Двухполярное напряжение из однополярного

ДВУПОЛЯРНЫЙ РЕГУЛИРУЕМЫЙ БП ИЗ ОДНОПОЛЯРНОГО

При наличии у вас лабораторного блока питания с возможностью регулировки выходного напряжения и тока, и защитой от КЗ и перегрузки на выходе, можно дополнить его такой «приставкой». Тогда на выходе можно получить не только однополярное, но и двуполярное регулируемое напряжение. При этом сохранятся все «родные» функции БП — возможность регулировки тока и напряжения и защита по выходу.

Но следует учесть, что значения двуполярного выходного напряжения будут равны половинным значениям «базового». То есть, если ваш БП выдаёт, например, от 0 до 30 вольт на выходе, то выходное напряжение двуполярного варианта будут, соответственно, иметь величину от 0 до +/- 15 вольт (чуть меньше с учётом потерь). При этом будет автоматически обеспечено стабильное равенство напряжений плюсового и минусового «плечей» во всём диапазоне регулировок выходного напряжения.

Схема приставки к блоку питания

Схема простейшая, не требует специального подбора элементов и сложных настроек. Её может собрать любой, даже начинающий радиолюбитель из того, что буквально «есть под рукой».

Данная схема — не моё изобретение. Она была найдена несколько лет назад на просторах инета. К сожалению, у меня не осталось информации об её авторстве, поэтому не могу дать ссылку на первоисточник. Но есть фрагмент текста, описывающий устройство и принцип работы схемы, который привожу ниже (с учётом обозначений элементов на моей, приведённой здесь схеме):

«Операционный усилитель OP1 измеряет разницу напряжений в средней точке делителя напряжения R1 — R2, Rрег с напряжением на «корпусе» и реагирует на их разницу увеличивая, или уменьшая выходное напряжение.

При подаче питания на устройство, происходит заряд конденсаторов С1 и С2 по пути «+» источника питания, конденсатор С1, конденсатор С2, «-» источника питания. Таким образом, каждый конденсатор зарядится половинным входным напряжением. Эти напряжения и будут на выходе устройства. Но это будет наблюдаться при сбалансированной нагрузке.

Рассмотрим случай, когда к устройству подключена несбалансированная нагрузка – например, сопротивление нагрузки в цепи положительного выходного напряжения намного меньше сопротивления нагрузки подключенной к цепи отрицательного выходного напряжения. Так как параллельно конденсатору С1 подключена цепь нагрузки – диод VD1 и малое сопротивление нагрузки, то заряд конденсатора С2 будет проходить не только через С1, но и по параллельной ему цепи – диод VD1, малое сопротивление нагрузки. Это приведёт к тому, что конденсатор С2 будет заряжаться большим напряжением, чем конденсатор С1, что в свою очередь приведёт к тому, что положительное выходное напряжение будет меньше отрицательного.

На корпусе устройства напряжение возрастёт по потенциалу относительно средней точки резисторов R1 — R2, Rрег, где потенциал равен половине входного напряжения. Это приведёт к появлению на выходе операционного усилителя отрицательного напряжения относительно корпуса устройства. И чем больше будет разница потенциалов на входе операционного усилителя, тем больше будет отрицательное напряжение.

В результате отрицательного напряжения на выходе ОУ, транзисторы VT1 и VT2 откроются и подобно цепи «диод VD1, малое сопротивление нагрузки» в положительной цепи, создаст шунтирующее действие на конденсатор С2 в отрицательной цепи. Это в свою очередь приведёт к уравновешиванию токов в положительной и отрицательной цепях и выровняет выходные напряжения. В случае разбалансировки нагрузки устройства в сторону отрицательного напряжения открываются транзисторы VT1 и VT2.

Таким образом, за счёт схемы автоматического контроля за потенциалом «нуля», осуществляется его балансировка в «среднее состояние» между плюсом и минусом питания.»

Используемые в схеме детали

В качестве операционного усилителя можно использовать микросхемы К140УД6, К140УД7, К140УД601, К140УД701 или зарубежные аналоги (с учётом их другой цоколёвки).

Резисторы в эмиттерных цепях транзисторов нужны для выравнивания токов транзисторов и ограничения их бросков в моменты переключения. При небольших тока нагрузки достаточно будет использовать один выходной каскад, тогда эти резисторы в эмиттерных цепях можно исключить. При значительной нагрузке (до 10 А и выше) следует использовать параллельное включение транзисторов (показано на схеме зелёным цветом). Номинал этих резисторов может быть от 0,05 до 0,2 Ом при мощности не менее 5 ватт (зависит от мощности и тока нагрузки). Все остальные резисторы в схеме — типа МЛТ0,25.

Транзисторы можно использовать типов: КТ805/КТ837, КТ819/КТ818, КТ827/КТ825 или аналогичные импортные. Диоды VD1 и VD2 предназначены для исключения шунтирования транзисторами устройства цепей нагрузки. Они могут быть типа КД226, КД210, КД237 и другие, в зависимости от максимального тока нагрузки.

Транзисторы устанавливают на теплоотводы достаточного размера. Размеры теплоотводов определяются только тем, насколько нагрузка будет не сбалансирована. Чем больше не сбалансирована, тем больше площадь радиаторов.

Настройки этот делитель однополярного напряжения не требует, правильно собранная схема начинает работать сразу. Резистор Rрег предназначен для установки равенства выходных двухполярных напряжений.

В случае появления «биений» выходного напряжения в результате возбуждения и самогенерации, необходимо уменьшить значение резистора R4, увеличив при этом значение обратной отрицательной связи.

