлен необходимостью передачи сигналов на относительно большое расстояние для связи с силовым оборудованием, а также тяжелыми, с точки зрения электромагнитных помех, условиями работы передающих кабелей. Переменный или выпрямленный оперативный ток сегодня используется редко, ввиду того что его параметры тесно связаны с режимом основного тока электроустановки и могут серьезно ухудшаться в наиболее ответственных – аварийных – ситуациях.
Блоки питания цепей АСУ ТП представляют собой отдельностоящие выпрямители в шкафах АСУ ТП. Такие блоки питания выдают выпрямленное напряжение 24 В, позволяющее сделать модули дискретных входов/выходов более компактными и разместить на них большее количество ячеек (рисунок 1). Источники сигналов – устройства релейной защиты и автоматики – располагаются достаточно близко к оборудованию АСУ ТП, как правило – в одном помещении, поэтому отпадает необходимость использовать высокие уровни напряжения источника питания.
Рис. 1. Использование дискретных входов и выходов в электроэнергетике
Таким образом, на объектах электроэнергетики актуальными являются логические дискретные входы и выходы двух уровней напряжения постоянного тока: 220 и 24 В. Основная характеристика логических дискретных входов – это уровни логического нуля и логической единицы. Для напряжения 220 В они, как правило, составляют 0…50 В и 132…275 В, соответственно, а для напряжения 24 В – 0…5 В и 13…30 В. Наличие достаточно широкого интервала между уровнями нуля и единицы, – так называемого гистерезиса, – является неотъемлемым условием корректной работы логического входа. Гистерезис необходим для предотвращения влияния дребезга контактов – многократного появления и пропадания сигнала в течение некоторого времени после изменения состояния, а также различных кондуктивных помех и повреждений передающих кабелей.
Требования к дискретным входам и выходам
Сегодня предприятия России производят огромное количество микропроцессорных устройств для энергетики, еще большее количество оборудования поставляется из-за рубежа. Производители используют разные технологии, компоненты и схемные решения для создания модулей дискретных входов/выходов. Однако существуют общие требования, выполнение которых обязательно для обеспечения надежной работы оборудования в условиях электроэнергетических систем. Нормативно эти требования оформлены в руководящем документе РД 34.35.310-97 «Общие технические требования к микропроцессорным устройствам защиты и автоматики энергосистем», разработанном РАО «ЕЭС России» в далеком 1997 году и действующем по сей день. Конечно, этот документ давно требует актуализации с учетом более глубоких знаний и накопившегося практического опыта эксплуатации микропроцессоров в энергетике. К тому же, большинство нормативных ссылок, которые используются в документе, уже давно устарело. Однако РД 34.35.310-97 позволяет понять, на что обязательно следует обращать внимание производителям и поставщикам устройств при выборе компонентов и схем для реализации модулей микропроцессорных устройств.
Давайте остановимся на некоторых из них и попытаемся привести более современные данные из актуальных источников.
Гальваническая развязка
Главной и первостепенной задачей дискретных входов/выходов является создание гальванической развязки между цепями ввода/вывода сигналов и электронной начинкой устройства. Модули ввода/вывода должны надежно отделять чувствительные блоки обработки информации от агрессивной промышленной среды электрических станций и подстанций, заполненной помехами, возмущениями, скачками и провалами токов и напряжений. Любая, даже самая агрессивная, атака не должна преодолевать барьеры модулей дискретных входов/выходов и повреждать именно эти модули, а не более сложные и дорогостоящие ЦАП, процессоры, модули памяти и прочее. Кроме того, вычислительные электронные компоненты микропроцессорных терминалов работают со своими уровнями напряжения, а напряжение модулей дискретных входов/выходов должно быть согласовано с параметрами оперативного тока, используемого на конкретном объекте.
Требования к электрической прочности изоляции
Показатели качества изоляции позволяют оценить надежность работы модулей, связанную с правильным взаимным расположением независимых ячеек входных или выходных сигналов, а также с соблюдением расстояния между ними. Качество изоляции оценивают по трем критериям:
- измеренное значение сопротивления изоляции;
- устойчивость к испытанию повышенным напряжением промышленной частоты;
- устойчивость к испытанию повышенным импульсным напряжением.
Сопротивление изоляции измеряется для каждой независимой цепи по отношению к корпусу терминала и присоединенным к нему всем остальным независимым цепям, а также между разомкнутыми контактами механических выходных реле. Здесь независимой цепью считают каждую цепь, электрически не связанную с остальными, то есть, в общем случае, каждую ячейку дискретных входов/выходов для одиночных элементов или группу дискретных входов/выходов, имеющих общий контакт, для групповых элементов. Измерения производятся мегаомметром на напряжении 500 В. Измеренное значение не должно быть менее 100 МОм.
По таким же схемам выполняется испытание изоляции повышенным напряжением. Между каждой независимой цепью, работающей с оперативным напряжением более 60 В, и корпусом с присоединенными остальными независимыми цепями прикладывается напряжение 2 кВ частотой 50 Гц в течение 1 минуты; между каждой независимой цепью, работающей с оперативным напряжением менее 60 В, и корпусом с присоединенными остальными независимыми цепями – 0,5 кВ частотой 50 Гц в течение 1 минуты; между разомкнутыми контактами механических выходных реле – 1 кВ частотой 50 Гц в течение 1 минуты. При испытании полупроводниковых выходных реле со встроенными элементами защиты от перенапряжений испытательное напряжение прикладывается к контактам реле в запертом состоянии. Величина испытательного напряжения для полупроводниковых реле не должна превышать 1,5 номинального напряжения выхода.
При проведении испытаний импульсным напряжением изоляция каждой независимой цепи должна выдерживать по три положительных и три отрицательных импульса напряжения с амплитудой 5 кВ для цепей на номинальное напряжение выше 60 В и 1 кВ для цепей на номинальное напряжение ниже 60 В. Форма испытательного импульса – 1,2/50 мкс.
Требования к помехозащищенности
Модули входов/выходов – это первый и главный барьер на пути помех, распространяющихся по электрическим цепям электрических станций и подстанций. Грамотно выполненная защита от помех с использованием соответствующих защитных схем и компонентов нивелирует деятельность помех и делает ее незаметной для персонала, эксплуатирующего терминалы релейной защиты и автоматики. Общий алгоритм испытаний на помехоустойчивость заключается в том, что с помощью специального генератора создается помеха, которая вводится в определенную точку терминала, далее фиксируется реакция подвергаемого проверке оборудования, на помеху. По результатам наблюдений оборудованию присваивается класс помехоустойчивости. Оборудование релейной защиты, автоматики и АСУ ТП электрических станций и подстанций выполняет крайне ответственные функции, поскольку как защищает отдельное дорогостоящее силовое оборудование, так и отвечает за устойчивую работу всей энергетической системы. Ввиду этого микропроцессорные терминалы, используемые в энергетике, должны соответствовать классу А помехоустойчивости. Это значит, что воздействие помех не должно вызывать заметное ухудшение качества функционирования оборудования, то есть ложные срабатывания, несрабатывания, снижение точности измерений, потерю данных, нарушение индикации, обрывы связи и так далее.
При проверке помехоустойчивости порты дискретных входов/выходов подвергаются следующему виду воздействий:
- затухающие колебательные помехи частотой 0,1…1,0 МГц с амплитудой 2,5 кВ при подключении генератора между каждой независимой цепью и корпусом терминала с подключенными к нему остальными независимыми цепями и с амплитудой 1 кВ при подключении генератора между вводами одной и той же цепи;
- микросекундные импульсные помехи с формой импульса 1,2/50 и амплитудой 2 кВ при подключении генератора между каждой независимой цепью и корпусом терминала с подключенными к нему остальными независимыми цепями и с амплитудой 1 кВ при подключении генератора между вводами одной и той же цепи;
- наносекундные импульсные помехи с амплитудой 4 кВ и частотой 5 кГц в пачках продолжительностью 15 мс с периодом следования пачек 300 мс и общей продолжительностью испытаний 1 мин для импульсов каждой полярности; генератор подключается между каждой независимой цепью и корпусом терминала с подключенными к нему остальными независимыми цепями;
- электростатические разряды величиной 8 кВ положительной и отрицательной полярности на каждый порт входа/выхода через воздушный промежуток.
