Все о стали 30ХГСА – состав, характеристики, сфера применения, достоинства и недостатки
Сталь 30ХГСА ; один из наиболее востребованных в промышленности и в чем-то даже легендарный сплав, вошедший в историю как прорывной для времени своего открытия. Марка была открыта перед началом войны советскими учеными И.И. Сидориным и Г.В. Акимовым ; сотрудниками ВИАМ (Всесоюзного Института Авиационных Материалов). Сталь 30ХГСА на несколько лет стала мировым лидером среди материалов для авиастроения и успешно применялась советской авиацией в годы войны. До сих пор Сталь 30ХГСА используется в авиастроении, машиностроении, кораблестроении и многих других отраслях как мирной, так и военной промышленности.
30ХГСА — расшифровка марки стали
Сталь 30ХГСА относится к группе легированных сталей. Состав ее регламентируется ГОСТом 4543-71, согласно которому каждая буква и цифра обозначает определенное содержание определенных химических элементов:
- Цифра 30 означает содержание углерода 0,28-0,34%. Углерод повышает твердость и прочность в сталях, но снижает пластичность и свариваемость.
- Х – хром (0,8-1,1%) повышает закаливаемость, коррозионную стойкость и жаропрочность сплава. Положительно влияет на сопротивление абразивному износу.
- Г – марганец (0,8-1,1%) удаляет вредные примеси кислорода и серы. Снижает риск образования окалин и трещин во время термообработки. Повышает качество поверхности. Помимо этого, способствует увеличению сталью пластичности и свариваемости.
- С – кремний также как марганец является сильным раскислителем. Повышает пластичность, не снижая при этом прочность. Увеличивает восприимчивость стали к термической обработке.
- Буква «А» расшифровывается как улучшенная. Это означает, что сталь прошла закалку с высоким отпуском. Особенности проведения закалки заключаются в нагреве стали до температуры 870 ºС и в последующем быстром охлаждении в масле или воде. Таким образом, происходит трансформация внутренней структуры, что способствует повышению механических характеристик 30ХГСА в 2,9 раза. Закалочные напряжения снимаются высоким отпуском: нагревом до 540-560 ºС. Помимо снятия напряжения, параллельно происходит увеличение упругих свойств.
- Сера (до 0,25%) и фосфор (до 0,25%) относятся к категории вредных примесей. Размеры их молекул слишком большие по сравнению со всеми вышеперечисленными элементами. Встраиваясь в кристаллическую сетку стали, сера и фосфор снижают ее устойчивость, тем самым снижая прочность сплава.
- Также в составе 30ХГСА имеется некоторый процент меди и никеля. Но их содержание настолько мало, что они не оказывают влияния на характеристики стали.
30ХГСА – это российское обозначение марки стали.
Аналоги
Существует следующие зарубежные аналоги:
- Польша 30HGSA.
- Болгария 30ChGSA.
- Чехия 14331.
Сортамент продукции
- Трубы.
- Заготовки кованые и поковка.
- Полосовое железо.
- Листы – толстые и тонкие.
- Прокат – сортовой, фасонный.
- Прутки калиброванные и шлифованные.
Читайте также: Технология усиления свайного фундамента + в каких случаях оно требуется
Обозначение
Первая позиция – число. Характеризует процентное содержание углерода (в сотых долях, следовательно, 0,3%). В соответствие с принятой классификацией данная сталь относится к среднелегированным.
Вторая – буквы. Соответствуют названиям легирующих добавок. Отсутствие после этой группы цифр свидетельствует о том, что их содержание в стали – не более 1%.
Третья позиция – литера (в данном случае «А»). Означает, что данная марка считается высококачественной.
Упрочняющая термическая обработка стали 30ХГСА .
Выбор параметров режима закалки стали.
Закалка — самый распространенный вид термической обработки. Столь широкое распространение этого вида термической обработки объясняется тем, что при помощи закалки и последующего отпуска можно изменить свойства стали в очень широком диапазоне. Были рассмотрены превращения, которые протекают в стали, имеющей структуру аустенита, при ее охлаждении с различной скоростью.
Фактическая скорость печного нагрева определяется температурой, до которой нагрето печное пространство, и массой помещенной в него детали.
Температура закалки определяется исходя из массовой доли углерода в стали и соответствующего ей значения критической точки. В зависимости от температуры нагрева закалку называют полной или неполной. При полной закалке сталь переводят в однофазное аустенитное состояние, т. е. нагревают выше критических температур Ас3 или Асcm, при неполной – до межкритических температур – между Ас1=760 и Ас3 (Асcm)=830.
Закалку проводят с нагревом до 850—900 °С (выше точки А3 сердцевины изделия), чтобы произошла полная перекристаллизация с измельчением аустенитного зерна в доэвтектоидной стали. В углеродистой стали из-за малой глубины прокаливаемости сердцевина изделия после первой закалки состоит из феррита и перлита. В прокаливающейся насквозь легированной стали сердцевина изделия состоит из низкоуглеродистого мартенсита. Такая структура обеспечивает повышенную прочность и достаточную вязкость сердцевины.
Температура закалки равна:
В результате после охлаждения со скоростью выше Vкр получили структуру сердцевины детали, состоящую из троостита . В поверхностном слое структуру крупноигольчатого мартенсита.
Время нагрева
детали до заданной температуры зависит от температуры нагрева, степени легированности стали, конфигурации изделий, мощности и типа печи, величины садки, способа укладки изделий и других факторов.
Время выдержки
исчисляется с момента достижения детали заданной температуры и так же, как и время нагрева, зависит от многих факторов, влияющих на процессы растворения и структурных превращений, происходящих в стали.
Время закалки расчитывается по следующим формулам.
Читайте также: Долбежный станок по дереву: профессиональное оборудование и рекомендации по выбору. Особенности самодельных станков
— будет зависит от нагревающего устройства ( в нашем случае это будет электропечь т.е. время нагрева будет 1 мин/1 мм сечения наибольшего диаметра в изделии).— будет составлять 25% от времени нагрева.
Закалку данной детали будем проводить в электропечи, располагая в нем изделия,
нагрева= 1 мин * 1 мм сечения = 55 1=55 минут нагрева.
Время выдержки в электропечи составит 25% от времени нагрева,
выдержки= 13 минут 45 секунд.закалки= 55+13,75=68,75мин.
Время закалки составит 1 час 8 минут 45 секунд.
Выбор охлаждающей среды.
Условия аустенитизации и соответственно состояние аустенита оказывают большое влияние на кинетику фазовых превращений при последующем охлаждении и конечные свойства образующихся при этом структур стали.
Для получения мартенситной структуры при закалке стали её необходимо охлаждать со скоростью не меньшей, чем критическая скорость закалки (/охл. > /кр). Значение /кр определим, воспользовавшись диаграммой изотермического превращения переохлаждённого аустенита (рисунок 5).
Рисунок 5 – С- кривые изотермического распада аустенита для стали 30ХГСА.
Зная скорость охлаждения, мы можем определить закалочную среду. В данном случае при закалке на мартенсит необходимо охлаждать в масло, так как сталь 30ХГСА – легированная.
Вода как охлаждающая среда имеет некоторые существенные недостатки: высокая скорость охлаждения в области температур мартенситного превращения нередко приводит к образованию закалочных дефектов; с повышением температуры резко ухудшается закалочная способность. При температуре воды 80 – 90 0 С пленочное кипение распространяется на большую область температур и занимает до 95% всего периода охлаждения, поэтому мы охлаждаем в масле.
При закалке изделий в горячей воде вследствие их медленного охлаждения при высоких и быстрого при низких температурах тепловые напряжения получаются низкими, а наиболее опасные структурные – высокими, что может вызвать образование трещин. Наиболее высокой и равномерной охлаждающей способностью отличаются холодные 8-12%-ные водные растворы NaCl и NaOH, которые хорошо зарекомендовали себя на практике.
Влияние легирующих элементов.
Читайте также: Что такое «Американка» в сантехнике: виды и варианты фитингов
Сталь 30ХГСА содержит следующие легирующие элементы: хром, марганец. Прежде всего легирующие элементы увеличивают такое важное свойство как критический диаметр прокаливаемость. Наша сталь прокаливается насквозь до 50 мм. Как правило, лучшие свойства обеспечивает комплексное легирование. Легирование сталей и сплавов используют для улучшения их технологических свойств. Легированием можно повысить предел текучести, ударную вязкость, относительное сужение и прокаливаемость, а также существенно снизить скорость закалки, порог хладноломкости, деформируемость изделий и возможность образования трещин. В изделиях крупных сечений (диаметром свыше 15. 20 мм) механические свойства легированных сталей значительно выше, чем механические свойства углеродистых.
Физические свойства
Ст 30ХГСА, характеристики которой свойственны многим среднелегированным сталям, получила широкое применение. Расширенную область применения можно связать с следующими качествами:
- При проведении инженерных расчетов учитывается плотность стали 30ХГСА, которая составляет 7850 кг/м3. Стоит учитывать, что подобный показатель может варьировать с большом диапазоне в зависимости от температуры окружающей среды.
- Температура плавления составляет 1500 градусов Цельсия. Этот показатель определяет сложности, которые возникают при литье, а также высокую устойчивость к воздействию температуры.
- Высокая прочность и устойчивость к ударной нагрузке также определяют широкое распространение стали. Структура разрушается только при воздействии ударной нагрузки 980 МПа.
