Два напряжения от одного источника

Совместная работа нескольких источников питания на одну нагрузку

У многих начинающих заниматься электроникой часто возникают проблемы нехватки мощности (тока) источников питания или недостаточной величины напряжения. Для того чтобы обойти эту проблему часто соединяют несколько источников параллельно или последовательно. Что при этом происходит и как это сделать правильно рассмотрим ниже.

Общие принципы

Параллельное и последовательное соединение элементов давно известно и применяется в практической схемотехнике, для получения заданных номиналов элементов. На примере соединения резисторов это выглядит так:

Но резистор или конденсатор имеет только один основной параметр — номинал и вариант соединения просто изменяет их результирующую (суммарную) величину.

На практике часто используется параллельное (иногда электрохимических) и последовательное соединение источников питания.

Последовательное соединение используется для увеличения результирующего напряжения, а параллельное — для увеличения суммарного потребляемого тока.

Последовательное соединение электрохимических источников питания

При последовательном соединении параметры ( E и Ri) просто суммируются,

Самое главное, Вы должны знать:

Как я уже говорил, каждый источник питания (любого типа) имеет свои характеристики которые можно свести к статическим и полностью определяющим его характеристики — Ri, U( E ); Эти характеристики химических источников тока могут меняться от экземпляра к экземпляру или со временем случайным образом (они зависят от множества параметров на каждом этапе технологического процесса их производства);

Не бывает двух абсолютно одинаковых источников питания, как вообще любых электронных компонентов. (хотя для того чтобы как-то ограничить разброс применяется группировка компонентов, по ряду номиналов и ряду точности).

Поэтому при последовательном соединении продолжительность работы химических источников тока определяется худшим в цепочке. Когда он потеряет емкость, его внутреннее сопротивление возрастет и ограничит потребляемый нагрузкой ток.

При параллельном соединении все много сложнее.

Отсюда вытекают большинство возникающих проблем.

Параллельное соединении электрохимических источников питания

При параллельном соединении электрохимических элементов (источников) питания, если не принимать мер возникают проблемы.

Дело в том что эти элементы обладают сразу несколькими параметрами определяющими их характеристики.

Напряжение (ЭДС) — E , и внутреннее сопротивление — Ri .

Сразу стоит уточнить, что эти параметры сугубо индивидуальны и поэтому достаточно редко даже в одной партии они повторяются.

Посмотрим рисунок 3, при параллельном соединении двух разных источников питания (электрохимический элемент), имеющих равное внутренне сопротивление (Например 0,25 ом, суммарное 0,5 ) и разное выходное напряжение ( U 1 =2,2 В, U 2 =2,1 В, Δ U= 0,1 В ) между ними появляется ток перетекания I пер равный 0,2 А.

Этот ток будет существовать даже при выключенной нагрузке, пока напряжение на источниках не сравняется. Когда лучший электрохимический элемент разряжается на худший — это потеря их суммарной емкости.

Поэтому параллельное соединение отдельных элементов электрохимических источников тока не рекомендуется. Возможно параллельное соединение (резервирование) последовательных батарей элементов с применением специальных устройств защиты (см. рис. 6) от токов перетекания или коммутаторов.

Фотоэлектрические элементы — элементы солнечных батарей

Немного иная ситуация получается при параллельном соединении элементов солнечных батарей, которая определяется свойствами самого солнечного элемента. Это генерация тока под действиями квантов света попадающих на плоский p-n переход достаточно большой площади. Солнечный элемент имеет вольт-амперную характеристику подобную полупроводниковому диоду с соответствующими отклонениями присущими p-n переходам большой площади.

Поэтому для солнечного элемента токи перетекания отсутствуют. Но наличие в параллельно соединенных элементах Δ U, приводит к тому что при малом отборе тока элемент с меньшим напряжением просто отключается. А при высоком отборе мощности ток нагрузки каждого элемента разный и определяется током нагрузки на каждом элементе при данном напряжении нагрузки U. см. рис. 5.

Посмотрим на примере вольт амперной характеристики элемента солнечной батареи, что происходит при их параллельном соединении, как показано на Рис. 1б. Примерный график вольт амперной характеристики приводится ниже.