Требования к скорости срабатывания выходных реле
Допустимое время срабатывания выходных реле определяется назначением этих выходных реле. Так контакты, передающие в устройства АСУ ТП данные о состоянии своего микропроцессорного терминала, могут работать с задержкой до 1 с. Дискретные выходы, формирующие информацию о состоянии защищаемого объекта, должны срабатывать не позднее чем через 0,25 с. В аварийном режиме некоторые контакты передают на верхний уровень информацию, важную для работы регистраторов аварийных событий, они должны работать не медленнее чем 0,1 с. Контакты, которые фиксируют срабатывание защит или запускают регистраторы аварийных событий на других микропроцессорных устройствах, должны срабатывать в течение 3 мс.
Отдельное внимание уделяется быстродействию контактов, выполняющих включение и отключение силовых выключателей. Выбор оптимального значения времени срабатывания релейной защиты лежит на стыке быстродействия и селективности: необходимо отключить поврежденный участок как можно скорее и, при этом, не отключить ничего лишнего.
Почему же скорость отключения выключателей так важна? Во-первых, микропроцессорные терминалы релейной защиты, как правило, выдают сигнал на отключение для того чтобы прервать аварийный режим. В таком режиме через силовое оборудование электрических станций и подстанций протекают сверхтоки короткого замыкания, которые оказывают тепловое и динамическое механическое воздействие на оборудование и могут привести к серьезным поломкам. Во-вторых, аварийные режимы сопровождаются серьезной просадкой напряжения в узлах, близких к месту короткого замыкания. На предотвращение такой просадки напряжения в короткий срок может привести к выходу электрической системы из состояния устойчивости с последующим отключением генераторов электрических станций и нарушением электроснабжения большого количества потребителей.
Почему же важно быстро включать выключатели? Значительная часть повреждений в электрических сетях имеет неустойчивый характер и способна самоустраниться через некоторое время после отключения, например, повреждение из-за падения ветки дерева на линию электропередач. Системой автоматики электрических станций и подстанций может быть предусмотрена функция автоматического повторного включения (АПВ) отключенного ранее участка электрической сети. Успешное выполнение этой функции в кратчайшие сроки позволяет избежать ухудшения показателей надежности и устойчивости всей электрической системы. Кроме того, наличие АПВ позволяет сделать отключения более быстрыми, а селективность работы защиты обеспечить повторным включением неповрежденных элементов.
На основании изложенных выше тезисов производители микропроцессорных устройств релейной защиты и автоматики пришли к выводу, что необходимо разрабатывать модули выходных реле с минимальным временем срабатывания, которые можно замедлить для обеспечения селективности работы защиты с помощью дополнительных таймеров, создающих выдержку времени. Некоторые режимы работы электрических сетей могут потребовать гарантированного отключения поврежденного участка в течение 0,4 с. Этот промежуток должен включать в себя время работы выключателя (как правило, не более 0,05 с). Получается, что выходной контакт должен замкнуться не позднее, чем через 0,35 с после возникновения аварийного режима. На сегодняшний день выпускаются микропроцессорные терминалы релейной защиты, способные выдать сигнал на отключение или включение в течение 0,2 с.
Требования к износостойкости выходных реле
Выходные реле должны гарантированно выдерживать до 1000 коммутаций под нагрузкой – для контактов, выполняющих управление силовыми коммутационными аппаратами, до 10 000 коммутации под нагрузкой – для контактов, действующих на дискретные входы других микропроцессорных устройств или 100 000 операций без нагрузки – для всех типов контактов.
Конструктивные решения
Как отмечалось выше, дискретные входы/выходы располагаются на электронных модулях, каждый из которых включает в себя одну или несколько групп абсолютно идентичных каскадов – входных и выходных ячеек. Количество ячеек зависит от выполняемых терминалом функций, а их конструкция и характеристики элементов зависят от условия работы конкретных входов и выходов. Каждая ячейка дискретного входа или выхода либо может быть полностью изолирована от других, либо иметь с некоторыми из них общий вход отрицательной полярности.
Дискретные входы
Гальваническая развязка
Основной элемент большинства ячеек дискретных входов – оптрон. Оптрон создает гальваническую развязку и надежно отделяет вычислительную схему микропроцессорного реле от внешней среды. Как правило, ячейки дискретных входов построены с использованием оптронов с транзисторным выходом. Известны примеры применения оптронов TCLT1002, IL252, SFH601 и других. Номинальный прямой ток светодиодов таких оптронов составляет порядка 10 мА. Для согласования номиналов оптрона с рабочими параметрами оперативного напряжения используют токоограничивающие резисторы, которые «гасят» большую часть подводимого напряжения или резисторные делители напряжения. Пример использования резисторного делителя напряжения показан на рисунке 2.
Рис. 2. Схема входной ячейки с делителем напряжения
Номинальные сопротивления и мощности резисторов выбирают с учетом величины напряжения источника питания. Напряжение активации дискретного входа определяется выбранным сопротивлением токоограничивающего резистора, а также может регулироваться при использовании оптронов, имеющих вывод базы транзистора, таких как IL252 (рисунок 3). В первом случае напряжение зажигания определяется током, протекающим через светодиод, а во втором – предварительным потенциалом базы транзистора.
Рис. 3. Монтажная схема оптрона IL252
В последнее время для создания гальванической развязки в цепях 24 В на смену оптронам приходят цифровые изоляторы. Это интегральные микросхемы, в которых разделение полевой и вычислительной систем происходит с помощью индуктивной (на базе импульсных трансформаторов) или емкостной (на базе конденсаторов) связи.
Ввод напряжения и защита от помех
На электрических станциях и подстанциях дискретные входы активируются постоянным напряжением 24 или 220 В. Для того чтобы устранить зависимость работоспособности ячейки дискретного входа от полярности подводимого напряжения (читай – от ошибки в процессе монтажа) некоторые производители используют диодные мосты на входе, а также оптроны с двумя светодиодами, включенными встречно-параллельно. Рациональность таких решений вызывает обоснованные сомнения. Во-первых, увеличивается энергия, рассеиваемая внутри микропроцессорного устройства. Во-вторых, наносится удар по помехозащищенности модуля. Схема входной ячейки с диодным мостом показана на рисунке 4.
Рис. 4. Схема дискретного входа с диодным мостом
Дело в том, что агрессивная электромагнитная среда электроустановок богата всплесками напряжений различной величины как положительной, так и отрицательной полярности. «Минусовые» скачки напряжения, например, могут сопровождать популярные в электроэнергетике коммутации индуктивных нагрузок. Ввиду этого надежнее было бы не расширить область работы дискретного входа в сторону отрицательных напряжений, а наоборот, принять дополнительные меры для ее предотвращения в этом диапазоне. С этой целью в схему вводят дополнительные диоды, включенные параллельно входу в обратном направлении и/или последовательно входу в прямом направлении. Схема с использованием таких диодов представлена на рисунке 5.
Рис. 5. Схема дискретного входа с защитой от напряжения обратной полярности
Для поглощения энергии импульсов помех используют конденсаторы на номинальное напряжение, несколько большее, чем входное напряжение ячейки. При выборе емкости конденсатора необходимо соблюдать баланс между помехозащищенностью и быстродействием.
Защита входов от перенапряжений и электростатических разрядов выполняется с помощью TVS-диодов или варисторов. Как правило, первые применяются для защиты ячеек на напряжение 24 В, а вторые – на напряжение 220 В. Использование варистора и помехопоглощающего конденсатора показано на рисунке 6.
Рис. 6. Схема дискретного входа с защитой от помех
Гистерезис
Гистерезис дискретного входа – это особенность реагирования ячейки на подводимое напряжение, которая заключается в наличии некоторого диапазона между напряжениями логического нуля и логической единицы. При подаче на вход ячейки напряжения из этого диапазона состояние ячейки не изменяется. Наличие гистерезиса необходимо для решения вопросов отстройки от помех, от дребезга контактов механических реле, а также для предотвращения ложного срабатывания ячейки при повреждении сигнального кабеля.