Физические свойства 30хгса
Физические свойства учитываются при выборе наиболее подходящего сплава для изготовления деталей с учетом того, в каких именно условиях они будут эксплуатироваться.
Аналоги
Наиболее известными импортными аналогами сплава 30ХГСА считаются:
- 30HGSA, 30HGS (Польша);
- 30ChGSA (Болгария);
- 14331 (Чехия).
Их структура, химический состав и основные эксплуатационные характеристики имеют много схожего. Однако эти зарубежные сплавы неидентичны нашему. Поэтому решение об их взаимозаменяемости нужно принимать индивидуально, с учетом конкретных технологических требований, предъявляемых к готовому изделию.
Заменителями сплава среди российских сталей считаются металлы марок 40ХФА, 35ХМ, 40ХН, 25ХГСА, 35ХГСА.
Зарубежные и отечественные аналоги Стали 30ХГСА
Аналоги и заменители представляют собой либо полностью идентичные сплавы с другими названиями (произведенные в странах, где приняты другие системы маркировок), либо сплавы, максимально близкие по своим свойствам к стали 30ХГСА. Необходимость заменить марку иногда возникает в строительстве или при изготовлении деталей, решение об этом принимает инженер-конструктор. Замена материала ; вполне распространенная практика, не ухудшающая характеристик готового изделия или конструкции. Замену нельзя производить только в случаях, когда к изделию или конструкции предъявляются повышенные требования.
На отечественном рынке заменителей стали 30ХГСА достаточно много, ими могут быть:
- 40ХН;
- 25ХГСА;
- 40ХФА;
- 35ХМ;
- 35ХГСА (является ближайшим и наиболее предпочтительным аналогом).
Зарубежными аналогами являются марки:
- 14331 ; точный аналог чешского производства;
- 30ChGSA ; точный аналог болгарского производства;
- 30HGSA ; точный аналог польского производства.
Применение
Заготовки из стали 30ХГСА обрабатываются в соответствии с технологией холодной штамповки. Такой метод позволяет получать серьги, тяги, траверсы, валы, рычаги, звездочки, а также цилиндры и муфты. Они представляют собой элементы невысокой прочности, поэтому их используют в промышленных узлах и механизмах слабой загруженности.
В целом область применения такой стали включает несколько направлений.
- Строительство. В этой сфере широкое распространение получили элементы, эксплуатируемые в условиях переменных нагрузок. Их стойкость к окислению определяет тот факт, что данные крепежи могут использоваться исключительно при наличии специальной защиты устройства.
- Авиастроение. В этой отрасли сплав востребован как расходник для производства фланцев, валов и других элементов. Однако при изготовлении ответственных деталей 30ХГСА использовать запрещено.
- Машиностроение. Сплав нашел своё применение при изготовлении и производстве элементов, работающих в условиях переменных или постоянных нагрузок.
Термообработка
Для повышения технико-эксплуатационных параметров готовых изделий выполняется термообработка сплава. Благодаря этому увеличиваются показатели твердости и прочности материала. Для стали марки 30ХГСА используются следующие схемы термического воздействия. Закалка применяется с целью изменения характеристик поверхностного слоя. Отжиг производят при режиме нагрева до 880 градусов, последующий отпуск выполняют в масле. Таким образом сводится к минимуму риск появления структурных и поверхностных деформаций.
Любая закалка предполагает перестраивание микрокристаллической решётки. В ходе обработки зачастую появляются внутренние напряжения, в дальнейшем они могут вызвать появление структурных трещин. Чтобы предупредить нежелательные последствия, отпуск выполняют при температуре 540 градусов. Улучшить качество металла помогает ковка. Перед началом обработки заготовку прогревают до 1240 градусов. Охлаждение выполняют в водной среде или на открытом воздухе в зависимости от габаритов изделия.
Тепловая обработка
30ХГСА ; это улучшаемый сплав, его характеристики можно повысить за счет правильной тепловой обработки ; закаливания или отпуска. Это касается не только заготовок, но и готовых стальных изделий, улучшаемых с помощью химико-термического воздействия.
Разновидности термообработки стали 30ХГСА
- Закаливание. Процедура, направленная на улучшение характеристик поверхностного слоя стали. Сталь 30ХГСА закаливается при температуре 880С и подвергается охлаждению в масле, чтобы не допустить нежелательных структурных изменений.
- Отпуск. Закаливание стали меняет ее структурные характеристики. После такой внутренней перестройки может возникнуть напряжение, приводящее к трещинам. Чтобы не допустить этого, таль 30ХГСА подвергают отпуску при температуре 540С. Для охлаждения можно использовать воду.
- Ковка. В результате ковки структура металла становится более прочной. Сталь 30ХГСА куют после нагревания до 1240С и охлаждают на открытом воздухе.
Прокаливаемость стали 30ХГСА сравнительно невысока, она составляет всего 24-40 мм глубины прокаливаемого слоя.
Сварка
Сплав относится к группе ограниченно свариваемых. Для него используют следующие типы сварки:
- АДС — аргонно-дуговая под флюсом с дополнительной газовой защитой;
- АрДС — аргонно-дуговая сварка вольфрамовым электродом, проводится в среде защитных газов;
- ЭШС — электрошлаковая технология;
- КТС — контактно-точечная сварка.
При этом требуются предварительный подогрев материала и последующая термообработка. Данных ограничений не существует исключительно при проведении КТС.
Механические характеристики
Марка 30ХГСА от обычных конструкционных сталей отличается повышенным значением прочности и устойчивости к ударным нагрузкам. Предел текучести равен 820 МПа. Для сравнения, нержавейка 12Х18Н10Т «течет» уже при 400 МПа. Полное разрушение стали происходит при нагрузке 980 МПа. Ударная вязкость составляет 127 КДжм2.
Обладает высокими пластичными свойствами: относительное удлинение 11%, а сужение 50%. Устойчива при работе в условиях переменных нагрузок. Предел выносливости 30ХГСА больше стали 45 ровно в 2 раза и имеет значение 490 МПа. Износоустойчива. Твердость находится в пределах 45-50 единиц по шкале Роквелла.
Читайте также: Легированная сталь 40Х: характеристики, применение, свойства
Сталь сохраняет свои механические характеристики при температуре вплоть до 400 С.
Что придают добавки
Их содержание в стали 30ХГСА в пределах 0,8 – 1,1%.
- Хром – антикоррозийную стойкость и механическую прочность.
- Марганец – повышает износостойкость и устойчивость к ударным нагрузкам.
- Кремний – повышает значение вязкости (ударной).
Особенности 30ХГСА
- Закалка этой марки проводится в температурном диапазоне 550 – 650 °С. Термообработка позволяет повысить прочность материала (до значения 2 800 МПа) и пластичность.
- Свариваемость – хорошая. Однако качество шва будет обеспечено только при выполнении ряда условий: предварительный разогрев металла (до 300 ºС), а после окончания работы – медленное охлаждение участка (для этого пламя горелки постепенно отводится в сторону). Если этого не сделать, то есть риск появление трещин в сварном шве.
- Низкая стоимость, так как легирующие компоненты не являются дефицитом.
Как недостаток данной продукции специалисты отмечают ее незначительную «прокаливаемость» (2,5 – 4 см), а также некоторую чувствительность к хрупкости.
Технологические свойства
Сталь 30ХГСА (ГОСТ определяет диапазон некоторых свойств) может применяться при создании различных изделий и конструкций. При выборе этого металла следует учитывать:
- Коррозионная стойкость низкая. При длительном воздействии высокой влажности на поверхности может появится коррозия. Это качество следует учитывать при выборе легированной стали. В некоторых случаях коррозионная стойкость повышается за счет нанесения на поверхность гальванического покрытия, которое состоит из цинка и хрома. Для получения подобной поверхности применяется метод электролиза. Однако, создаваемый поверхностный слой характеризуется низкой устойчивостью к механическому воздействию – после повреждения незамедлительно появится коррозия.
- Высокая пластичность, так как относительное удлинение составляет 11%. Она также существенно расширяет область применения металла, так как многие детали должны выдерживать переменную нагрузку.
- Материал характеризуется высокой устойчивостью к переменным нагрузкам. Предел выносливости при испытании может варьироваться в зависимости от температуры окружающей среды.
- Показатель твердости по шкале Роквелла составляет 50 единиц.
- Механические свойства не изменяются при температуре до 400 градусов Цельсия. Эксплуатация при более высокой температуре не допускается, так как это приведет к повышению пластичности и снижению твердости поверхности.
- Сталь 30ХГСА, термообработка которой проводится для повышения твердости и снижения хрупкости, характеризуется пластичностью. Именно поэтому она может применяться при ковке или штамповке.
- Отличная упругость позволяет проводить обработку заготовок резанием. Именно поэтому заготовки поставляются для зенкерования, фрезерования или точения.
Для повышения производительности часто проводится отжиг. Рассматриваемая марка среднелегированных сталей относится ко второй группе по степени свариваемости. Именно поэтому рекомендуется проводить предварительный подогрев структуры, что снижает вероятность образования структурных трещин. Для обеспечения наиболее благоприятных условий зачастую заготовки нагревают до температуры 250 градусов Цельсия.