На рис. 5 видим, что при равном напряжении U н элемент SC3 генерирует ток I 1 меньший тока генерируемого элементом SC4 равного I 2 . В результате суммарный ток нагрузки равен:

То есть при данном U н отдаваемая соединенными параллельно элементами мощность равна:

Этот требует, чтобы не перегружать лучшие элементы, группировать при параллельном соединении элементы с близкими токами (характеристиками в рабочих точках).

А еще лучше формировать последовательно соединенные группы элементов на номинальное напряжение с последующим их соединением в параллельные группы заданной мощности.

Совместная работа батарей химических элементов

Часто рекомендуют при параллельном подключении батареи электрохимических источников использовать включенные последовательно с каждой батареей диоды, которые предотвратят токи перетекания. Но условия равенства их выходного напряжения (максимальной близости) сохраняется. Это особенно важно именно для электрохимических источников питания, которые имеют ограничения по разрядному току. В случае его превышения сокращается ресурс. Схема включения показана на рис. 6.

Здесь необходимо учитывать, что выходное напряжение такой батареи меньше на 0,3 -:- 0,8В (падение напряжения на p-n переходе диода при его прямом смещении) чем у батареи без защитных диодов. Как видно из величины потери напряжения использовать эту схему для параллельного соединения отдельных элементов не экономично. Велики потери мощности.

Диоды так же позволяют использовать горячую замену батареи, поскольку при подключении свеже заряженной батареи диод разряженной просто будет заперт.

Блоки питания

Свои особенности при параллельном соединении имеют и блоки питания работающие на общую нагрузку.

Все типы блоков (сетевые 50 Гц и импульсные — в том числе повышающие и понижающие преобразователи постоянного тока в постоянный) содержат в своем составе преобразователь напряжения (трансформатор или электронный импульсный преобразователь с трансформатором) и выпрямляющее устройство на выходе — диодные выпрямители. На рис. 7 показано такое соединение.

В данной схеме, как при параллельном соединении солнечных элементов, не существует статических токов перетекания, они пресекаются диодными выпрямителями которые, как известно, имеют очень большое обратное сопротивление.

Обязательное условие при таком включении блоков питания это: равенство напряжений и наличие соединения общих точек обоих источников питания показанных на рис. 7 пунктирной линией красного цвета. Это условие определяется, как понятно из сказанного выше, а равномерной нагрузкой каждого источника питания.

Но она, как любая система, имеет свои особенности.

Это импульсные токи перетекания при зарядке фильтрующего конденсатора с меньшим напряжением (например U2 ) от БП1, где напряжение больше. После выравнивания напряжения ток перетекания уменьшается до нуля.

В реальности напряжение на выходе БП1 и БП2 разное. И поэтому рассматриваем работу такой связки учитывая дополнительные параметры показанные на рис 8 .

Известно, что каждый блок питания имеет свое внутреннее сопротивление Ri, а за счет системы стабилизации его величина существенно снижается. Практически Ri определяет КПД блока питания и желательно чтобы соотношение Rн/ Ri было максимальным. Поскольку ток нагрузки блока питания определяется суммой Ri и Rн, а как мы уже знаем Ri -> min, то можно считать, что он целиком определяется R н.

В связке двух параллельно включенных блоков питания нагружается только тот БП который имеет более высокое выходное напряжение. То есть I н = I 1 . Это будет продолжаться до тех пор пока выходное напряжение (за счет падения напряжения на Ri ) не начнет падать (система стабилизации не сможет его поддерживать, когда ток нагрузки достигнет максимального, в этом случае начнет расти внутреннее сопротивление нагруженного блока питания Ri. ). Второй БП будет до этого будет работать в режиме холостого хода.

Такой режим работы нельзя считать нормальным.

Кроме выравнивания выходного напряжения — известно другое решение проблемы, это включение последовательно с выходом каждого БП небольшого выравнивающего резистора, который как бы увеличивает его внутреннее сопротивление, в результате чего выходное напряжение падает и включается в работу блок питания имеющий меньшее напряжение. Причем их величина одинакова для обоих.

Величина этого сопротивления от 1% до 10% от R н и зависит от разницы выходных напряжений и мощности нагрузки.

Недостаток данного решения потери мощности в выравнивающих резисторах.

Но, для равномерной загрузки, требование максимального сближения U1 и U2 остается.