Источник оперативного напряжения на объектах электроэнергетики представляет собой аккумуляторную батарею с заземленной средней точкой. Из этого следует, что при коротком замыкании одной из жил сигнального кабеля на землю на входе ячейки может оказаться половина напряжения источника питания как при замкнутых, так и при разомкнутых контактах реле – источника сигнала (рисунок 7). Реакция ячейки на такое изменение напряжения является ложным срабатыванием и не должна иметь места в надежных устройствах.
Рис. 7. Напряжение на дискретном входе при повреждении сигнального кабеля
Гистерезис создается включением в схему компаратора с положительной обратной связью, триггера Шмитта, который управляет током, проходящим через входной светодиод оптрона (рисунок 8а) и подключен к его транзисторному выходу (рисунок 8б).
Рис. 8. Создание гистерезиса с помощью триггера Шмитта
При необходимости может быть организован контроль целостности сигнальных проводов. Для этого выполняют сдвоенные входные ячейки с разными порогами активации: рабочей (на номинальное напряжение источника питания) и контрольной (на половину напряжения источника питания). Пример контроля целостности кабеля для оперативного напряжения 220 В представлен на рисунке 9.
Рис. 9. Дискретный вход с контролем целостности сигнального кабеля
Очистка контактов вводных клемм
Для дискретных входов с небольшим номинальным напряжением, в нашем случае это 24 В, и малым потребляемым током может быть актуальна проблема образования оксидной пленки на поверхности контактов входных клемм, которая делает ячейку нечувствительной к подводимому напряжению. Наиболее простым способом решения данной проблемы стало подключение внешней резистивной нагрузки, которая увеличивает ток, протекающий через контакт, тем самым очищая его, и при этом рассеивает энергию вне корпуса терминала.
Еще один способ борьбы с оксидной пленкой заключается в использовании нелинейных электронных компонентов, сопротивление которых значительно возрастает под действием приложенного напряжения, например, позисторов. Такие элементы увеличивают токовое потребление ячейки в первый момент после подачи входного напряжения, разрушая тем самым окислы. Под действием этого тока позистор нагревается и его сопротивление значительно возрастает, снижая общее потребление ячейки.
Для более высоких напряжений такая проблема теряет актуальность, потому что оксидная пленка не создает препятствий для напряжения 220 В.
Дискретные выходы
Коммутационный элемент
Конструкция ячеек дискретных выходов во многом определяется требованиями к их коммутационным характеристикам. Сегодня широко используются выходы с электромеханическими и твердотельными релейными элементами, а также встречаются комбинированные варианты.
Электромеханические реле способны пропускать большие токи и хорошо подходят для коммутации мощных индуктивных нагрузок, таких как соленоиды управления выключателями и катушки промежуточных реле. К недостаткам таких реле можно отнести механический износ и износ под воздействием электрической дуги, зажигание которой имеет место при каждой коммутации элемента. Качество работы электромеханических реле можно повысить, используя в схеме элементы с двойным разрывом или два включенных параллельно электромеханических реле с контактами разного типа. Одна пара контактов отличается увеличенным воздушным зазором и выполняется из более устойчивого к дуге материала, например, вольфрама. Вторая, серебряная, пара контактов обладает лучшими проводящими свойствами. В момент коммутации первыми замыкаются или последними размыкаются дугогасительные вольфрамовые контакты, однако большая часть тока нагрузки протекает через основные, серебряные, с наименьшим рассеянием мощности. Известно использование в терминалах релейной защиты и автоматики электромеханических реле типа ST, DS-P, JS, G6RN, V23061 и другие.
Полупроводниковые реле представляют собой ключи на базе MOSFET- или IGBT-транзисторов. Они не вызывают зажигание дуги во время коммутаций, но не способны длительное время пропускать большие токи без использования дополнительных радиаторов для охлаждения. Область применения таких реле, как правило, ограничивается активацией дискретных входов других устройств, однако развитие силовой электроники позволяет возлагать большие надежды на такие ключи. Так, некоторые из них уже сегодня используются для управления маломощными промежуточными реле. В качестве примеров используемых транзисторов можно привести 40E120 или IXYS05N100.
Интересным вариантом является совмещение преимуществ обоих типов реле в одной выходной ячейке. Так, полупроводниковые реле выполняют бездуговую коммутацию, а электромеханические – берут на себя основную токовую нагрузку. Схема выходной ячейки, представляющей собой комбинацию электромеханического и полупроводникового реле, показана на рисунке 10.
Рис. 10. Схема ячейки дискретного выхода комбинированного типа
Драйверы
Управление как электромеханическими, так и полупроводниковыми реле осуществляется с использованием оптронов транзисторного типа. Выходное напряжение оптронов должно быть достаточным для срабатывания реле. Как правило, оно соответствует удобному для работы вычислительной системы напряжению величиной 5 В. Оптрон создает надежную гальваническую развязку, отделяя элементы ячейки дискретного выхода от начинки микропроцессорного терминала.
Защитные элементы
Защита от перенапряжений выполняется с помощью варисторов или TVS-диодов. Такая защита необходима для предотвращения перекрытия изоляционного промежутка между контактами электромеханических реле или пробоя полупроводниковых реле, которые могут не только повредить сам релейный выход, но и стать ложным сигналом перехода дискретного выхода в замкнутое состояние. Кроме того, срезание импульсов перенапряжений сокращает время гашения дуги во время коммутаций электромеханических реле.
Защита от подачи напряжения обратной полярности необходима в большей степени входам с использованием полупроводниковых ключей. Предпочтительным в данном случае является использование диодов, включенных последовательно, а не параллельно. Это объясняется тем, что диод, включенный в параллель, при подаче напряжения обратной полярности или под действием довольно мощной помехи обратной полярности ведет себя как ключ, который всегда открыт.
Пример использования варистора и включенного встречно-последовательно диода для защиты ячейки дискретного выходного сигнала показан на рисунке 11.
Рис. 11. Защита ячейки дискретного выхода
Дискретные входы/выходы от Infineon
Компания Infineon предлагает семейство интегральных схем ISOFACE. В линейке представлены 8-канальные модули дискретных входов, такие как ISO1I811T и ISO1I813T, а также выходов: ISO1H801G, ISO1H811G, ISO1H812G, ISO1H815G, ISO1H816G, ISO1H801G, ISO2H823V2.5.
Все модули входов и выходов ISOFACE обеспечивают надежную гальваническую развязку между вычислительными цепями микроконтроллера 2,5 В или 3,3/5 В и рабочим напряжением входных ячеек 24 В. Развязку создают цифровые изоляторы на базе импульсных трансформаторов. Такое решение, по сравнению с оптронами, позволяет:
- снизить мощность рассеяния модуля в 2,5 раза;
- увеличить частоту дискретизации до 500 кГц на канал;
- уменьшить габариты модуля в 4 раза.
Микроконтроллер подключается к модулям с помощью последовательного SPI-интерфейса или параллельного 8-битного интерфейса. ISO1I813T, ISO1H812G, ISO1H816G поддерживают проверку SPI-интерфейса циклическим избыточным кодом.
Модули входов ISO1I81XT
Компоненты модулей дискретных входов имеют малый температурный дрифт и способны выполнять свои функции при температуре до 135°С.
Для защиты входов от электромагнитных помех используют регулируемые помехоподавляющие фильтры. Схемой ISO1I811T предусмотрено наличие джампера для выбора одного из четырех возможных вариантов фильтра. В ISO1I813T есть возможность программно настроить фильтр для каждого входного канала.
Модуль ISO1I813T позволяет настраивать синхронный захват сигналов нескольких его входов. Эта функция может быть полезной для организации защит или блокировок, для которых необходимо одновременно контролировать состояние нескольких входных дискретных параметров.
Производителями предусмотрена возможность диагностики обрыва проводов, подключенных ко входам модуля, а также контроль наличия напряжения питания. При диагностировании снижения напряжения питания ниже допустимого уровня значения входных сигналов считаются недействительными, и система переходит в аварийный режим работы или отключается.