Преимущества и недостатки
Как и любая марка стали, 30ХГСА обладает набором особенностей, определяющих сферы ее применения. У нее есть как сильные стороны, так и уязвимости, ограничивающие ее использования в определенных условиях. В ряде случаев недостатки можно нивелировать с помощью дополнительной обработки ; тепловой, химической или нанесения защитного покрытия на поверхность изделия.
- ударная вязкость ; высокая способность стали противостоять динамическим нагрузкам;
- твердость ; объясняется высоким содержанием углерода в составе стали;
- износоустойчивость ; устойчивость к переменным нагрузкам, особо ценное качество стали 30ХГСА, сделавшее ее незаменимой в самолетостроении;
- хорошая свариваемость;
- высокая сопротивляемость постоянному тепловому воздействию (до 400С).
- Низкая прокаливаемость ; небольшая глубина изменений при закалке;
- Флокеночувствительность ; подверженность образованию внутренних трещин, снижающих механические показатели;
- Коррозионная подверженность ; сталь нельзя использовать в условиях повышенной влажности или прямого контакта с водой без гальванического покрытия или других защитных мер.
Сталь 30ХМА
Химический состав (по ГОСТ 4543-2016)
Химический элемент | % |
Углерод (C) | 0.26-0.33 |
Кремний (Si) | 0.17-0.37 |
Медь (Cu), не более | 0.30 |
Молибден (Mo) | 0.15-0.25 |
Марганец (Mn) | 0.40-0.70 |
Никель (Ni), не более | 0.30 |
Фосфор (P), не более | 0.025 |
Хром (Cr) | 0.80-1.10 |
Сера (S), не более | 0.025 |
Механические свойства
Термообработка, состояние поставки | Сечение, мм | σ0,2, МПа | σB, МПа | δ5, % | ψ, % | KCU, Дж/м2 | HB |
Пруток. Закалка 880 °С, малос. Отпуск 540 °С, вода или масло. | |||||||
15 | 735 | 930 | 12 | 55 | 78 | ||
Поковки. Закалка. Отпуск. | |||||||
КП 395 | 395 | 615 | 17 | 45 | 49 | 187-229 | |
КП 440 | 100-300 | 440 | 635 | 16 | 45 | 59 | 197-235 |
КП 440 | 100-300 | 440 | 635 | 14 | 40 | 54 | 197-235 |
КП 490 | 490 | 655 | 16 | 45 | 59 | 212-248 |
Механические свойства при повышенных температурах
t испытания, °C | σ0,2, МПа | σB, МПа | δ5, % | ψ, % | KCU, Дж/м2 |
Закалка 880 °С, масло. Отпуск 650 °С | |||||
260 | 590 | 730 | 20 | 70 | 186 |
200 | 490 | 660 | 21 | 70 | |
300 | 520 | 710 | 21 | 69 | 206 |
400 | 480 | 630 | 22 | 75 | 199 |
500 | 430 | 500 | 22 | 80 | 142 |
600 | 340 | 330 | 29 | 89 | 142 |
Образец диаметром 6 мм, длиной 30 мм, прессованный. Скорость деформирования 16 мм/мин. Скорость деформации 0,009 1/с | |||||
800 | 80 | 130 | 69 | 67 | |
1000 | 41 | 56 | 64 | 100 | |
1200 | 14 | 26 | 55 | 100 |
Механические свойства в зависимости от температуры отпуска
t отпуска, °С | σ0,2, МПа | σB, МПа | δ5, % | ψ, % | KCU, Дж/м2 | HRCэ |
Закалка 880 °С, масло. | ||||||
200 | 1320 | 1520 | 12 | 50 | 69 | 49 |
300 | 1330 | 1450 | 11 | 51 | 49 | 45 |
400 | 1220 | 1370 | 12 | 55 | 69 | 42 |
500 | 1080 | 1130 | 16 | 60 | 127 | 36 |
Механические свойства в зависимости от сечения
Термообработка, состояние поставки | Сечение, мм | σ0,2, МПа | σB, МПа | δ5, % | ψ, % | KCU, Дж/м2 | HRCэ |
Закалка 880 °С, масло. Отпуск 500 °С. | |||||||
Место вырезки образца — центр | 40 | 650 | 820 | 17 | 71 | 147 | 27 |
Место вырезки образца — центр | 60 | 630 | 800 | 17 | 69 | 157 | 27 |
Место вырезки образца — 1/2R | 80 | 660 | 790 | 17 | 67 | 137 | 25 |
Место вырезки образца — 1/2R | 100 | 610 | 780 | 18 | 64 | 147 | 25 |
Место вырезки образца — 1/3R | 120 | 620 | 750 | 16 | 63 | 137 | |
Закалка 880 °С, вода. Отпуск 500 °С. | |||||||
Место вырезки образца — центр | 40 | 790 | 930 | 13 | 61 | 118 | 30 |
Место вырезки образца — центр | 60 | 740 | 870 | 16 | 64 | 127 | 31 |
Место вырезки образца — 1/2R | 80 | 760 | 890 | 14 | 64 | 108 | 30 |
Место вырезки образца — 1/2R | 100 | 700 | 830 | 17 | 65 | 137 | 27 |
Место вырезки образца — 1/3R | 120 | 690 | 840 | 18 | 63 | 118 | 25 |
Температура критических точек
Критическая точка | °С |
Ac1 | 757 |
Ac3 | 807 |
Ar3 | 763 |
Ar1 | 693 |
Ударная вязкость
Ударная вязкость, KCU, Дж/см2
Состояние поставки, термообработка | -20 | -40 | -60 |
Закалка 880 С, масло. Отпуск 350 С. | 42 | ||
Закалка 880 С, масло. Отпуск 550 С. | 147 | 108 |
Предел выносливости
σ-1, МПа | n | Термообработка, состояние стали |
407 | 1Е+7 | Закалка 870 °С, вода. Отпуск 600 °С |
366 | НВ 260. Закалка 880 °С, масло. Отпуск 560 °С | |
304 | НВ 212. Закалка 880 °С, масло. Отпуск 650 °С |
Прокаливаемость
Закалка 880 С. Твердость для полос прокаливаемости HRCэ.
Расстояние от торца, мм / HRC э | |||||||||
1.5 | 3 | 4.5 | 6 | 9 | 12 | 15 | 18 | 21 | 24 |
49.5-54 | 48-53 | 46-52 | 43.5-51 | 37-48 | 33.5-44.5 | 30-39.5 | 28-37.5 | 26.5-35.5 | 24-34.5 |
Зарубежные аналоги Стали 30ХМА
Механические свойства | |
σB | временное сопротивление разрыву (предел прочности при растяжении), МПа |
σ0,2 | предел текучести условный, МПа |
σсж | предел прочности при сжатии, МПа |
σсж0,2 | предел текучести при сжатии, МПа |
σ0,05 | предел упругости, МПа |
σизг | предел прочности при изгибе, МПа |
σ-1 | предел выносливости при испытании на изгиб с симметричным циклом нагружения, МПа |
δ5 , δ4 , δ10 | относительное удлинение после разрыва, % |
ψ | относительное сужение, % |
ν | относительный сдвиг, % |
ε | относительная осадка при появлении первой трещины, % |
τК | предел прочности при кручении, максимальное касательное напряжение, МПа |
τ-1 | предел выносливости при испытании на кручение с симметричным циклом нагружения, МПа |
KCU и KCV | ударная вязкость, определенная на образце с концентраторами вида U и V, Дж/см2 |
HRCэ и HRB | твёрдость по Роквеллу (шкала C и B соответственно) |
HB | твёрдость по Бринеллю |
HV | твёрдость по Виккерсу |
HSD | твёрдость по Шору |
Физические свойства | |
E | модуль упругости нормальный, ГПа |
G | модуль упругости при сдвиге кручением, ГПа |
ρn | плотность, кг/м3 |
λ | коэффициент теплопроводности, Вт/(м∙°C) |
ρ | удельное электросопротивление, Ом∙м |
α | коэффициент линейного теплового расширения, 10-61/°С |
с | удельная теплоёмкость, Дж/(кг∙°С) |
Химический состав
Химический состав стали 30ХГСА и процентные доли содержания значимых элементов приведены в следующей таблице.
Химический элемент | % |
Углерод (С) | 0.28-0.34 |
Кремний (Si) | 0.90-1.20 |
Медь (Cu), не более | 0.30 |
Марганец (Mn) | 0.80-1.10 |
Никель (Ni), не более | 0.30 |
Фосфор (P), не более | 0.025 |
Хром (Cr) | 0.80-1.10 |
Сера (S), не более | 0.025 |
Согласно ГОСТу 4543-2016 массовая доля азота не может превышать следующие показатели:
- для мартеновской стали ; 0,005%;
- для кислородно-конвертерной стали без внепечной обработки ; 0,006% (тонколистовая, лента) и 0,008% (прочие виды металлопродукции);
- для кислородно-конвертерной стали с внепечной обработкой ; 0,010% (тонколистовая, лента) и 0,012% (прочие виды металлопродукции);
- для стали, выплавленной в электропечах ; 0,012%.
Обстоятельства, при которых массовая доля азота в сплаве не регулируется и не нормируется:
- массовая доля алюминия в сплаве составляет не менее 0,020% (для общего) или 0,015% (для кислоторастворимого);
- присутствуют азотосвязывающие элементы в любом сочетании (титан, ванадий, ниобий) если суммарная массаовая доля элементов включая алюминий не превышает 0,015%
Допустимые пределы содержания остаточных элементов (до):
- вольфрам ; 0,20%;
- молибден ; 0,11%;
- ванадий ; 0,05%;
- титан ; 0,03%.