Заключение

В Интернет форумах множество публикаций посвященных параллельному включению и только единичные сообщения о фатальных результатах. эти единичные случаи возможны из-за скрытых неисправностей блоков питания или большой разницы выходных напряжений.

  1. Параллельное соединение выходных цепей блоков импульсных питания возможно. Но при этом для равномерной загрузки их выходные напряжения должны быть максимально близки. В случае невыполнение этого условия возможна перегрузка БП с большим напряжением.
  2. Параллельное включение отдельных электрохимических элементов питания недопустимо,
  3. Параллельное включение батарей электрохимических элементов питания возможно при условии применения защитных диодов в составе каждой батареи,
  4. Параллельное соединение фотоэлектрических элементов допустимо, но при этом надо учитывать что возможна перегрузка лучших элементов в группе (с наибольшим напряжением), а при большой разнице в выходном напряжении худший элемент может вообще не включаться в работу.

Обсуждения параллельного включения блоков питания компьютеров :

  1. Два блока питания в одном компьютере. http://hwtech.ru/forums/viewtopic.php?id=207
  2. Twin turbo — два БП в компьютере. http://www.casemods.ru/section17/item300/
  3. edwardass: Два блока питания в одном корпусе ? http://forum.ixbt.com/topic.cgi?id=49:8559
  4. Модификация блока питания. http://www.overclockers.ru/lab/15748.shtml
  5. Корпуса и блоки питания. http://forums.overclockers.ru/viewtopic.php?f=26&t=14083&start=960
  6. Можно ли запараллелить два блока питания? http://www.rom.by/forum/Mozhno_li_zaparallelit_dva_bloka_pitanija

октябрь 2010 -2012 гг.
А.Сорокин

Как работает умножитель напряжения

В радиолюбительской практике часто требуется несколько напряжений для питания слаботочных узлов (специализированных микросхем, предварительных усилителей и т.п.), а имеющийся источник питания выдает одно напряжение. Чтобы не искать трансформатор с дополнительными обмотками, можно воспользоваться схемами умножения напряжения. Схема ниже:

Предлагаем еще несколько схем умножения напряжения. Изображена мостовая двухтактная схема удвоения напряжения. В этой схеме частота пульсаций выпрямленного напряжения равна удвоенной частоте сети (fn=2fc), обратное напряжение на диодах в 1,5 раза больше выпрямленного, коэффициент использования трансформатора — 0,64. Ее можно представить в виде двух последовательно включенных однополупериодных схем, работающих от одной обмотки трансформатора и подключенных к общей нагрузке. Если среднюю точку (точку соединения конденсаторов) подключить к общему проводу, получится двухполярный источник с выходным напряжением ±U. Вторая схема удвоения напряжения показана на рисунке 2, который вы видите ниже:

В ней вход (вторичная обмотка трансформатора) и выход имеют общую точку, что в ряде случаев может оказаться полезным. Здесь в течение отрицательного полупериода входного напряжения конденсатор С1 заряжается через диод VD2 до напряжения, равного амплитудному значению U-1. Во время положительного полупериода диод VD2 закрыт, а конденсатор С1 оказывается включенным последовательно с вторичной обмоткой Т1, поэтому конденсатор С2 через диод VD1 заряжается до удвоенного значения напряжения. Добавив к данной схеме еще один диод и конденсатор, получим варианты утроителей напряжения, которые представлены на следущих рисунках:

Схему на рис.2 можно каскадировать и получать весьма высокие напряжения. Такой каскадный умножитель представлен на рисунке:

Читайте также: Характеристики и параметры транзисторов: схемы, описание, формулы

В этой схеме все конденсаторы, за исключением С1, заряжаются до удвоенного напряжения Ui (Uc=2Ui), а С1 заряжается только до Ui. Таким образом, рабочее напряжение конденсаторов и диодов получается достаточно низким. Максимальный ток через диоды определяется выражением:
lmax=2,1IH, где lH—ток, потребляемый нагрузкой.
Необходимая емкость конденсаторов в этой схеме определяется по приближенной формуле:

С=2,85N*Iн/(Кп*Uвых), Мкф

где N—кратность умножения напряжения; IН — ток нагрузки, мА; Кп — допустимый коэффициент пульсаций выходного напряжения, %; Uвыlx—выходное напряжение, В.