Характеристики модулей дискретных входов семейства приведены в таблице 1. Блок-схема и типовой вариант подключения интегральной схемы ISO1I813T показаны на рисунке 12, а печатная плата с использованием ISO1I813T показана на рисунке 13.
Таблица 1. Характеристики модулей входных сигналов ISO1I81хT
Параметр | ISO1I811T | ISO1I813T |
---|---|---|
Входное напряжение, В | 24 | 24 |
Напряжение микроконтроллера, В | 3,3/5 | 3,3/5 |
Интерфейсы подключения микроконтроллера | Последовательный, параллельный | Последовательный, параллельный |
Максимальная частота дискретизации, кГц | 125 | 500 |
Настройка фильтра помех | Механическая | Программная |
Допустимое напряжение гальванической развязки, В | 5000 | 5000 |
Поддержка внешнего источника питания | – | + |
Контроль наличия напряжения питания | – | + |
Диагностика обрыва сигнального провода | Поканальная | Поканальная |
Размеры модуля, мм | 8×12,5 | 8×12,5 |
Рис. 12. Блок-схема и типовой вариант подключения ISO1I813T
Рис. 13. Печатная плата с двумя ISO1I813T
Модули выходов ISO1H8ххG и ISO2H823V2.5
Переключение выполняют ключи на базе MOSFET-транзисторов. В зависимости от типа модуля, его выходные ячейки способны выдерживать токовую нагрузку до 1,2 А.
Выходы модулей надежно защищены от короткого замыкания в сигнальных кабелях. При диагностировании перегрузки или перегрева переключающего транзистора происходит отключение аварийного выхода до его разрушения. Одновременно происходит контроль напряжения источника питания. При его снижении до уровня менее допустимого все выходы блокируются, и система переходит в аварийный режим работы или отключается.
Для защиты транзисторов от коммутационных перенапряжений используют TVS-диоды.
Характеристики модулей дискретных выходов семейства приведены в таблице 2. Блок-схема и типовой вариант подключения интегральной схемы ISO18ххG показаны на рисунке 14.
Таблица 2. Характеристики модулей выходных сигналов ISO18ххG
Параметр | ISO1801G | ISO1811G | ISO1812G | ISO1815G | ISO1816G |
---|---|---|---|---|---|
Напряжение переключения, В | 11…35 | 11…35 | 11…35 | 11…35 | 11…35 |
Допустимый ток, А | 0,6 | 0,6 | 0,6 | 1,2 | 1,2 |
Напряжение микроконтроллера, В | 5 | 3,3/5 | 3,3/5 | 3,3/5 | 3,3/5 |
Интерфейс подключения микроконтроллера | Параллельный | Параллельный | Последовательный | Параллельный | Последовательный |
Допустимое напряжение гальванической развязки, В | 5000 | 5000 | 5000 | 5000 | 5000 |
Контроль наличия напряжения питания | – | + | + | + | + |
Контроль перегрева транзистора | – | + | + | + | + |
Размеры модуля, мм | 16×14 | 16×14 | 16×14 | 16×14 | 16×14 |
Рис. 14. Блок-схема и типовой вариант подключения ISO18ххT
Промышленные цифровые входы и выходы от Maxim Integrated
Компания Maxim Integrated предлагает интегральные схемы для организации дискретных входов и выходов без гальванической развязки. Сюда относятся модули входов MAX22190, MAX22191, выходов MAX14912 и универсальный модуль MAX14914. Такие схемы используются совместно с цифровыми изоляторами (например, MAX14483) или другими компонентами, обеспечивающими развязку полевой и вычислительной систем.
Все схемы обладают высокой помехозащищенностью. Защита от перенапряжений построена на TVS-диодах и надежно работает в диапазоне напряжений -60…+60 В (при рабочем напряжении 24 В).
Одноканальный цифровой вход MAX22191
MAX22191 преобразует входное напряжение 24 В в ток 2,4 мА, подходящий для управления некоторыми типами оптронов. Мощность, потребляемая оптроном, отбирается из входного сигнала. Скорость срабатывания входа не превышает 250 нс. Схема подключения MAX22191 показана на рисунке 15.
Рис. 15. Схема подключения MAX22191
8-канальный цифровой вход MAX22190
Модуль MAX22190 служит для передачи сигналов 24 В в логику ПЛК 3,3/5 В по последовательной SPI-связи. MAX22190 предназначен для подключения к ПЛК с гальванической развязкой на входе. В противном случае необходимо использовать дополнительные цифровые изоляторы или модуль MAX22192. Этот модуль имеет аналогичную с MAX22190 схему и дополнен емкостными изоляторами на выходах для SPI-подключения.
Для защиты от помех схема оборудована программируемыми фильтрами. Параметры фильтров выбираются индивидуально для каждого канала. Скорость срабатывания входа зависит от установленных параметров фильтра.
Возможности системы диагностики включают в себя локализацию обрыва питающих проводов, контроль наличия напряжения питания, проверку циклическим избыточным кодом и многое другое. Схема подключения MAX22190 показана на рисунке 16.
Рис. 16. Схема MAX22190
8-канальные цифровые выходы MAX14912 и MAX14913
Интегральные схемы MAX14912 и MAX14913 представляют собой комплект MOSFET-транзисторов, которые работают в режиме ключей высокого уровня, а также могут быть настроены на работу в двухтактном режиме. Сопротивление каждого транзистора в открытом состоянии при токе нагрузки 0,5 А и температуре 125°С не превышает 230 мОм. Время переключения при работе в режиме ключа высокого уровня не превышает 0,1 мкс.
Для подключения ПЛК к MAX14912 используется параллельный или последовательный PSI-интерфейс. MAX14913 работает только с последовательным. Для подключения к микроконтроллерам необходимо использовать цифровые изоляторы.
Схемы MAX14912 и MAX14913 снабжены системами распознавания обрыва проводов нагрузки, детектирования слишком высокого или слишком малого напряжения на выходе, а также контролируют ток и температуру компонентов. Активные демпферы без потерь ускоряют отключение больших индуктивных нагрузок. Схема MAX14912 показана на рисунке 17.
Рис. 17. Схема MAX14912
Универсальный модуль MAX14914
MAX14914 – это одноканальная интегральная схема на базе MOSFET-транзисторов. MAX14914 может выполнять функцию как дискретного входа, так и дискретного выхода в режиме ключа высокого уровня или в двухтактном режиме. Модуль пригоден для работы с напряжением до 40 В. Максимальный допустимый сквозной ток транзисторов в режиме ключа высоко уровня – 1,3 А. Сопротивление в открытом состоянии не превышает 240 мОм при температуре 125°С. Схема MAX14914 показана на рисунке 18.
Рис. 18. Схема MAX14914
Интеллектуальные дискретные входы MAX14001 и MAX14002
Еще одно решение от Maxim Integrated для организации дискретных входов – это изолированные одноканальные АЦП MAX14001 и MAX14002. Эти АЦП непрерывно оцифровывают значения напряжения на входе модуля и передают их в вычислительную систему устройства. Далее полученные величины сравнивают с запрограммированными заранее пороговыми значениями и делают вывод о состоянии дискретного входа. Таким образом можно создать дискретный вход с напряжением питания до 500 В.
Гальваническая развязка, способная выдерживать напряжение до 3,75 кВ, организована на выходе компаратора, а также на встроенном DC/DC-преобразователе. Встроенный DC/DC-преобразователь может питать все схемы полевого уровня, что позволяет проводить их диагностику даже в момент отсутствия входного сигнала.
Конфигурирование и считывание оцифрованных значений осуществляется через последовательный SPI-интерфейс.
Схемы MAX14001 и MAX14002 имеют встроенный пусковой компаратор. Он управляет током через внешний транзистор и создает пусковой импульс для очистки контактов и ослабления кондуктивных помех. Значение и длительность пускового тока настраиваются в MAX14001 и являются фиксированными значениями в MAX14002.
Схема подключения MAX14001 и MAX14002 показана на рисунке 19.