Механические свойства при повышенных температурах
t испытания, °Cs0,2, МПаsB, МПаd5, %y, %KCU, Дж/м2
Пруток. Закалка 880 °С, масло. Отпуск 560 °С. | |||||
300 | 820 | 980 | 11 | 50 | 127 |
400 | 780 | 900 | 16 | 69 | 98 |
500 | 640 | 690 | 21 | 84 | 78 |
550 | 490 | 540 | 27 | 84 | 64 |
Образец диаметром 5 мм, длиной 25 мм, прокатанный. Скорость деформирования 2 мм/мин. Скорость деформации 0,0013 1/с [81] | |||||
700 | 175 | 59 | 51 | ||
800 | 85 | 62 | 75 | ||
900 | 53 | 84 | 90 | ||
1000 | 37 | 71 | 90 | ||
1100 | 21 | 59 | 90 | ||
1200 | 10 | 85 | 90 |
Допускаемые напряжения для углеродистых сталей обыкновенного качества в горячекатаном состоянии
Марка стали по ГОСТ 380 | Допускаемые напряжения, кгс/см2 | |||||||||||||
При растяжении [ σ р ] | При изгибе [ σ из ] | При кручении [ τ кр ] | При срезе [ τ ср ] | При смятии [ σ см ] | ||||||||||
I | II | III | I | II | III | I | II | III | I | II | III | I | II | |
Ст 2 | 1150 | 800 | 600 | 1400 | 1000 | 800 | 850 | 650 | 500 | 700 | 500 | 400 | 1750 | 1200 |
Ст 3 | 1250 | 900 | 700 | 1500 | 1100 | 850 | 950 | 650 | 500 | 750 | 500 | 400 | 1900 | 1350 |
Ст 4 | 1400 | 950 | 750 | 1700 | 1200 | 950 | 1050 | 750 | 600 | 850 | 650 | 500 | 2100 | 1450 |
Ст 5 | 1650 | 1150 | 900 | 2000 | 1400 | 1100 | 1250 | 900 | 700 | 1000 | 650 | 550 | 2500 | 1750 |
Ст 6 | 1950 | 1400 | 1100 | 2300 | 1700 | 1350 | 1450 | 1050 | 800 | 1150 | 850 | 650 | 2900 | 2100 |
Механические свойства в зависимости от температуры отпуска
t отпуска, °Сs0,2, МПаsB, МПаd5, %y, %KCU, Дж/м2HB
Диаметр 20-70 мм, закалка 880 °С, масло. После отпуска охлаждение в воде. | ||||||||||||||
200 | 1570 | 1700 | 11 | 44 | 88 | 487 | ||||||||
300 | 1520 | 1630 | 11 | 54 | 69 | 470 | ||||||||
400 | 1320 | 1420 | 12 | 56 | 49 | 412 | ||||||||
500 | 1140 | 1220 | 15 | 56 | 78 | 362 | ||||||||
600 | 940 | 1040 | 19 | 62 | 137 | 300 |
Механические свойства в зависимости от сечения
Сечение, ммs0,2, МПаsB, МПаd5, %y, %KCU, Дж/м2
Закалка 880 °С, масло. Отпуск 600 °С, вода. | ||||||||||||||
30 | 880 | 1000 | 12 | 50 | 69 | |||||||||
50 | 760 | 880 | 12 | 50 | 69 | |||||||||
80 | 740 | 860 | 14 | 50 | 78 | |||||||||
120 | 670 | 820 | 14 | 50 | 78 | |||||||||
160 | 590 | 740 | 14 | 50 | 78 | |||||||||
200 | 530 | 720 | 14 | 45 | 59 | |||||||||
240 | 490 | 710 | 14 | 45 | 59 |
Другие сплавы из категории Сталь конструкционная легированная
Марка сплаваГОСТХим. состав
10Г2 | ГОСТ 4543 – 71 | Feот 97%Mn1.2-1.6%Si0.17-0.3%C0.07-0.1%… |
10Х2М | ГОСТ 5520 – 79 | Feот 95.3%Cr2-2.5%Mo0.6-0.8%Mn0.4-0.7%Si0.17-0.3%C0.08-0.1%… |
12Г2 | ГОСТ 1542 – 71 | Feот 97.3%Mn1.2-1.6%Si0.17-0.3%C0.08-0.1%… |
12Х2Н4А | ГОСТ 4543 – 71 | Feот 93.5%Ni3.25-3.6%Cr1.25-1.6%Mn0.3-0.6%Si0.17-0.3%C0.09-0.1%… |
12Х2НВФА | ГОСТ 11268 – 76 | Feот 93.4%Cr1.9-2.4%W1-1.4%Ni0.8-1.2%Mn0.3-0.7%V0.18-0.2%Si0.17-0.3%C0.09-0.1%… |
12Х2НВФМА | ГОСТ 11268 – 76 | Feот 92.4%Cr1.9-2.4%Ni1.2-1.6%W1-1.4%Mn0.6-0.9%Mo0.35-0.4%V0.18-0.2%Si0.17-0.3%C0.09-0.1%… |
12Х2НМ1ФА | ГОСТ 11268 – 76 | Feот 93.2%Cr1.9-2.4%Ni1.2-1.6%Mo0.7-1%Mn0.6-0.9%V0.18-0.2%Si0.17-0.3%C0.09-0.1%… |
12Х2НМФА | ГОСТ 11268 – 76 | Feот 94.4%Cr1.9-2.4%Ni0.8-1.2%Mo0.35-0.4%Mn0.3-0.7%V0.18-0.2%Si0.17-0.3%C0.09-0.1%… |
12ХН | ГОСТ 10702 – 78 | Feот 97.1%Ni0.8-0.8%Cr0.4-0.7%Mn0.3-0.6%Si0.17-0.3%C0.09-0.1%… |
12ХН2 | ГОСТ 4543 – 71 | Feот 95.5%Ni1.5-1.9%Cr0.6-0.9%Mn0.3-0.9%Si0.17-0.3%C0.09-0.1%… |
12ХН2А | ГОСТ 4543 – 71 | Feот 96.2%Ni1.5-1.9%Cr0.6-0.9%Mn0.3-0.6%Si0.17-0.3%C0.09-0.1%… |
12ХН3А | ГОСТ 4543 – 71 | Feот 94.7%Ni2.75-3.1%Cr0.6-0.9%Mn0.3-0.6%Si0.17-0.3%C0.09-0.1%… |
14Х2ГМР | ЧМТУ 1-645 – 69 | Feот 95.4%Cr1.3-1.7%Si0.9-1.2%Mo0.4-0.5%Mn0.17-0.3%C0.1-0.16%… |
14Х2Н3МА | ГОСТ 4543 – 71, в последней версии материал отсутствует | Feот 93.8%Ni2.75-3.1%Cr1.5-1.75%Mn0.3-0.6%Mo0.2-0.3%Si0.17-0.3%C0.12-0.1%… |
14ХГН | ГОСТ 4543 – 71 | Feот 96%Cr0.8-1.1%Ni0.8-1.1%Mn0.7-1%Si0.17-0.3%C0.13-0.1%… |
15Г | ГОСТ 4543 – 71 | Feот 97.5%Mn0.7-1%Si0.17-0.3%C0.12-0.19%… |
15Н2М | ГОСТ 4543 – 71 | Feот 96%Ni1.5-1.9%Mn0.4-0.7%Mo0.2-0.3%Si0.17-0.3%C0.1-0.18%… |
15Х | ГОСТ 4543 – 71 | Feот 97.2%Cr0.7-1%Mn0.4-0.7%Si0.17-0.3%C0.12-0.1%… |
15ХА | ГОСТ 4543 – 71 | Feот 97.3%Cr0.7-1%Mn0.4-0.7%Si0.17-0.3%C0.12-0.1%… |
15ХГН2ТА | ГОСТ 4543 – 71 | Feот 95.4%Ni1.4-1.8%Cr0.7-1%Mn0.7-1%Si0.17-0.3%C0.13-0.1%Ti0.03-0.09%… |
15ХГНМ | ГОСТ 10702 – 78 | Feот 96.5%Mn0.7-1.1%Cr0.4-0.7%Ni0.4-0.7%Si0.17-0.3%Mo0.15-0.2%C0.13-0.18%… |
15ХФ | ГОСТ 4543 – 71 | Feот 97%Cr0.8-1.1%Mn0.4-0.7%Si0.17-0.3%C0.12-0.18%V0.06-0.1%… |