Емкость конденсатора С1 необходимо увеличить в 4 раза по сравнению с расчетным значением (хотя в большинстве случаев хватает и двух-трех- кратного увеличения). Конденсаторы должны быть с минимальным током утечки (типа К73 и аналогичные).

Умножать напряжение можно и с помощью мостовых выпрямителей. Схема ниже на рисунке 6:

Здесь удобно взять малогабаритные выпрямительные мосты, например, серий RB156, RB157 и аналогичные. Конденсаторы СЗ…С6 (и далее) — емкостью 0,22…0,56 мкФ. Следует учитывать возрастание напряжения на обкладках конденсаторов и соответствующим образом выбирать их рабочее напряжение. Это же относится и к конденсаторам фильтра С1, С2.

При совсем малых токах нагрузки можно воспользоваться схемой одно- полупериодного умножителя:

В зависимости от необходимого выходного напряжения Uвых=0,83Uo определяется количество каскадов N по приближенной формуле:
N=0.85U0/U1
где U1 — входное напряжение.

Емкость С конденсаторов С1…СЗ рассчитывается: С=34Iн*(Т+2)/U2 где lH —ток нагрузки умножителя; U2 — падение напряжения на R1 (обычно выбирается в пределах 3…5% от U-1).

Снизить коэффициент пульсаций в умножителях напряжения можно с помощью транзисторных фильтров (рис.8),

Которые существенно уменьшают пульсации и шумы выходного напряжения и характеризуются весь малыми массогабаритными показателями. Сейчас выпускаются мощные транзисторы с допустимым напряжением 1,5 кВ и выше при токе нагрузки до 10 А. Диоды выбираются из условия Uобр=1,5U0 и Iмакс=2Iвых — Емкость С конденсаторов С1, С2 рассчитывается по приближенной формуле:

С=125Iн/U0

Читайте также: Схемы светодиодных индикаторов перегрузки по току

Сопротивление резистора R1 выбирается в пределах 20… 100 Ом. Емкость конденсатора СЗ определяется из выражения:

С3=0,5*10^6/(m*fc*R1)

где m — число фаз выпрямителя (т=2); fc — рабочая частота умножителя (fc=50 Гц).

Сопротивление R2 подбирается экспериментально (в пределах 51…75 кОм), поскольку оно зависит от коэффициента усиления по току транзистора VT1. В фильтре можно использовать отечественные транзисторы КТ838, КТ840,КТ872, КТ834 и аналогичные.

Форум по умножителям

Умножитель постоянного напряжения Умножитель напряжения Схема удвоителя напряжения Удвоитель напряжения Схема умножителя напряжения

Электрик в доме

Автор: admin, 16 Июн 2013

Умножителем напряжения называют устройство преобразующее переменное напряжение или постоянное пульсирующее в более высокое постоянное напряжение. Как правило умножитель увеличивает напряжение в такое число раз, которое соответствует количеству каскадов умножения. Рассмотрим как сделать своими руками самый простой и известный умножитель напряжения Кокрофта-Уолтона, который был использован для ускорителей элементарных частиц для разработки атомной бомбы.

С помощью умножителя напряжения можно отказаться от тяжёлых и габаритных повышающих трансформаторов. Преимущество этой схемы в том, что на конденсаторах развивается всего лишь удвоенное амплитудное значение входного напряжения. Соответственно конденсаторы и диоды схемы могут быть рассчитаны на это напряжение.

Работа схемы

На схеме изображён универсальный умножитель с произвольным количеством каскадов. То есть берём число каскадов для создания необходимого нам напряжения. Примерно Uвых = n*Uвх.

При отрицательной полуволне Uвх заряжается конденсатор С1 до амплитудного значения Uвх через диод D1. При положительной полуволне заряжается конденсатор С2 через диод D2, но поскольку конденсатор С1 уже заряжен, то он будет выполнять роль дополнительного источника питания и поскольку он оказывается включённым последовательно с основным источником питания, то конденсатор С2 зарядится уже до удвоенного амплитудного значения напряжения Uвх.

Таким же образом работают и последующие ступени умножителя, снимается же выходное напряжение Uвых с последовательно соединённых конденсаторов с чётными (по схеме) номерами. Соответственно результирующее напряжение Uвых будет равно сумме напряжений на чётных конденсаторах.