Рис. 19. Схема подключения MAX14001 и MAX14002
Дискретные входы ISO1211 и ISO1212 от Texas Instruments
Одноканальные (ISO1211) и двухканальные (ISO1212) микросхемы предназначены для использования в качестве дискретных входов с напряжением питания 24 В. При использовании дополнительных внешних токоограничивающих резисторов диапазон входных напряжений может быть увеличен до 300 В. Изоляция вычислительного уровня от полевого происходит за счет емкостных цифровых изоляторов. Микросхемы включают в свой состав встроенные ограничители тока для уменьшения мощности рассеяния. ISO1211 и ISO1212 предназначены для работы с микроконтроллерами с 2,5/3,3/5-вольтовой логикой. Использование TVS-диодов на входе защищает компоненты от скачков напряжения ±60 В. Схема подключения ISO1211 показана на рисунке 20.
Рис. 20. Схема подключения ISO1211
Заключение
Модули дискретных сигналов – важный элемент любого микропроцессорного устройства релейной защиты, автоматики или АСУ ТП электрических станций и подстанций. Условия, в которых приходится работать дискретным входам и выходам, предъявляют ряд специфических требований к набору, типам и параметрам применяемых компонентов. Производителям оборудования следует уделять пристальное внимание качеству своих входных и выходных каскадов, ведь именно они определяют, насколько надежно оборудование будет взаимодействовать между собой. Надежность работы каждого модуля определяет надежность работы всей системы релейной защиты и автоматики электроустановок.
Литература
- РД 34.35.310-97. Общие технические требования к микропроцессорным устройствам защиты и автоматики энергосистем. М., ОРГРЭС, 1997, 36 с.
- В. И. Гуревич. Уязвимости микропроцессорных реле защиты: проблемы и решения. Инфра-Инженерия, М., 2014
- В. И. Гуревич. Микропроцессорные реле защиты. Устройство, проблемы, перспективы. Инфра-Инженерия, М., 2011
- В. И. Гуревич. Прогресс в области конструирования микропроцессорных устройств релейной защиты. Электроматика Инфо.
- М. Арсеньев. Дискретные входы цифровых устройств центральной сигнализации.
Дискретный (цифровой) и аналоговый сигнал: отличия
Сигнал — это любая переменная содержащая какой-либо вид информации. Причем эту информацию можно передавать на расстояние, переносить на устройства хранения, выводить на экран и через динамики или совершать с ней подобные действия. Существующие аналоговый и цифровой кардинально отличаются природой происхождения, способом передачи и хранения.
p, blockquote 1,0,0,0,0 —>
p, blockquote 2,0,0,0,0 —>
Аналоговый сигнал
Это природный тип сигналов окружает нас повсеместно и постоянно. Звук, изображение, тактильные ощущения, запах, вкус и команды мозга. Все возникающие, во Вселенной без участия человека, сигналы являются аналоговыми.
p, blockquote 3,0,0,0,0 —>
В электронике, электротехнике и системах связи аналоговую передачу данных применяют со времени изобретения электричества. Характерной особенностью является непрерывность и плавность изменения параметров. Графически сеанс аналоговой связи можно описать как непрерывную кривую, соответствующую величине электрического напряжения в определённый момент времени. Линия изменяется плавно, разрывы возникают только при обрыве связи. В природе и электронике аналоговые данные генерируются и распространяются непрерывно. Отсутствие непрерывного сигнала означает тишину или черный экран.
p, blockquote 4,0,0,0,0 —>
В непрерывных системах связи аналогом звука, изображения и любых других данных является электрические или электромагнитные импульсы. Например, громкость и тембр голоса передаются от микрофона на динамик посредством электрического сигнала. Громкость зависит от величины, а тембр от частоты напряжения. Поэтому при голосовой связи сначала напряжение становится аналогом звука, а потом звук аналогом напряжения. Таким же образом происходит передача любых данных в аналоговых системах связи.
p, blockquote 5,0,0,0,0 —>
Что такое дискретный сигнал
В цифровой системе хранения и передачи данных, отсутствие сигнала, также является формой обмена информацией. В какой-то момент времени он равен нулю, в другой принимает какое-либо значение. Поэтому дискретным называют сигнал прерывный, отсюда и название discretus или разделённый. Аналоговые данные разбиваются на отдельные блоки, обрабатываются и передаются в виде цифрового кода.
p, blockquote 6,0,0,0,0 —>
p, blockquote 7,0,0,0,0 —>
Дискретность не подразумевает разрыв связи. В цифровых системах широко используется двоичная система обработки и обмена информацией. Двоичная подразумевает кодировку данных с помощью единицы и нулей. В доли секунды сигнал прерывисто принимает значение 1 или 0. Вместо непрерывной кривой имеем отдельные дискретные значения. Определенный набор нулей и единичек уже несёт в себе какую либо информацию. Примитивный набор это бит или двоичный разряд. Сам по себе он ничего не значит. Данные могут кодироваться только при объединении восьми битов в следующую по сложности комбинацию – байт. Чем больше объединённых байтов, тем больше и точнее можно описать передаваемую информацию.
p, blockquote 8,0,1,0,0 —>
На качество генерируемых данных влияет не только количество объединённых битов, но и скорость передачи. Непрерывная аналоговая кривая должна быть разбита на как много больше мини участков прерывного сигнала. Полученный таким образом звук и цвет будут соответствовать оригиналу. Качественный дискретный сигнал формирует точную копию аналогового. Например, звуковая дорожка MP3 закодированная со скоростью 320 000 бит в секунду (320 kbps) значительно лучше кодированной в 128 kbps. Дорожки скоростью меньше 128 слушать вообще невозможно.
p, blockquote 9,0,0,0,0 —>
Чем отличается непрерывный сигнал от дискретного
На первый взгляд отличия в сигналах можно не различить. Оба передаются в виде электрических импульсов по проводам или электромагнитными волнами в эфире. Преобразовываются в звук и изображение, выводятся на динамики и экран. Но разница существенна. Отличие аналогового сигнала от цифрового обусловлено особенностями обработки и передачи данных.
p, blockquote 10,0,0,0,0 —>
Аналоговые данные не кодируются и не шифруются, просто отображаются в электрические или электромагнитные импульсы. Приёмник преобразовывает импульсы в полном соответствии с полученным сигналом. Передаваемый и принимаемый импульс многогранен и характеризуются постоянным плавным изменением с течением времени. Величина и частота определяют параметры информации. Примером может быть соответствие определённого цвета экрана заданному напряжению. С течением времени цвета плавно меняются следуя изменению напряжения.
Казалось бы, природное происхождение, простота генерации, передачи и приёма благоприятствуют использованию аналогового сигнала. Но в дело вмешиваются электрические и электромагнитные помехи. Это могут быть электромагнитные наводки от электрических сетей, работающих механизмов, рельеф местности, грозы, бури на солнце, шумы создаваемые работой передающего и принимающего оборудования, прочие. Они изменяют плавную кривую. На приёмник информация поступает с изменениями. Шипение, хрипы и искаженное изображение обычная история для аналоговой связи.
p, blockquote 12,0,0,0,0 —>
Цифровая технология использует совсем иной принцип передачи. Аналоговые данные сначала кодируются и только потом передаются. Кодировка заключается в описании непрерывной кривой аналоговой информации. В каждый конкретный момент времени, передаваемый импульс имеет значение единицы или нуля, и определенная последовательность битов отображает всю полноту оригинальной картинки или звука.