16Г2 | ГОСТ 1542 – 71 | Feот 96.4%Mn2-2.4%Si0.17-0.3%C0.12-0.2%… |
16ХСН | ГОСТ 10702 – 78 | Feот 96%Cr0.8-1.1%Ni0.6-0.9%Si0.6-0.9%Mn0.3-0.6%C0.13-0.2%… |
18Х2Н4ВА | ГОСТ 4543 – 71 | Feот 91.5%Ni4-4.4%Cr1.35-1.6%W0.8-1.2%Mn0.25-0.5%Si0.17-0.3%C0.14-0.2%… |
18Х2Н4МА | ГОСТ 4543 – 71 | Feот 92.2%Ni4-4.4%Cr1.35-1.6%Mo0.3-0.4%Mn0.25-0.5%Si0.17-0.3%C0.14-0.2%… |
18ХГ | ГОСТ 4543 – 71 | Feот 96.4%Cr0.9-1.2%Mn0.9-1.2%Si0.17-0.3%C0.15-0.2%… |
18ХГТ | ГОСТ 4543 – 71 | Feот 96.3%Cr1-1.3%Mn0.8-1.1%Si0.17-0.3%C0.17-0.2%Ti0.03-0.09%… |
19Х2НВФА | ГОСТ 11268 – 76 | Feот 93.3%Cr1.9-2.4%W1-1.4%Ni0.8-1.2%Mn0.3-0.7%V0.18-0.2%Si0.17-0.3%C0.16-0.2%… |
19Х2НМФА | ГОСТ 11268 – 76 | Feот 94.3%Cr1.9-2.4%Ni0.8-1.2%Mo0.35-0.4%Mn0.3-0.7%V0.18-0.2%Si0.17-0.3%C0.16-0.2%… |
19ХГН | ГОСТ 10702 – 78 | Feот 95.8%Cr0.8-1.1%Ni0.8-1.1%Mn0.7-1%Si0.17-0.3%C0.16-0.2%… |
20Г | ГОСТ 4543 – 71 | Feот 97.5%Mn0.7-1%Si0.17-0.3%C0.17-0.2%… |
20Г2 | ГОСТ 10702 – 78 | Feот 97.1%Mn1.3-1.6%C0.18-0.2%Si0.17-0.3%… |
20Н2М | ГОСТ 4543 – 71 | Feот 95.9%Ni1.5-1.9%Mn0.4-0.7%Mo0.2-0.3%Si0.17-0.3%C0.17-0.2%… |
20Х | ГОСТ 4543 – 71 | Feот 97.1%Cr0.7-1%Mn0.5-0.8%Si0.17-0.3%C0.12-0.18%… |
20Х12Н12Г6 | ГОСТ 9124 – 85 | Feот 66.2%Cr10-13%Ni10-13%Mn6-7%C0.15-0.2%… |
20Х14 | ГОСТ 10543 – 98 | Feот 82.1%Cr13-15%C0.16-0.2%… |
20Х17Н3М | ГОСТ 10543 – 98 | Feот 75.6%Cr16-18%Ni2-3%Mo1.2-1.7%C0.18-0.2%… |
20Х2Н4А | ГОСТ 4543 – 71 | Feот 93.4%Ni3.25-3.6%Cr1.25-1.6%Mn0.3-0.6%Si0.17-0.3%C0.17-0.2%… |
20ХГНМ | ГОСТ 4543 – 71 | Feот 96.4%Mn0.7-1.1%Cr0.4-0.7%Ni0.4-0.7%C0.18-0.2%Si0.17-0.3%Mo0.15-0.2%… |
20ХГНР | ГОСТ 4543 – 71 | Feот 95.9%Ni0.8-1.1%Cr0.7-1.1%Mn0.7-1%Si0.17-0.3%C0.16-0.2%B0.001-0.005%… |
20ХГНТР | ГОСТ 4543 – 71 | Feот 96.5%Mn0.8-1.1%Cr0.4-0.7%Ni0.4-0.7%C0.18-0.2%Si0.17-0.3%Ti0.03-0.09%B0.001-0.005%… |
20ХГР | ГОСТ 4543 – 71 | Feот 96.7%Cr0.75-1%Mn0.7-1.1%C0.18-0.2%Si0.17-0.3%B0.001-0.005%… |
20ХГСА | ГОСТ 4543 – 71 | Feот 95.8%Si0.9-1.2%Cr0.8-1.1%Mn0.8-1.1%C0.17-0.2%… |
20ХМ | ГОСТ 4543 – 71 | Feот 96.8%Cr0.8-1.1%Mn0.4-0.7%Si0.17-0.3%C0.15-0.2%Mo0.15-0.2%… |
20ХН | ГОСТ 4543 – 71 | Feот 96.3%Ni1-1.4%Cr0.45-0.7%Mn0.4-0.7%Si0.17-0.3%C0.17-0.2%… |
20ХН2М | ГОСТ 4543 – 71 | Feот 95.5%Ni1.6-2%Mn0.4-0.7%Cr0.4-0.6%Mo0.2-0.3%Si0.17-0.3%C0.15-0.2%… |
20ХН3А | ГОСТ 4543 – 71 | Feот 94.6%Ni2.75-3.1%Cr0.6-0.9%Mn0.3-0.6%Si0.17-0.3%C0.17-0.2%… |
20ХН4ФА | ГОСТ 4543 – 71 | Feот 93.3%Ni3.75-4.1%Cr0.7-1.1%Mn0.25-0.5%Si0.17-0.3%C0.17-0.2%V0.1-0.18%… |
20ХНР | ГОСТ 4543 – 71 | Feот 96%Ni0.8-1.1%Cr0.7-1.1%Mn0.6-0.9%Si0.17-0.3%C0.16-0.2%B0.001-0.005%… |
20ХФ | ГОСТ 10702 – 78, в последней версии материал отсутствует | Feот 96.8%Cr0.8-1.1%Mn0.5-0.8%C0.17-0.2%V0.1-0.2%… |
21Х2НВФА | ГОСТ 11268 – 76 | Feот 93.3%Cr1.9-2.4%W1-1.4%Ni0.8-1.2%Mn0.3-0.7%C0.19-0.2%V0.18-0.2%Si0.17-0.3%… |
21Х2НМФА | ГОСТ 11268 – 76 | Feот 94.3%Cr1.9-2.4%Ni0.8-1.2%Mo0.35-0.4%Mn0.3-0.7%C0.19-0.2%V0.18-0.2%Si0.17-0.3%… |
23Х2НВФА | ГОСТ 11268 – 76 | Feот 93.3%Cr1.9-2.4%W1-1.4%Ni0.8-1.2%Mn0.3-0.7%C0.19-0.2%V0.18-0.2%Si0.17-0.3%… |
23Х2НМФА | ГОСТ 11268 – 76 | Feот 94.3%Cr1.9-2.4%Ni0.8-1.2%Mo0.35-0.4%Mn0.3-0.7%C0.19-0.2%V0.18-0.2%Si0.17-0.3%… |
25Г | ГОСТ 4543 – 71 | Feот 97.4%Mn0.7-1%C0.22-0.3%Si0.17-0.3%… |
25Х2ГНТА | ТУ 14-1-195 – 72 | Feот 94.7%Cr1.3-1.7%Ni0.9-1.3%Mn0.8-1.1%C0.22-0.2%Si0.2-0.5%Ti0.06-0.1%… |
25Х2Н4ВА | ГОСТ 4543 – 71 | Feот 91.5%Ni4-4.4%Cr1.35-1.6%W0.8-1.2%Mn0.25-0.5%C0.21-0.2%Si0.17-0.3%… |
25Х2Н4МА | ГОСТ 4543 – 71 | Feот 92.3%Ni4-4.4%Cr1.35-1.6%Mo0.3-0.4%Mn0.25-0.5%C0.21-0.2%Si0.17-0.3%… |
25ХГМ | ГОСТ 4543 – 71 | Feот 96.1%Cr0.9-1.2%Mn0.9-1.2%C0.23-0.2%Mo0.2-0.3%Si0.17-0.3%… |
25ХГНМТ | ГОСТ 4543 – 71 | Feот 96%Ni0.8-1.1%Mn0.5-0.8%Cr0.4-0.6%Mo0.4-0.5%C0.23-0.2%Si0.17-0.3%Ti0.04-0.09%… |
25ХГСА | ГОСТ 4543 – 71 | Feот 95.7%Si0.9-1.2%Cr0.8-1.1%Mn0.8-1.1%C0.22-0.28%… |
25ХГТ | ГОСТ 4543 – 71 | Feот 96.3%Cr1-1.3%Mn0.8-1.1%C0.22-0.29%Si0.17-0.3%Ti0.03-0.09%… |
27ХГР | ГОСТ 4543 – 71 | Feот 96.7%Cr0.7-1%Mn0.7-1%C0.25-0.3%Si0.17-0.3%B0.001-0.005%… |
30Г | ГОСТ 4543 – 71 | Feот 97.4%Mn0.7-1%C0.27-0.3%Si0.17-0.3%… |
30Г2 | ГОСТ 4543 – 71 | Feот 96.6%Mn1.4-1.8%C0.26-0.3%Si0.17-0.3%… |
30Х | ГОСТ 4543 – 71 | Feот 96.8%Cr0.8-1.1%Mn0.5-0.8%C0.24-0.3%Si0.17-0.3%… |
30Х10Г10Т | ГОСТ 10543 – 98 | Feот 74.4%Cr10-12%Mn10-12%C0.25-0.3%Ti0.15-0.3%… |
30Х3МФ | ГОСТ 4543 – 71 | Feот 95%Cr2.3-2.7%Mn0.3-0.6%C0.27-0.3%Mo0.2-0.3%Si0.17-0.3%V0.06-0.12%… |
30Х5 | ГОСТ 10543 – 98 | Feот 92%Cr4-6%Mn0.4-0.7%C0.27-0.3%Si0.2-0.5%… |