Расчёт умножителя напряжения

Для расчёта умножителя нужно знать ток нагрузки (Iн), требуемое выходное напряжение (Uвых) и желаемый коэффициент пульсаций (Кп).

Минимальная ёмкость конденсаторов (в мкФ) рассчитывается по упрощённой формуле:

С(n) = 2,85*n*Iн/(Кп*Uвых), где

n—кратность умножения Uвх в В; Iн — ток нагрузки в мА; Кп — коэффициент пульсаций выходного напряжения в процентах; Uвыx—выходное напряжение в В.

Ёмкость первого конденсатора С1 нужно увеличить в 2-3 раза от расчётной ёмкости других конденсаторов, иначе полное напряжение на выходе схемы появится через несколько периодов входного напряжения. Если это не важно для работы нагрузки, то можно поставить конденсатор такой же ёмкости, как и остальные.

Для примера скажу, что коэффициент пульсаций считается отличным при значении 0,1% и меньше, хорошим при значении 1 — 3%. Если коэффициент не важен, то примите его равным 100.

Максимальный ток, протекающий через диоды будет равен удвоенному току нагрузки.

Также умножитель можно рассчитать более точно по следующей формуле:

Uвых = n* Uвх — (Iн*(n3 + 9*n2/4 + n/2 )/(12 *f* C)
), где
Iн — ток нагрузки в А; n — кратность умножения; f — частота входного напряжения в Гц; С — емкость конденсатора в Ф.

Детали умножителя

Сложно назвать конкретные типы и номиналы деталей не зная требуемых параметров умножителя, поэтому рассмотрю детали для умножителя со средними показателями, питающегося от сети переменного тока 220В.

Конденсаторы лучше всего брать с минимальным током утечки, например серии К73. Рабочее напряжение конденсаторов должно быть для Uвх=220В: С1 — не ниже 300В, С2-Сn — не ниже 600В. Ёмкость конденсаторов порядка 0,1 — 1 мкФ.

Диоды можно взять, например, КД411 или КД226Г(Д,Е). Ток нагрузки в этом случае может быть до 1А.

Будьте крайне осторожны при эксплуатации данной схемы, опасное напряжение остаётся на конденсаторах даже после отключения умножителя от источника питания.

Поделитесь с друзьями этой статьёй, нажав на кнопки социальных сетей внизу статьи.

Будет интересно почитать:

Зарядное устройство от батареек

Удлинитель своими руками

Прокладка открытой проводки в доме

Рубрики: Электронные устройства, Электросхемы Метки: своими руками, электроника, электросхема

Распечатать Дата добавления: 2011-11-07 |

Умножитель напряжения — схема выпрямителя особого типа, амплитуда напряжение на выходе которой теоретически в целое число раз выше, чем на входе. То есть, с помощью удвоителя напряжения можно получить 200 В постоянного тока из 100 В переменного тока источника, а с помощью умножителя на четыре — 400 В постоянного. Это если не учитывать падение напряжения на диодах (0,7В на каждом).

В реальных схемах любая нагрузка будет уменьшать полученное напряжение. Умножитель содержит в себе конденсаторы и диоды. Нагрузочная способность умножителя пропорциональна частоте, величине емкости входящих в его состав конденсаторов и обратно пропорциональна числу звеньев.

А теперь, к Вашему вниманию — «экспонаты» коллекции:

  • Удвоитель напряжения Латура-Делона-Гренашера

Особенности: хорошая нагрузочная способность.

Несимметричный умножитель напряжения (Кокрофта-Уолтона)

Особенности: универсальность, низкая нагрузочная способность.

Генераторы Кокрофта-Уолтона применяются во многих областях техники, в частности, в лазерных системах, в источниках высокого напряжения, в системах рентгеновского излучения, подсветке жидкокристаллических экранов, лампах бегущей волны, ионных насосах, электростатических системах, ионизаторах воздуха, ускорителях частиц, копировальных аппаратах, осциллографах, телевизорах и во многих других устройствах, где необходимо одновременно высокое напряжение и постоянный ток.

  • Утроитель, 1-й вариант

Особенности: хорошая нагрузочная способность.

Утроитель, 2-й вариант

Особенности: хорошая нагрузочная способность.

Утроитель, 3-й вариант

Особенности: хорошая нагрузочная способность.