Дискретный сигнал как азбука Морзе, только вместо точек и тире — чёткие биты. Ничего более, шумы и помехи им не мешают. Цифровой информации главное дойти до цели. Цифры без примесей передадут данные и без изменений перевоплотятся в звук и цвет. Но слабый сигнал может не донести полную картину. Как пример — пропадание слов или изображения полностью. Поэтому сотовые передатчики, устанавливают как можно ближе друг от друга, также используют повторители.
p, blockquote 14,0,0,0,0 —>
p, blockquote 15,0,0,0,0 —>
Примером непрерывных и дискретных сигналов могут служить старая проводная и новая сотовая связь. Через старые АТС иногда невозможно было разговаривать с соседним домом. Шумы и плохое усиление сигнала мешали слышать друг друга. Что бы вести полноценную беседу, приходилось громко кричать самому и прислушиваться к собеседнику. Другое дело сотовая связь основанная на цифровой технологии. Звук закодирован и хорошо передаётся на далёкие расстояния. Отчетливо слышно собеседника даже с другого континента.
p, blockquote 16,1,0,0,0 —>
Оба вида связи не лишены недостатков, а ключевыми отличиями являются:
- Аналоговый подвержен помехам и поступает с искажениями. В то время как цифровой доходит полностью без искажений или отсутствует вовсе.
- Принять или перехватить аналоговое вещание может любой приёмник такого принципа. Дискретная передача адресована конкретному адресату, кодируется и мало доступна к перехвату.
- Объём передаваемых данных у аналоговой связи конечен, поэтому она практически исчерпала себя в передаче теле сигнала. Напротив с развитием технологии преобразования аналоговой информации в цифровой код растут объемы и качество трансляции. Например, главным отличием цифрового от аналогового телевидения является превосходное качество изображения.
Цифровая технология выигрывает по всем показателям. Споры идут только среди любителей музыки. Многие меломаны и звукорежиссеры утверждают, что могут различить аналоговый оригинал и цифровую копию. Однако большинство слушателей этого сделать не в состоянии. Да и с развитием цифровых систем аналоговые данные кодируются точнее. Оригинальное звучание и цифровая копия делаются практически неразличимым.
p, blockquote 18,0,0,0,0 —>
Как аналоговый сигнал преобразуется в цифровой и наоборот
Первой в цифровую форму преобразовали математическую, физическую и компьютерную информацию. Описать формулы и расчеты не составило труда. А вот для преображения аналоговой действительности в цифровые массивы уже потребовались специальные устройства. Ими стали аналого-цифровые преобразователи или сокращенно АЦП. Они предназначены для преобразования различных физических величин в цифровые коды. Обратное действие совершают устройства ЦАП.
p, blockquote 19,0,0,0,0 —>
Любые цифровые передатчики и приёмники оснащены такими преобразователями. Например, сотовому телефону, поступивший звук необходимо обработать и передать в оцифрованном виде. В то же время необходимо принять от другого абонента код, преобразовать и передать напряжение на динамик. Так же и с изображением на смартфонах и в телевизорах. В любом случае первоначальной информацией выступает напряжение.
p, blockquote 20,0,0,0,0 —>
p, blockquote 21,0,0,0,0 —>
Существует много видов АЦП, но самыми распространёнными являются следующие:
- параллельного преобразования;
- последовательного приближения;
- дельта-сигма, с балансировкой заряда.
Преобразования в АЦП понятийно связаны с измерением и сравнением. Кодировка, это процесс сравнения полученных от источника данных с эталоном. То есть полученная аналоговая величина сравнивается с эталонной (с заданным напряжением). Эталоном выступает информация о конкретном цвете, звуке и т.п. Она соответствует заложенным в устройство представлениям о преобразуемом сигнале. Потом данные эталонной величины кодируются для передачи. Во время аналого-цифровой обработки физических превращений сигнала не происходит. С аналогового делается цифровой матрица (модель).
p, blockquote 23,0,0,0,0 —>
Упрощенно работу любого АЦП можно представить так:
- Измерение через определенные интервалы времени амплитуды напряжения.
- Сравнение с эталоном и формирование данных.
- Отгрузка оцифрованных сведений об изменениях амплитуды на передатчик.
Качество передаваемой информации зависит от двух параметров — точности и частоты измерений. Чем точнее измеряется и зашифровывается входящее напряжение, тем качественней передаваемая информация. Поэтому, имеет большое значение, сколько бит может зашифровать преобразователь. Чем плотнее информационный поток, тем точней передача данных. Это выражается в красках экрана, контрастности картинки и чистоте звука. Следующим важным показателем является дискретизация, то есть частота измерений. Чем чаще, тем меньше провалов в измерениях и необходимости сглаживания. В совокупности, чем чаще и точнее преобразователь может измерять и обрабатывать полученное напряжение, тем он лучше.
p, blockquote 25,0,0,0,0 —>
Как выглядят спектры аналогового и дискретного сигнала
Изображение сигналов можно представить как две функции. На рисунке наглядно представлено, чем отличается непрерывный сигнал от дискретного. Напряжение исходного изменяется плавно, обработанного прерывисто. Спектр дискретного периодически ступенчато совпадает с непрерывным.
p, blockquote 26,0,0,0,0 —>
p, blockquote 27,0,0,0,0 —>
Изменения дискретного происходят резко, через определённый период времени. Уровень в цифровой системе зашифровывается и любую величину напряжения описывают двоичным кодом. От частоты измерений зависит сглаженность преобразования и оригинальность передаваемых данных. Чем точнее описан уровень сигнала и чем чаще проводится и обрабатывается измерение, тем точнее совпадает спектр начального и переданного сигналов.
p, blockquote 28,0,0,0,0 —>
p, blockquote 29,0,0,0,0 —>
Какие системы связи используют цифровой сигнал а какие аналоговый
Несмотря на архаичность аналоговая технология ещё используется для телефонной и радио связи. Многие проводные сети до сих пор остаются аналоговыми. В основном это традиционные телефонные линии местных операторов. Но, для магистральной передачи данных связи уже повсеместно используют цифровые каналы. Так же аналоговая технология применяется в простых и дешёвых переносных радиостанциях.
p, blockquote 30,0,0,0,0 —>
Во всех вновь создаваемых системах используют цифровую технологию обработки сигнала. Это оптоволоконные и проводные линии, сигнализация и телеметрия, военная и гражданская промышленная связь. И конечно же на цифровое вещание переходит телевидение. Аналоговый способ передачи данных исчерпал себя. На смену пришла новая высококачественная и защищенная связь.
p, blockquote 31,0,0,0,0 —>
Список книг помогающих разобраться в аналоговых и цифровых сигналах
Более подробно изучить и сравнить принципы обработки и передачи данных можно прочитав следующую литературу:
- Сато Ю. Обработка сигналов. Первое знакомство. / Пер. с яп.; под ред. Ёсифуми Амэмия. — М: Изд-кий дом «Додэка-XXI», 2002. Книга даёт основы знаний о способах ЦОС. Адресована радиолюбителям, студентам и школьникам, только начинающим изучение систем передачи данных.
- Введение в цифровую фильтрацию /под ред. Р. Богнера и А. Константинидиса; перевод с англ. — М: Изд-во «Мир», 1977. В этой книге популярно и доступно изложена информация о различных системах обработки данных. Сравниваются аналоговая и цифровая системы, описаны плюсы и минусы.
- Основы цифровой обработки сигналов: Курс лекций /Авторы: А.И. Солонина, Д.А. Улахович, С.М. Арбузов, Е.Б. Соловьев, И.И. Гук. — СПб: Изд-во «БХВ-Петербург», 2005. Книга написана по курсу лекций для студентов ГУТ им. Бонч-Бруевича. Изложены теоретические основы обработки данных, описаны дискретные и цифровые системы разных способов преобразования. Предназначена для изучения в вузах и повышения квалификации специалистов.
- Сергиенко А.Б. Цифровая обработка сигналов (второе издание) — СПб: Изд-во «Питер», 2006. Электронный учебно-методический комплекс по дисциплине «Цифровая обработка сигналов». Представлены курс лекций, лабораторный практикум и методические рекомендации по самостоятельной работе. Предназначена для преподавателей и самостоятельного изучения для студентов уровня подготовки бакалавр.
- Лайонс Р. Цифровая обработка сигналов. 2-е изд. Пер. с англ. – М.: ООО «Бином-Пресс», 2006. Книга представляет подробную информацию о ЦОС. Написана понятным языком и снабжена большим количеством иллюстрации. Одна из самых простых и понятных книг на русском языке.