30ХГС | ГОСТ 4543 – 71 | Feот 95.6%Si0.9-1.2%Cr0.8-1.1%Mn0.8-1.1%C0.28-0.3%… |
30ХГСА | ГОСТ 4543 – 71 | Feот 95.7%Si0.9-1.2%Cr0.8-1.1%Mn0.8-1.1%C0.28-0.3%… |
30ХГСН2А | ГОСТ 4543 – 71 | Feот 93.9%Ni1.4-1.8%Mn1-1.3%Cr0.9-1.2%Si0.9-1.2%C0.27-0.3%… |
30ХГСНМА | ГОСТ 21729 – 76 | Feот 93.7%Ni1.4-1.8%Mn1-1.3%Cr0.9-1.2%Si0.9-1.2%Mo0.3-0.45%C0.27-0.34%… |
30ХГТ | ГОСТ 4543 – 71 | Feот 96.2%Cr1-1.3%Mn0.8-1.1%C0.24-0.3%Si0.17-0.3%Ti0.03-0.09%… |
30ХН2ВА | ГОСТ 4543 – 71 | Feот 95.2%Ni1.25-1.6%Cr0.6-0.9%W0.5-0.8%Mn0.3-0.6%C0.27-0.3%Si0.17-0.3%… |
30ХН2ВФА | ГОСТ 4543 – 71 | Feот 92.6%Ni2-2.4%Cr0.6-0.9%W0.5-0.8%Mn0.3-0.6%C0.27-0.3%Si0.17-0.3%V0.1-1.8%… |
30ХН2МА | ГОСТ 4543 – 71 | Feот 95.7%Ni1.25-1.6%Cr0.6-0.9%Mn0.3-0.6%C0.27-0.3%Mo0.2-0.3%Si0.17-0.3%… |
30ХН2МФА | ГОСТ 4543 – 71 | Feот 94.7%Ni2-2.4%Cr0.6-0.9%Mn0.3-0.6%C0.27-0.3%Mo0.2-0.3%Si0.17-0.3%V0.1-0.18%… |
30ХН3А | ГОСТ 4543 – 71 | Feот 94.5%Ni2.75-3.1%Cr0.6-0.9%Mn0.3-0.6%C0.27-0.3%Si0.17-0.3%… |
30ХН3М2ФА | ТУ 108.1028 – 81 | Feот 92.5%Ni3-3.5%Cr1.2-1.7%Mo0.4-0.65%C0.26-0.3%Mn0.25-0.5%V0.1-0.2%… |
30ХРА | ГОСТ 4543 – 71 | Feот 96.6%Cr1-1.3%Mn0.5-0.8%C0.27-0.3%Si0.17-0.3%B0.001-0.005%… |
33ХС | ГОСТ 4543 – 71 | Feот 95.4%Cr1.3-1.6%Si1-1.4%Mn0.3-0.6%C0.29-0.3%… |
34ХН1М | ТУ 24-1-12-179 – 75 | Feот 94.7%Cr1.3-1.7%Ni1.3-1.7%Mn0.5-0.8%C0.3-0.4%Mo0.2-0.3%Si0.17-0.3%… |
34ХН1МА | ТУ 108-1028 – 81 | Feот 94.7%Cr1.3-1.7%Ni1.3-1.7%Mn0.5-0.8%C0.3-0.4%Mo0.2-0.3%Si0.17-0.3%… |
34ХН3М | ТУ 24-1-12-179 – 75 | Feот 93.7%Ni2.75-3.2%Cr0.7-1.1%Mn0.5-0.8%C0.3-0.4%Mo0.25-0.4%Si0.17-0.3%… |
34ХН3МА | ТУ 108-1028 – 81 | Feот 93.2%Ni2.75-3.7%Cr0.7-1.1%Mn0.5-0.8%C0.3-0.4%Mo0.25-0.4%Si0.17-0.3%… |
35Г | ГОСТ 4543 – 71 | Feот 97.3%Mn0.7-1%C0.32-0.4%Si0.17-0.3%… |
35Г2 | ГОСТ 4543 – 71 | Feот 96.6%Mn1.4-1.8%C0.31-0.3%Si0.17-0.3%… |
35Х | ГОСТ 4543 – 71 | Feот 96.7%Cr0.8-1.1%Mn0.5-0.8%C0.31-0.39%Si0.17-0.3%… |
35ХГ2 | ГОСТ 4543 – 71, в последней версии материал отсутствует | Feот 96%Mn1.6-1.9%Cr0.4-0.7%C0.32-0.4%Si0.17-0.3%… |
35ХГН2 | Feот 95.9%Ni1-1.5%Cr0.7-1%Mn0.5-0.8%C0.32-0.4%Si0.17-0.3%… | |
35ХГСА | ГОСТ 4543 – 71 | Feот 95.1%Cr1.1-1.4%Si1.1-1.4%Mn0.8-1.1%C0.32-0.39%… |
35ХГФ | ГОСТ 4543 – 71, в последней версии материал отсутствует | Feот 96.7%Cr1-1.3%Mn0.95-1.2%C0.31-0.3%Si0.17-0.3%V0.06-0.12%… |
35ХН1М2ФА | ТУ 108.1028 – 81 | Feот 93.9%Cr1.3-1.7%Ni1.3-1.7%Mn0.5-0.8%Mo0.4-0.6%C0.32-0.4%V0.1-0.2%… |
36Г2С | ГОСТ Р 51245 – 99 | Feот 96.3%Mn1.5-1.8%Si0.4-0.7%C0.32-0.4%… |
36Х2Н2МФА | ГОСТ 4543 – 71 | Feот 94.5%Cr1.3-1.7%Ni1.3-1.7%C0.33-0.4%Mo0.3-0.4%Mn0.25-0.5%Si0.17-0.3%V0.1-0.18%… |
38Х2Н2ВА | ГОСТ 4543 – 71 | Feот 94.3%Cr1.3-1.7%Ni1.3-1.7%W0.5-0.8%C0.33-0.4%Mn0.25-0.5%Si0.17-0.3%… |
38Х2Н2МА | ГОСТ 4543 – 71 | Feот 94.8%Cr1.3-1.7%Ni1.3-1.7%C0.33-0.4%Mn0.25-0.5%Mo0.2-0.3%Si0.17-0.3%… |
38Х2Н3М | ОСТ 24,959,11 | Feот 93.3%Ni2.75-3.2%Cr1-1.5%Mn0.5-0.8%C0.35-0.4%Mo0.3-0.4%Si0.17-0.3%… |
38Х2НМ | ТУ 24,11,01,073 – 86 | Feот 94.9%Cr1.8-2.3%Ni0.6-0.9%Mn0.5-0.8%C0.32-0.4%Mo0.2-0.3%Si0.17-0.3%… |
38Х2НМФ | ТУ 24,11,01,073 – 86 | Feот 94.8%Cr1.8-2.3%Ni0.6-0.9%Mn0.5-0.8%C0.32-0.4%Mo0.2-0.3%Si0.17-0.3%V0.08-0.1%… |
38Х2Ю | ГОСТ 4543 – 71, в последней версии материал отсутствует | Feот 96%Cr1.5-1.8%Al0.5-0.8%C0.35-0.4%Mn0.2-0.5%Si0.2-0.4%… |
38ХА | ГОСТ 4543 – 71 | Feот 96.8%Cr0.8-1.1%Mn0.5-0.8%C0.35-0.4%Si0.17-0.3%… |
38ХВ | ГОСТ 4543 – 71 | Feот 95.9%Cr0.9-1.3%W0.5-0.8%Mn0.35-0.6%C0.35-0.4%Si0.17-0.3%… |
38ХГМ | ГОСТ 4543 – 71 | Feот 96.4%Cr0.8-1.1%Mn0.6-0.9%C0.34-0.4%Si0.17-0.3%Mo0.15-0.2%… |
38ХГН | ГОСТ 4543 – 71 | Feот 96%Mn0.8-1.1%Ni0.7-1%Cr0.5-0.8%C0.35-0.4%Si0.17-0.3%… |
38ХГНМ | ГОСТ 10702 – 78 | Feот 96.6%Mn0.5-0.8%Ni0.4-0.7%Cr0.4-0.6%C0.37-0.4%Si0.17-0.3%Mo0.15-0.2%… |
38ХМ | ГОСТ 4543 – 71 | Feот 96.4%Cr0.9-1.3%Mn0.35-0.6%C0.35-0.4%Mo0.2-0.3%Si0.17-0.3%… |
38ХМА | ГОСТ 4543 – 71 | Feот 96.5%Cr0.9-1.3%Mn0.35-0.6%C0.35-0.4%Mo0.2-0.3%Si0.17-0.3%… |
38ХН3ВА | ГОСТ 4543 – 71 | Feот 93.3%Ni2.75-3.2%Cr0.8-1.2%W0.5-0.8%C0.33-0.4%Mn0.25-0.5%Si0.17-0.3%… |
38ХН3МА | ГОСТ 4543 – 71 | Feот 93.8%Ni2.75-3.2%Cr0.8-1.2%C0.33-0.4%Mn0.25-0.5%Mo0.2-0.3%Si0.17-0.3%… |
38ХН3МФА | ГОСТ 4543 – 71 | Feот 92.9%Ni3-3.5%Cr1.2-1.5%Mo0.35-0.4%C0.33-0.4%Mn0.25-0.5%Si0.17-0.3%V0.1-0.18%… |
38ХС | ГОСТ 4543 – 71 | Feот 95.3%Cr1.3-1.6%Si1-1.4%C0.34-0.4%Mn0.3-0.6%… |
40Г | ГОСТ 4543 – 71 | Feот 97.3%Mn0.7-1%C0.32-0.4%Si0.17-0.3%… |
40Г2 | ГОСТ 4543 – 71 | Feот 96.5%Mn1.4-1.8%C0.36-0.4%Si0.17-0.3%… |
40ГР | ГОСТ 4543 – 71 | Feот 97.3%Mn0.7-1%C0.37-0.4%Si0.17-0.3%B0.001-0.005%… |