Умножитель на 4, 1-й вариант

Особенности: симметричная схема, хорошая нагрузочная способность.

Читайте также: Простой расчет выпрямителя с сетевым трансформатором

Умножитель на 4, 2-й вариант

Особенности: симметричная схема, хорошая нагрузочная способность.

Умножитель на 4, 3-й вариант

Особенности: симметричная схема, хорошая нагрузочная способность, две полярности относительно общей точки.

Умножитель на 5, 1-й вариант

Особенности: хорошая нагрузочная способность.

Умножитель на 6, 1-й вариант

Особенности: хорошая нагрузочная способность.

Умножитель на 6, 2-й вариант

Особенности: симметричная схема, хорошая нагрузочная способность, две полярности относительно общей точки.

Умножитель на 8, 1-й вариант

Особенности: симметричная схема, хорошая нагрузочная способность.

Умножитель на 8, 2-й вариант

Особенности: симметричная схема, хорошая нагрузочная способность, две полярности относительно общей точки.

Умножитель напряжения Шенкеля – Вилларда

Особенности: симметричная схема, превосходная нагрузочная способность, ступенчатое увеличение напряжения на каждом звене.

Умножитель со ступенчатой нагрузочной способностью

Особенности: нагрузочная характеристика имеет две области — область низкой мощности – в диапазоне выходных напряжений от 2U до U и область повышенной мощности – при выходном напряжении ниже U.

Выпрямитель с вольтодобавкой

Особенности: наличие дополнительного маломощного выхода с удвоенным напряжением питания.

Умножитель из диодных мостов

Особенности: хорошая нагрузочная способность. Одна из классических схем умножения напряжения в высоковольтных источниках питания для физических экспериментов. На рисунке изображен удвоитель напряжения, но число каскадов в умножителе может быть увеличено.

https://ru.wikipedia.org/wiki/Генератор_Кокрофта-Уолтона
Автор: Павел (Admin)
Вас может заинтересовать:

  1. Преобразователь напряжения -5 вольт
  2. Преобразователь напряжения 12 в 22 вольта (ток до 2А)
  3. Два напряжения от одного источника
  4. Беспомеховый регулятор напряжения
  5. Блок питания на ТВК-110ЛМ

Преобразователь напряжения своими руками: материалы и инструменты, поэтапная инструкция по сборке своими руками

Для того чтобы сделать повышающий преобразователь напряжения своими руками объединенный с понижающим преобразователем напряжения своими руками, потребуется внести некоторые усовершенствования и такие элементы, как:

  • высоковольтное преобразовательное устройство до 400 килоВольт;
  • модуль для повышения;
  • низковольтное устройство преобразования 5Вольт на 1,5Ампер;
  • повышающий на 500Ватт преобразователь;
  • набор для регулирования напряжений.

Компактное устройство получается большой мощности с однотактным рабочим режимом. Обычно подобные типовые устройства способны выполнять только одну функцию. Повышать или повышать напряжение. Универсальное авторское решение способно совмещать эти две особенности.

Для тестирования самостоятельно выполненных приборов применяются разнообразные источники подаваемого питания. Устройства можно заряжать и применять для разного рода задач.

Радиолюбитель

Простые схемы импульсных преобразователей постоянного напряжения для питания радиолюбительских устройств

Читайте также: Как проверить батарейку мультиметром: описание способа

Доброго дня уважаемые радиолюбители! Сегодня на сайте “Радиолюбитель“ мы рассмотрим несколько схем несложных, даже можно сказать – простых, импульсных преобразователей напряжения DC-DC (преобразователей постоянного напряжения одной величины, в постоянное напряжение другой величины)

Чем хороши импульсные преобразователи. Во-первых, они имеют высокий КПД, и во-вторых могут работать при входном напряжении ниже выходного. Импульсные преобразователи подразделяются на группы: – понижающие, повышающие, инвертирующие; – стабилизированные, нестабилизированные; – гальванически изолированные, неизолированные; – с узким и широким диапазоном входных напряжений. Для изготовления самодельных импульсных преобразователей лучше всего использовать специализированные интегральные микросхемы – они проще в сборке и не капризны при настройке.