Старая добрая аналоговая связь быстро сдаёт позиции. Несмотря на модернизацию и улучшения, возможность обмена данными достигла предела. К тому же, остались старые болезни – искажения и шумы. В то же время цифровая связь лишена этих недостатков, и передаёт большие объёмы информации быстро, качественно, без ошибок.
Чем отличаются аналоговый сигнал от цифрового — примеры использования
Цифровое телевидение охватило уже практически территорию всей страны. Качественный цифровой сигнал новые телевизоры принимают самостоятельно, старые – с помощью специальной приставки. В чем разница между старым аналоговым и новым цифровым сигналом? Многим это непонятно и требует разъяснения.
Виды сигналов
Сигнал это изменение физической величины во времени и пространстве. По сути это коды для обмена данными в информационной и управленческой средах. Графически любой сигнал можно представить в виде функции. По линии на графике можно определить тип и характеристики сигнала. Аналоговый будет выглядеть как непрерывная кривая, цифровой как ломаная прямоугольная линия, скачущая от ноля до единицы. Все, что мы видим глазами и слышим ушами поступает в виде аналогового сигнала.
Аналоговый сигнал
Зрение, слух, вкус, запах и тактильные ощущения поступают нам в виде аналогового сигнала. Мозг командует органами и получает от них информацию в аналоговом виде. В природе вся информация передаётся только так.
В электронике аналоговый сигнал основан на передаче электричества. Определённым величинам напряжения соответствуют частота и амплитуда звука, цвет и яркость света изображения и так далее. То есть цвет, звук или информация являются аналогом электрического напряжения.
Например: Зададим передачу цветов определённым напряжением синий 2 В, красный 3 В, зелёный 4 В. Изменяя напряжение получим на экране картинку соответствующего цвета.
При этом неважно идёт сигнал по проводам или радио. Передатчик непрерывно отправляет, а приёмник обрабатывает аналоговый вид информации. Принимая непрерывный электрический сигнал по проводам или радиосигнал через эфир приёмник преобразует напряжение в соответствующий звук или цвет. Изображение появляется на экране или звук транслируется через динамик.
Дискретный сигнал
Вся суть кроется в названии. Дискретный от латинского discretus, что означает прерывистый (разделённый). Можно сказать, что дискретный повторяет амплитуду аналогового, но плавная кривая превращается в ступенчатую. Изменяясь либо во времени, оставаясь непрерывной по величине, или по уровню, не прерываясь по времени.
Так, в определенный период времени (например миллисекунду или секунду) дискретный сигнал будет какой-то установленной величины. По окончании этого времени он резко изменится в большую или меньшую сторону и останется таким ещё миллисекунду или секунду. И так беспрерывно. Поэтому дискретный это преобразованный аналоговый. То есть полпути до цифрового.
Цифровой сигнал
После дискретного следующим шагом преобразования аналогового стал цифровой сигнал. Главная особенность – либо он есть, или его нет. Вся информация преобразуется в сигналы ограниченные по времени и по величине. Сигналы цифровой технологии передачи данных кодируются нолем и единицей в разных вариантах. А основой является бит, принимающий одно из этих значений. Бит от английского binarydigit или двоичный разряд.
Но один бит имеет ограниченную возможность для передачи информации, поэтому их объединили в блоки. Чем больше битов в одном блоке, тем больше информации он несёт. В цифровых технологиях используют биты объединенные в блоки кратные 8. Восьмибитовый блок назвали байтом. Один байт небольшая величина, но уже может хранить зашифрованную информацию о всех буквах алфавита. Однако при добавлении всего одного бита число комбинаций ноля и единицы удваивается. И если 8 битов делает возможным 256 вариантов кодировки, то 16 уже 65536. А килобайт или 1024 байт и вовсе немаленькая величина.
ВНИМАНИЕ! Ошибки в том, что 1 КБ равен 1024 байт нет. Так принято в двоичной компьютерной среде. Но в мире широко используется десятичная система исчисления, где кило это 1000. Поэтому существуют еще и десятичный кБ равный 1000 байт.
В большом количестве объединённых байтов хранится много информации, чем больше комбинаций 1 и 0 тем больше закодировано. Поэтому в 5 – 10 МБ (5000 – 10000 кБ) имеем данные музыкального трека хорошего качества. Идём дальше, и в 1000 МБ закодирован уже фильм.
Читайте также: Что делать если телефон перестал заряжаться от зарядки — основные причины
Но так как вся окружающая людей информация аналоговая, то для её приведения в цифровой вид нужны усилия и какое-либо устройство. Для этих целей был создан DSP (digital signal processor) или ЦПОС (цифровой процессор обработки сигналов). Такой процессор есть в каждом цифровом устройстве. Первые появились еще в 70-е годы прошлого века. Методы и алгоритмы меняются и совершенствуются, но принцип остаётся постоянным – преобразование аналоговых данных в цифровые.
Обработка и передача цифрового сигнала зависит от характеристик процессора — разрядности и скорости. Чем они выше, тем качественней получится сигнал. Скорость указывается в миллионах инструкций в секунду (MIPS), и у хороших процессоров достигает нескольких десятков MIPS. Скорость определяет сколько единиц и нолей сможет устройство «запихнуть» в одну секунду и качественно передать непрерывную кривую аналогового сигнала. От этого зависит реалистичность картинки в телевизоре и звука из динамиков.
Отличие дискретного сигнала от цифрового
Про Азбуку Морзе наверное слышали все. Придумал художник Самуэль Морзе, другие новаторы усовершенствовали, а использовали все. Это способ передачи текста, где точками и тире закодированы буквы. Упрощенно, кодировка называется морзянкой. Её долго использовали на телеграфе и для передачи информации по радио. Кроме того, сигналить можно с помощью прожектора или фонарика.
Код морзянки зависит только от самого знака. А не от его продолжительности или громкости (силы). Как ни ударь ключом (моргни фонариком), воспринимаются только два варианта– точка и тире. Можно только увеличить скорость передачи. Ни громкость, ни продолжительность в расчёт ни принимаются. Главное, что бы сигнал дошёл.
Так же и цифровой сигнал. Важно закодировать данные с помощью 0 и 1. Получатель должен только разобрать, комбинацию нолей и единиц. Неважно с какой громкостью и какой продолжительностью будет каждый сигнал. Важно получить нолики и единички. Это суть цифровой технологии.
Дискретный сигнал получится если закодировать ещё громкость (яркость) и продолжительность каждой точки и тире, или 0 и 1. В этом случае вариантов кодировки больше, но и путаницы тоже. Громкость и продолжительность можно не разобрать. В этом и разница между цифровым и дискретным сигналами. Цифровой генерируется и воспринимается однозначно, дискретный с вариациями.
Сравнение цифрового и аналогового сигналов
Сигнал радиостанции телецентра или мобильной связи может передаваться в цифровой и аналоговой форме. Например звук и изображение, это аналоговые сигналы. Микрофон и камера воспринимают окружающую действительность и преобразуют в электромагнитные колебания. Частота колебаний на выходе зависит от частоты звука и света, а амплитуда передачи от громкости и яркости.
Изображение и звук, преобразованные в электромагнитные колебания распространяются в пространство передаточной антенной. В приемнике идёт обратный процесс — электромагнитных колебаний в звук и видео.
Распространению электромагнитных колебаний в эфире препятствуют облака, грозы, рельеф местности, промышленные электронаводки, солнечный ветер и прочие помехи. Частота и амплитуда нередко искажаются и сигнал от передатчика к приемнику приходит с изменениями.
Голос и изображение аналогового сигнала воспроизводятся с искажениями, вызванными помехами, а фоном воспроизводится шипение, хрипы и цветовое искажение. Чем хуже прием, тем отчетливее эти посторонние эффекты. Но если сигнал дошёл, его хоть как то видно и слышно.
При цифровой передаче изображение и звук перед трансляцией в эфир оцифровываются и до приёмника доходят без искажений. Влияние посторонних факторов минимально. Звук и цвет хорошего качества либо их нет вовсе. Сигнал гарантированно поступает на определенное расстояние. Но для дальней передачи необходим ряд ретрансляторов. Поэтому для передачи сотового сигнала антенны ставят как можно ближе друг к другу.