40Х | ГОСТ 4543 – 71 | Feот 96.7%Cr0.8-1.1%Mn0.5-0.8%C0.36-0.44%Si0.17-0.3%… |
40Х2Г2М | ГОСТ 10543 – 98 | Feот 92.6%Cr1.8-2.3%Mn1.8-2.3%Mo0.8-1.2%Si0.4-0.7%C0.35-0.4%… |
40Х2Н2ВА | ГОСТ 4543 – 71 | Feот 94.2%Ni1.35-1.7%Cr1.25-1.6%W0.6-0.9%C0.35-0.4%Mn0.3-0.6%Si0.17-0.3%… |
40Х2Н2МА | ГОСТ 4543 – 71 | Feот 94.8%Ni1.35-1.7%Cr1.25-1.6%C0.35-0.4%Mn0.3-0.6%Mo0.2-0.3%Si0.17-0.3%… |
40Х3Г2МФ | ГОСТ 10543 – 98 | Feот 92.1%Cr3.3-3.8%Mn1.3-1.8%Si0.4-0.7%C0.35-0.4%Mo0.3-0.5%V0.1-0.2%… |
40ХГНМ | ГОСТ 4543 – 71 | Feот 95.9%Ni0.7-1.1%Cr0.6-0.9%Mn0.5-0.8%C0.37-0.4%Si0.17-0.3%Mo0.15-0.2%… |
40ХГТР | ГОСТ 4543 – 71 | Feот 96.4%Cr0.8-1.1%Mn0.8-1%C0.38-0.4%Si0.17-0.3%Ti0.03-0.09%B0.001-0.005%… |
40ХМФА | ГОСТ 4543 – 71 | Feот 96.4%Cr0.8-1.1%Mn0.4-0.7%C0.37-0.4%Mo0.2-0.3%Si0.17-0.3%V0.1-0.18%… |
40ХН | ГОСТ 4543 – 71 | Feот 96%Ni1-1.4%Mn0.5-0.8%Cr0.45-0.7%C0.36-0.4%Si0.17-0.3%… |
40ХН2МА | ГОСТ 4543 – 71 | Feот 95.5%Ni1.25-1.6%Cr0.6-0.9%Mn0.5-0.8%C0.37-0.4%Si0.17-0.3%Mo0.15-0.2%… |
40ХС | ГОСТ 4543 – 71 | Feот 95.1%Cr1.3-1.6%Si1.2-1.6%C0.37-0.4%Mn0.3-0.6%… |
40ХФА | ГОСТ 4543 – 71 | Feот 96.6%Cr0.8-1.1%Mn0.5-0.8%C0.37-0.4%Si0.17-0.3%V0.1-0.18%… |
45Г | ГОСТ 4543 – 71 | Feот 97.2%Mn0.7-1%C0.42-0.5%Si0.17-0.3%… |
45Г2 | ГОСТ 4543 – 71 | Feот 96.4%Mn1.4-1.8%C0.41-0.49%Si0.17-0.3%… |
45Х | ГОСТ 4543 – 71 | Feот 96.7%Cr0.8-1.1%Mn0.5-0.8%C0.41-0.4%Si0.17-0.3%… |
45Х4В3ГФ | ГОСТ 10543 – 98 | Feот 88.6%Cr3.6-4.6%W2.5-3%Mn0.8-1.2%Si0.7-1%C0.4-0.5%V0.2-0.4%… |
45ХН | ГОСТ 4543 – 71 | Feот 96%Ni1-1.4%Mn0.5-0.8%Cr0.45-0.7%C0.41-0.4%Si0.17-0.3%… |
45ХН2МФА | ГОСТ 4543 – 71 | Feот 94.7%Ni1.3-1.8%Cr0.8-1.1%Mn0.5-0.8%C0.42-0.5%Mo0.2-0.3%Si0.17-0.3%V0.1-0.18%… |
47ГТ | ГОСТ 4543 – 71 | Feот 97%Mn0.9-1.2%C0.44-0.5%Si0.1-0.22%Ti0.06-0.1%… |
50Г | ГОСТ 4543 – 71 | Feот 97.2%Mn0.7-1%C0.48-0.5%Si0.17-0.3%… |
50Г2 | ГОСТ 4543 – 71 | Feот 96.4%Mn1.4-1.8%C0.46-0.5%Si0.17-0.3%… |
50Х | ГОСТ 4543 – 71 | Feот 96.6%Cr0.8-1.1%Mn0.5-0.8%C0.46-0.5%Si0.17-0.3%… |
50Х3В10Ф | ГОСТ 10543 – 98 | Feот 82.4%W9-10.5%Cr2.6-3.6%Mn0.8-1.2%C0.45-0.5%Si0.4-0.7%V0.3-0.5%… |
50Х6ФМС | ГОСТ 10543 – 98 | Feот 88.7%Cr5.5-6.5%Mo1.2-1.6%Si0.8-1.2%C0.45-0.5%V0.35-0.5%Mn0.3-0.6%… |
50ХН | ГОСТ 4543 – 71 | Feот 95.9%Ni1-1.4%Mn0.5-0.8%Cr0.45-0.7%C0.45-0.5%Si0.17-0.3%… |
50ХНМ | ГОСТ 10543 – 98 | Feот 95.3%Ni1.4-1.8%Cr0.5-0.8%Mn0.5-0.8%C0.5-0.6%Mo0.15-0.3%… |
Г13А | ГОСТ 10543 – 98 | Feот 82.6%Mn12.5-14.5%C1-1.2%… |
Х6Ф1 | ГОСТ 15891 – 70 | Feот 88.8%Cr5.5-7%C1.4-1.7%V0.8-1.2%… |
Стандарты
Название | Код | Стандарты |
Сортовой и фасонный прокат | В32 | ГОСТ 1051-73, ГОСТ 4543-71, ГОСТ 7417-75, ГОСТ 8559-75, ГОСТ 8560-78, ГОСТ 10702-78, ГОСТ 14955-77, ОСТ 1 90223-76, TУ 14-1-5414-2001, TУ 14-1-1885-85, TУ 14-1-2118-77, TУ 14-1-2765-79, TУ 14-1-658-73, TУ 14-1-950-74, TУ 1-9-30-82, TУ 14-1-3238-81, TУ 14-11-245-88, TУ 14-1-3238-2006, TУ 14-1-1271-75, TУ 14-1-5228-93, TУ 14-136-367-2008 |
Листы и полосы | В33 | ГОСТ 11268-76, ГОСТ 11269-76, TУ 14-105-490-86, TУ 14-1-1409-75, TУ 14-1-1699-76, TУ 14-1-1904-76, TУ 14-1-1994-76, TУ 14-1-2360-78, TУ 14-1-4013-85, TУ 14-1-4118-86, TУ 14-229-276-88, TУ 14-1-4118-2004 |
Сортовой и фасонный прокат | В22 | ГОСТ 1133-71, ГОСТ 8319.0-75, ГОСТ 2590-2006, ГОСТ 2591-2006, ГОСТ 2879-2006 |
Листы и полосы | В23 | ГОСТ 82-70, ГОСТ 103-2006 |
Обработка металлов давлением. Поковки | В03 | ГОСТ 8479-70, ОСТ 5Р.9125-84, СТ ЦКБА 010-2004 |
Трубы стальные и соединительные части к ним | В62 | ГОСТ 8732-78, ГОСТ 8734-75, ГОСТ 9567-75, ГОСТ 12132-66, ГОСТ 19277-73, ГОСТ 21729-76, ГОСТ 23270-89, ГОСТ 24950-81, ГОСТ 8733-87, ГОСТ 8731-87, ГОСТ Р 53383-2009, TУ 14-3-1140-82, TУ 14-3-271-74, TУ 14-3-674-78, TУ 14-3-675-78, TУ 14-3-531-76, TУ 14-3-473-76, TУ 14-159-241-93, TУ 14-3-957-80, TУ 14-3-1654-89 |
Классификация, номенклатура и общие нормы | В20 | ОСТ 1 90005-91 |
Болванки. Заготовки. Слябы | В21 | ОСТ 14-13-75 |
Болванки. Заготовки. Слябы | В31 | ОСТ 3-1686-90, TУ 14-1-1563-75, TУ 14-1-1672-76, TУ 14-1-1687-76, TУ 14-1-3716-84, TУ 14-1-4944-90, TУ 14-1-4992-91, TУ 14-1-4797-90, TУ 1-92-156-90 |
Сварка и резка металлов. Пайка, клепка | В05 | TУ 14-1-4816-90 |
Ленты | В34 | TУ 14-4-1152-81 |
Проволока стальная средне- и высокоуглеродистая | В72 | TУ 14-4-385-73 |
Применение
Вышеперечисленные характеристики дают возможность применять сплав в разных промышленных отраслях:
- В строительстве из него делают крепежи, на которые воздействуют знакопеременные изгибы.