Первая схема. Нестабилизированный транзисторный преобразователь:

Этот преобразователь работает на частоте 50 кГц, гальваническая изоляция обеспечивается трансформатором Т1, который наматывается на кольце К10х6х4,5 из феррита 2000НМ и содержит: первичная обмотка – 2х10 витков, вторичная обмотка – 2х70 витков провода ПЭВ-0,2. Транзисторы можно заменить на КТ501Б. Ток от батареи, при отсутствии нагрузки, практически не потребляется.

Вторая схема. Стабилизированный транзисторный преобразователь напряжения:

Трансформатор Т1 наматывается на ферритовом кольце диаметром 7 мм, и содержит две обмотки по 25 витков провода ПЭВ=0,3.

Третья схема. Нестабилизированный преобразователь напряжения на основе мультивибратора:

Двухтактный нестабилизированный преобразователь на основе мультивибратора (VТ1 и VТ2) и усилителя мощности (VТ3 и VТ4). Выходное напряжение подбирается количеством витков вторичной обмотки импульсного трансформатора Т1.

Четвертая схема. Преобразователь на специализированной микросхеме: Преобразователь стабилизирующего типа на специализированной микросхеме фирмы MAXIM. Частота генерации 40…50 кГц, накопительный элемент – дроссель L1.

Пятая схема. Нестабилизированный двухступенчатый умножитель напряжения:

Можно использовать одну из двух микросхем отдельно, например вторую, для умножения напряжения от двух аккумуляторов.

Шестая схема. Импульсный повышающий стабилизатор на микросхеме фирмы MAXIM:

Типовая схема включения импульсного повышающего стабилизатора на микросхеме фирмы MAXIM. Работоспособность сохраняется при входном напряжении 1,1 вольта. КПД – 94%, ток нагрузки – до 200 мА.

Седьмая схема. Два напряжения от одного источника питания:

Читайте также: Монтаж оптической муфты

Позволяет получать два разных стабилизированных напряжения с КПД 50…60% и током нагрузки до 150 мА в каждом канале. Конденсаторы С2 и С3 – накопители энергии.

Восьмая схема. Импульсный повышающий стабилизатор на микросхеме-2 фирмы MAXIM: Типовая схема включения специализированной микросхемы фирмы MAXIM. Сохраняет работоспособность при входном напряжении 0,91 вольта, имеет малогабаритный SMD корпус и обеспечивает ток нагрузки до 150 мА при КПД – 90%.

Девятая схема. Импульсный понижающий стабилизатор на микросхеме фирмы TEXAS:

Типовая схема включения импульсного понижающего стабилизатора на широкодоступной микросхеме фирмы TEXAS. Резистором R3 регулируется выходное напряжение в пределах +2,8…+5 вольт. Резистором R1 задается ток короткого замыкания, который вычисляется по формуле: Iкз(А)= 0,5/R1(Ом)

Десятая схема. Интегральный инвертор напряжения на микросхеме фирмы MAXIM: Интегральный инвертор напряжения, КПД – 98%.

Одиннадцатая схема. Два изолированных преобразователя на микросхемах фирмы YCL Elektronics: Два изолированных преобразователя напряжения DA1 и DA2, включенных по “неизолированной” схеме с общей “землей”.

Двенадцатая схема. Двухполярный стабилизированный преобразователь напряжения на микросхеме фирмы National Semiconductor:

Индуктивность первичной обмотки трансформатора Т1 – 22 мкГн, отношение витков первичной обмотки к каждой вторичной – 1:2.5.

Тринадцатая схема. Стабилизированный повышающий преобразователь на микросхеме фирмы MAXIM:

Типовая схема стабилизированного повышающего преобразователя на микросхеме фирмы MAXIM.

Четырнадцатая схема Нестандартное применение микросхемы фирмы MAXIM:

Эта микросхема обычно служит драйвером RS-232. Умножение напряжения получается с коэффициентом 1,6…1,8.

Устройство для зарядки гаджетов

Портативный прибор может зарядить смартфон или планшет. Не проблема для него ноутбук, видеокамера. Даже паяльнику можно обеспечить соответствующее «питание». Дело в том, что обычное напряжение, на которое рассчитаны устройства, 220 Вольт. Собственноручное изготовление аккумуляторного устройства дает на выходе 14,8В. Это недостаточно для ноутбука и много для смартфона.