Читайте также: Как научиться читать электрические схемы?
Наглядным примером отличия двух типов сигналов может служить сравнение старой проводной телефонной и современной сотовой связи.
Проводная телефония не всегда хорошо работает даже в пределах одного населённого пункта. Звонок на другой конец страны это испытание голосовых связок и слуха. Нужно докричаться и прислушаться к ответу. Шумы и помехи отфильтровываем ушами, недостающие и искаженные слова додумываем сами. Хоть и плохой звук, но есть.
Звук в сотовой связи отлично слышно даже с другого полушария. Оцифрованный сигнал передаётся и принимается без искажений. Но и он не без изъянов. Если случаются сбои, то звук не слышен вовсе. Выпадают буквы, слова и целые фразы. Хорошо, что это бывает редко.
Примерно то же самое с аналоговым и цифровым телевидением. Аналоговое использует сигнал подверженный помехам, ограниченного качества и уже исчерпало возможности развития. Цифровое не искажается, обеспечивает звук и видео отличного качества, постоянно совершенствуется.
Преимущества и недостатки сигналов разных видов
Со времени изобретения аналоговая передача сигнала была значительно усовершенствована. И прослужила долгое время передавая информацию, звук и изображение. Несмотря на множество улучшений сохранила все свои недостатки – шумы при воспроизведении и искажения при передаче информации. Но главным аргументом для перехода на другую систему обмена данными стал потолок качества передаваемого сигнала. Аналоговый не может вместить объём современных данных.
Совершенствование методов записи и хранения, прежде всего видео контента, оставили аналоговый сигнал в прошлом. Единственным преимуществом аналоговой обработки данных пока ещё является широкое распространение и дешевизна устройств. Во всём остальном аналоговый уступает цифровому сигналу.
Примеры передачи цифрового и аналогового сигналов
Цифровые технологии постепенно теснят аналоговые и уже широко используются во всех сферах жизни. Зачастую мы просто не замечаем этого, а цифра окружает повсюду.
Вычислительная техника
Первые аналоговые вычислительные машины созданы ещё в 30-е годы ХХ века. Это были достаточно примитивные устройства, для выполнения узкоспециализированных задач. Аналоговые компьютеры появились в 1940-е, а широкое применение получили в 1960-е годы.
Постоянно совершенствовались, но с ростом объёма обрабатываемой информации постепенно уступили место цифровым устройствам. Аналоговые компьютеры хорошо приспособлены для автоматического контроля производственных процессов, из-за моментального реагирования на изменения входящих данных. Но скорость работы невысока и объём данных ограничен. Поэтому аналоговые сигналы применяются только в некоторых локальных сетях. В основном это контроль и управление производственными процессами. Где исходной информацией служат температура, влажность, давление, скорость ветра и подобные данные.
В некоторых случаях к помощи аналоговых компьютеров прибегают при решении задач, где точность обмена данными вычислений, не важна как для цифровых электронно-вычислительных машин.
В начале 21 века аналоговый сигнал уступил цифровым технологиям. В вычислительной технике смешанные цифровые и аналоговые сигналы применяют только для обработки данных на основе некоторых микросхем.
Звукозапись и телефония
Виниловая пластинка и магнитная лента два ярких представителя аналогового сигнала для воспроизведения звука. Оба по-прежнему выпускаются и пользуются спросом некоторых ценителей. Многие музыканты считают, что только записав альбом на плёнку можно добиться сочного настоящего звучания. Меломаны любят послушать диски с характерными шумами и потрескиваниями. С 1972 года выпускались магнитофоны осуществляющие цифровую запись на магнитную ленту, но распространения не получили из-за дороговизны и больших габаритов. Применяются только в профессиональной звукозаписи.
Ещё один пример аналогового и цифрового сигналов в звукозаписи – микшеры и синтезаторы звука. В основном используются цифровые устройства, а применение аналоговых вызвано привычками и предрассудками. Считается, что цифровая запись до сих пор не добилась того эффекта всеохватывающей передачи музыки. И он присущ только аналоговому сигналу.
Читайте также: Что такое электролиз и где он применяется?
Тогда как молодёжь, не представляет музыку без MP3 файлов, хранящихся в памяти телефонов, флешек и компьютеров. А онлайн – сервисы обеспечивают доступ к своим хранилищам с миллионами цифровых записей.
Телефония ушла еще дальше. Цифровая сотовая связь практически вытеснила проводную. Последняя осталась в государственных органах, учреждения здравоохранения и подобных организациях. Большинство уже не представляет жизнь без соты и как быть привязанным к проводу. Сотовая связь, основа передачи данных в которой цифровой сигнал надёжно связывает абонентов всего мира.
Электрические измерения
Цифровая обработка и передача данных прочно обосновалась в электрических измерениях. Электронные осциллографы, вольт и амперметры, мультиизмерительные приборы. Все приборы, где информация выводится на электронный дисплей, используют цифровой сигнал для передачи измерения. В быту чаще всего можно столкнуться с этим при виде стабилизаторов и реле напряжений. Оба устройства измеряют напряжение в сети, обрабатывают и передают цифровой сигнал на дисплей.
Всё чаще цифровая технология используется и для передачи данных электрических измерений на дальние расстояния. Для контроля показателей электрических сетей на подстанциях и диспетчерских пультах управления устанавливают цифровое оборудование. Аналоговые приборы популярны только в щитах, непосредственно у точек измерения.
Ещё одно широкое применение цифрового сигнала – учёт электроэнергии. Жильцы часто забывают посмотреть показания прибора и занести их в личный кабинет или передать энергоснабжающей организации. От забот избавляют цифровые системы учёта электроэнергии. Показания сразу попадают в систему учета. Поэтому отсутствует необходимость постоянного общения абонента с поставщиком, можно иногда зайти в личный кабинет и сверить данные.
Аналоговое и цифровое телевидение
С аналоговым телевидением человечество прожило долгие годы. Все привыкли к простым и понятным вещам. Вначале эфирное, потом кабельное чуть лучшего качества. Простая антенна, телевизор и изображение посредственного качества. Но технологии записи и хранения видео ушли далеко вперёд аналогового сигнала. И он уже не может в полной степени передать современный фильм или телепередачу. Качество, стабильность и хороший уровень сигнала может обеспечить только цифровое телевидение.
У цифрового телевидения очень много преимуществ. Первое и очень большое – компрессия сигнала. Благодаря этому, увеличилось количество просматриваемых каналов. Так же улучшилось качество передачи видео и звука, без этого просто невозможна трансляция для современных телевизоров с большими экранами. Вместе с этим появилась возможность показать информацию о транслируемой передаче, следующих телепрограммах и тому подобную.
Вместе с плюсами появилась и небольшая проблема. Для приёма цифрового сигнала нужен специальный тюнер.
Особенности эфирного телевидения
Для приёма эфирного цифрового сигнала необходим тюнер Т2, другие названия – ресивер, декодер или теле приставка DVB-T2. Большинство современных светодиодных LED телевизоров изначально оснащены такими устройствами. Поэтому их владельцам не о чем беспокоится. При отключении аналогового телевидения нужно только перенастроить каналы.
Нет проблем и для владельцев старых телевизоров без встроенного тюнера Т2. Здесь все просто. Нужно купить отдельную приставку DVB-T2, которая примет сигнал T2, обработает его и передаст готовую картинку на экран. Приставку можно легко подключить к любому телевизору.
Цифровой сигнал применяется во все больших сферах жизни. Телевидение не исключение. Не стоит бояться нового. Большинство телевизоров уже оснащены необходимым, а для старых нужно приобрести недорогую приставку. Тем более, что настроить устройство легко. А качество изображения и звука лучше.
Как подключить приставку цифрового телевидения к телевизору
Как подключить кабель от компьютера или ноутбука к телевизору?
Для чего нужен осциллограф и как им выполнять измерения тока, напряжения, частоты и сдвига фаз
Что такое ШИМ — широтно-импульсная модуляция
Как усилить сигнал от ТВ антенны?
Что такое RFID метки или метки радиочастотной идентификации?