- Даже современные авиастроители используют сплав как материал для изготовления расходных элементов: фланцов, валов и прочих.
- В машиностроительном деле производятся высококачественные изделия, работающие при постоянных переменных нагрузках.
Стоимость зависит от качества и габаритов лома, а также от планируемых объемов поставки.
Описание
Сталь 30ХГСА применяется: для производства горячекатаного толстолистового проката и прессованых профилей; различных улучшаемых деталей (валов, осей, зубчатых колес, фланцев, корпусов обшивки, лопаток компрессорных машин), работающих при температуре до +200 °С; рычагов, толкателей, ответственных сварных конструкций, работающих при знакопеременных нагрузках; крепежных деталей, работающих при низких температурах; бесшовных труб для изготовления деталей и конструкций в мотовелостроении; проволоки, предназначенной для изготовления заклепок и болтов методом холодной высадки; наплавочной проволоки; труб, применяемых в авиационной технике.
Примечание
Сталь конструкционная высококачественная хромокремнемарганцовая.
Характеристики стали марки 30ХГСА
Марка 30ХГСА активно используется в различных сферах. Это связано с её физическими и технологическими свойствами, среди которых:
- высокая плотность – 7 850 кг/м3 (может меняться в зависимости от температурного воздействия среды);
- температура плавления – 1 500 градусов по Цельсию (сталь устойчива к воздействию высоких температур);
- максимальное давление – 980 МПа (металл отличается прочностью и устойчивостью к ударным нагрузкам);
- коррозийная устойчивость – низкая (это связано с небольшим количеством хрома в сплаве; при длительном пребывании во влажной среде материал ржавеет, что стоит учитывать при использовании);
- хорошая пластичность на растягивание – 11% (за счёт этого детали, изготовленные из 30ХГСА, хорошо справляются с динамическими нагрузками);
- твёрдость по шкале Роквелла – 50 ед. (этот показатель оптимален для большинства деталей машиностроения);
- рабочий диапазон температур – до 400 градусов по Цельсию (механические и технологические свойства металла не меняются).
Сплав имеет ограниченную свариваемость, которая должна производиться при температуре от 100 до 120 градусов по Цельсию. Потом выполняется термообработка. Сталь чувствительна к флокенам и склонна к отпускной хрупкости.
Сферы использования
Сталь марки 30ХГСА активно применяется в разных отраслях промышленности. Чаще всего её используют для производства крепёжных элементов, которые распространены при строительстве различных зданий и сооружений. Особенности этой стали позволяют им выдерживать возникающие переменные нагрузки. Однако из-за низкой устойчивости к коррозии такие крепёжные элементы имеют ограничения по местам использования.
В самолётостроении данный сплав применяется при производстве фланцев, валов и иных деталей. Он не подходит для изготовления ответственных деталей – только для расходных элементов.Также сплав приобрёл большую популярность в машиностроении. Именно там металлическим изделиям приходится испытывать регулярные переменные нагрузки.
- https://tpspribor.ru/vidy-metalla/harakteristiki-i-primenenie-stali-30hgsa.html
- https://stroy-podskazka.ru/stal/marki/30hgsa/
- https://msmetall.ru/metally/stal-30hgt-harakteristiki-2.html
- https://promgroupchel.ru/information/mark/legir/30khgsa/
- https://ScrapTraffic.com/splav/30xgsa/
- https://tokar.guru/metally/stal/harakteristiki-i-primenenie-stali-30hgsa.html
- https://areal-metal.ru/spravka/stal-30hgsa
Сталь 30ХГСА: характеристики и применение
Изначально, сталь марки 30ХГСА разрабатывалась советскими учеными как материал для авиационной промышленности. Элементы управления, педали и другие механизмы самолетов середины 20 века полностью изготавливали из данного сплава. Но наука не стояла на месте. Спустя некоторое время благодаря характеристикам сталь 30ХГСА нашла применение и стала доступной для остальных сфер промышленности. И сразу же началось массовое использование стали машино- и станкостроением.
30ХГСА — расшифровка марки стали
Сталь 30ХГСА относится к группе легированных сталей. Состав ее регламентируется ГОСТом 4543-71, согласно которому каждая буква и цифра обозначает определенное содержание определенных химических элементов:
- Цифра 30 означает содержание углерода 0,28-0,34%. Углерод повышает твердость и прочность в сталях, но снижает пластичность и свариваемость.
- Х – хром (0,8-1,1%) повышает закаливаемость, коррозионную стойкость и жаропрочность сплава. Положительно влияет на сопротивление абразивному износу.
- Г – марганец (0,8-1,1%) удаляет вредные примеси кислорода и серы. Снижает риск образования окалин и трещин во время термообработки. Повышает качество поверхности. Помимо этого, способствует увеличению сталью пластичности и свариваемости.
- С – кремний также как марганец является сильным раскислителем. Повышает пластичность, не снижая при этом прочность. Увеличивает восприимчивость стали к термической обработке.
- Буква «А» расшифровывается как улучшенная. Это означает, что сталь прошла закалку с высоким отпуском. Особенности проведения закалки заключаются в нагреве стали до температуры 870 ºС и в последующем быстром охлаждении в масле или воде. Таким образом, происходит трансформация внутренней структуры, что способствует повышению механических характеристик 30ХГСА в 2,9 раза. Закалочные напряжения снимаются высоким отпуском: нагревом до 540-560 ºС. Помимо снятия напряжения, параллельно происходит увеличение упругих свойств.
- Сера (до 0,25%) и фосфор (до 0,25%) относятся к категории вредных примесей. Размеры их молекул слишком большие по сравнению со всеми вышеперечисленными элементами. Встраиваясь в кристаллическую сетку стали, сера и фосфор снижают ее устойчивость, тем самым снижая прочность сплава.
- Также в составе 30ХГСА имеется некоторый процент меди и никеля. Но их содержание настолько мало, что они не оказывают влияния на характеристики стали.
30ХГСА – это российское обозначение марки стали.
Аналоги
Существует следующие зарубежные аналоги:
- Польша 30HGSA.
- Болгария 30ChGSA.
- Чехия 14331.
Физические свойства
Особенностью 30ХГСА является наличие характерного зеленого оттенка. Плотность 7850 кг\м3. Температура плавления около 1500 ºС.
Теплопроводность находится в пределах 30-38 Вт\м К в зависимости от значения температуры. Коэффициент линейного расширения в среднем составляет 12,2 106 1\град. Электросопротивление 210 мкОм мм.
Механические характеристики
Марка 30ХГСА от обычных конструкционных сталей отличается повышенным значением прочности и устойчивости к ударным нагрузкам. Предел текучести равен 820 МПа. Для сравнения, нержавейка 12Х18Н10Т «течет» уже при 400 МПа. Полное разрушение стали происходит при нагрузке 980 МПа. Ударная вязкость составляет 127 КДж\м2.
Обладает высокими пластичными свойствами: относительное удлинение 11%, а сужение 50%. Устойчива при работе в условиях переменных нагрузок. Предел выносливости 30ХГСА больше стали 45 ровно в 2 раза и имеет значение 490 МПа. Износоустойчива. Твердость находится в пределах 45-50 единиц по шкале Роквелла.
Сталь сохраняет свои механические характеристики при температуре вплоть до 400 С.
Химические свойства
Маркировка 30ХГСА не относится к категории коррозионностойких материалов. Под влиянием водной среды на поверхности сплава начинает проступать ржавчина.
Коррозионностойкость повышают путем использования специальных гальванических покрытий на основе хрома и цинка. Нанесение их осуществляется методом электролиза.
Технологические свойства
Высокая пластичность стали позволяет применять для ее обработки штамповку и ковку.
Упругие свойства стали также способствуют резанию: фрезерование, зенкерование и прочее. Для увеличения производительности данного процесса сталь предварительно отжигают.
30ХГСА относится ко 2-ой группе свариваемости. Особенности проведения сварки заключаются в необходимости прогрева стали до 250 ºС, что позволяет снизить вероятность образования трещин. При соблюдении данных условий сварные швы способны выдерживать нагрузку от 300 до 490 МПа в зависимости от типа нагрузки.
Типы применения
Благодаря всем вышеперечисленным характеристикам 30ХГСА имеет огромное практическое применение для разных отраслей промышленности:
- В строительстве из 30ХГСА делают крепеж, на который воздействует знакопеременный изгиб. Сюда относят анкерные болты, гайки, шпильки и прочее.
- До сих пор в авиастроении применяют как материал для изготовления расходных деталей самолетов: фланцы, валы и прочее.
- В машиностроении 30ХГСА нашла применение при производстве высокоответственных изделий, работающих в условиях переменных нагрузок: зубчатые передачи, шпиндели, валы, толкатели и т.д.
Цена
Содержание такого легирующего элемента как хром повышает стоимость 30ХГСА на рынке вторичного металла. Цена килограмма стального лома составляет 40-50 рублей. Это выше, чем у обычной углеродистой стали, но ниже чем у нержавейки. Более точное значение стоимости зависит от таких факторов как:
- Качество поверхности лома.
- Объем поставки.
- Габариты лома.