Поэтому универсальный небольшой инвертор просто необходим. Собрать его можно благодаря продукции AKA KASYAN. Небольшие емкости дают требуемый ток. 5А. Процесс изготовления полностью изложен на специализированных сайтах.

Читайте также: Выбор предохранителей для защиты асинхронных электродвигателей

  • Как сделать коптильню горячего копчения своими руками: чертежи, размеры, выбор материала, фото готовых вариантов
  • Как сделать кормушку для кур своими руками: пошаговая инструкция с фото и описанием
  • Печь на отработке своими руками: подробная инструкция, как сделать печь с максимальной эффективностью

Распространенные схемы

Простой импульсный преобразователь

Схема этого устройства очень проста, а большинство деталей могут быть извлечены из ненужного блока питания компьютера. Конечно, у нее есть и ощутимый недостаток – получаемое на выходе трансформатора напряжение 220 вольт далеко по форме от синусоидального и имеет частоту значительно больше, чем принятые 50 Гц. Напрямую подключать к нему электродвигатели или чувствительную электронику нельзя.

Для того, чтобы иметь возможность подключать к этому инвертору содержащую импульсные блоки питания технику (например, блок питания ноутбука), применено интересное решение – на выходе трансформатора установлен выпрямитель со сглаживающими конденсаторами. Правда, работать подключенный адаптер сможет только в одном положении розетки, когда полярность выходного напряжения совпадет с направлением встроенного в адаптер выпрямителя. Простые потребители типа ламп накаливания или паяльника можно подключать непосредственно к выходу трансформатора TR1.

Основа приведенной схемы – это ШИМ-контроллер TL494, наиболее распространенный в таких устройствах. Частоту работы преобразователя задают резистор R1 и конденсатор C2, их номиналы можно брать несколько отличающимися от указанных без заметного изменения в работе схемы.

Для большей эффективности схема преобразователя включает в себя два плеча на силовых полевых транзисторах Q1 и Q2. Эти транзисторы нужно разместить на алюминиевых радиаторах, если предполагается использовать общий радиатор – устанавливайте транзисторы через изоляционные прокладки. Вместо указанных на схеме IRFZ44 можно использовать близкие по параметрам IRFZ46 или IRFZ48.

Фото самодельного преобразователя напряжения

Какие бывают преобразователи

В современно мире существует множество видов преобразователей тока, как небольших для минимальных потребностей, так и крупных способных обеспечить энергией несколько электроприборов.

Для самых простых нужд можно использовать преобразователи работающие от прикуривателя в автомобиле. Работу холодильника они конечно обеспечить не смогут, но вот радио или зарядку телефона, планшета, ноутбука вполне осилят.

Благодаря ШИМ контролерам преобразователи заметно шагнули вперёд. Вырос коэффициент полезного действия, а форма тока приблизилась к привычным для приборов форме чистого синуса. А максимальная мощность выросла до нескольких кило ватт.

Конечно всё это касается лишь дорогих и массивных преобразователей. Но и более простые, тоже не стояли на месте и улучшали свои характеристики.

Время работы будет ограниченно мощностью и ёмкостью аккумулятора. И если вы на долго отправляетесь в путешествие, то не следует слишком сильно нагружать аккумулятор и ограничивать себя в потреблении электроэнергии.

Для отдыха не природе лучше всего подойдёт компактный маломощный преобразователь. Его вполне хватит для бытовых нужд в походе.

Читайте также: Простое пуско зарядное устройство 12 24 схема. как сделать пусковое устройство для автомобиля своими руками? советы и рекомендации

Но не стоит забывать, что простые инверторы выдают не чистый синус тока, а практически прямоугольный, что ведёт за собой ограничения.

  • Производство взрывозащищенного оборудования
  • Что нужно знать при выборе ветрогенератора
  • Генератор из асинхронного двигателя: схема, таблица, инструкция, как сделать своими руками + фото от мастера!

Не каждый бытовой прибор сможет работать с такой формой тока и может вовсе прийти в негодность. Поэтому следует внимательно подходить к выбору приборов для поездок на природу.

  • Автомобильный;
  • Компактный;
  • Стационарный тип.

Также нельзя забывать, что чем выше нагрузка на преобразователь, тем ниже его КПД. И если в этом нет необходимости, нагружать его следует минимально, чтобы не расходовать драгоценную энергию впустую.