Микросхема ОУ может быть ограничена по питанию до 15 вольт в «плече» (в зависимости от её типа), поэтому для получения бОльших выходных напряжений необходимо подключать питание к выводам 4 и 7 через добавочные сопротивления и соответствующие стабилитроны, но при этом возрастёт и нижний уровень выходных напряжений. Стабилитроны следует зашунтировать конденсаторами порядка 0,1…1,0 мкФ.

В некоторых микросхемах ОУ предусмотрена возможность регулировки баланса нуля выходного напряжения с помощью внешнего подстроечного резистора. Но при изменении напряжения входного питания, будет необходима его подстройка, поэтому в данной схеме эта функция не используется.

Схема стабилизатора была собрана и испытана на практике. При всей своей простоте обеспечивает хорошие показатели и надёжность, не занимает много места и может быть размещена в корпусе вашего «исходного» однополярного БП. При этом для нормальной работы БП в однополярном режиме, следует предусмотреть переключатель S1 для отключения двуполярной приставки, чтобы она не оказывала никакого влияния на него. Также, на выходе основного БП полезно будет поставить дополнительный предохранитель F1 на ток, соответствующий максимально возможному току двуполярной нагрузки.

Конструкция устройства

Следует учесть, что выход GND приставки является «искусственной средней точкой», поэтому он не должен контактировать с «общим» проводом исходного БП (!) – обычно это «-» питания.

На фото приведён пример моей конструкции. Схема собрана на печатной плате размерами 55 х 30 мм и установлена в корпусе «основного» (однополярного) БП. Корпус от компьютерного блока питания имеет компактные размеры, поэтому монтаж получился довольно плотным. Однако на работу как основного блока, так и «приставки» это не оказало никакого влияния. Транзисторы выведены на проводах небольшой длины (порядка 60…80 мм) и закреплены на свободном месте основного теплоотвода через изоляционные прокладки. Переключатель S1 выведен на переднюю панель БП (тумблер). Предохранитель F1 установлен на боковой стенке справа. Автор статьи: Барышев Андрей Владимирович.

Двухполярное питание из однополярного для портатива на TPS65133

В эру портативной электроники все острее встает вопрос о питания переносных девайсов. Особую сложность представляет двухполярное напряжение питания, необходимое например в портативном усилителе для наушников. Сегодняшнее развитие электроники позволяет преодолеть данную проблему. Рассмотрим как сделать двухполярное питание из однополярного на микросхеме TPS65133.

Двухполярное питание из однополярного, преобразователь однополярного напряжения в двухполярное на TPS65133

Варианты двухполярного питания для портатива

Конечно для двухполярного питания в портативе можно воспользоваться двумя аккумуляторами. Но это приведет к дополнительным сложностям с их зарядкой, а также к расбалансу плеч по мере старения аккумуляторов.

Более продвинутый вариант сделать двухполярное питание из однополярного — использовать dc-dc инвертор напряжения MAX660, MAX865 или любой другой. Но и тут есть проблема. при разряде аккумулятора, вслед за положительным напряжением будет падать и отрицательное. Т.е. при заряженном аккумуляторе питание будет ±4.2, а при разряженном ±3 В или еще меньше.

И тут на помощь приходят SEPIC преобразователи. Не будем углубляться в теорию процесса преобразования — это тема отдельной статьи. А пока рассмотрим преобразователь однополярного напряжения в двухполярное на TPS65133.

Читайте также: 500 Ватт импульсный блок питания для аудиоусилителей

Преобразователь однополярного питания в двухполярное

При макетировании схем, содержащих ОУ, требуется двухполярное питание.

Если имеется только один однополярный источник, получить двухполярное питание можно с помощью устройств, содержащих искусственную среднюю точку.

Простейшее из них состоит из делителя напряжения, образованного двумя резисторами с одинаковой мощностью, средняя точка которою соединена с выходным общим проводом, имеющим нулевой потенциал.

Недостаток такого устройство – отсутствие стабилизации нулевого потенциала при разбалансе токов нагрузки плеч. Повысить стабильность нулевого потенциала можно, используя активные элементы, управляемые указанными токами.

На рис.1 показана схема такого устройства. Оно подкупает своей простотой, но не является работоспособной из-за наличия «зоны чувствительности» транзисторов, ширина которой равна удвоенному падению напряжения на их эмиттерных переходах и составляет 0,6В для германиевых транзисторов и 1,4 В для кремниевых.

Благодаря наличию этой зоны при полной симметрии токов нагрузки плеч оба транзистора VT1, VT2 заперты, их внутренние сопротивления составляют сотни килоом, что для нулевого провода практически означает обрыв цепи. Такое состояние схемы является неустойчивым и под воздействием дестабилизирующих факторов один из транзисторов, например верхний, открывается.

Его внутреннее сопротивление составляет десятки ом и путь для протекания тока нагрузки нижнею плеча освобождается. Нижний транзистор остается закрытым, и ток нагрузки верхнего плеча через него практически не протекает. Это состояние схемы также является неустойчивым, и через некоторое время под воздействием теx же дестабилизирующих факторов состояние транзисторов изменяется на обратное, верхний транзистор закрывается, нижний открывается и т.д.

Таким образом, благодаря случайным флуктуационным процессам процессам, протекающим в схеме на рис.1 в ней имеет место временная нестабильность параметров общего провода проходное сопротивление (вплоть до обрыва цепи для тока нагрузки одного из плеч) и скачкообразное изменение нулевого потенциала на величину, численно равную ширине «зоны нечувствительности» транзисторов, что для источников питания совершенно недопустимо.

Все сказанное в полной мере относится ко всем усилителям мощности звуковой частоты, в которых выходные транзисторы включены по аналогичной схеме, благодаря описанным процессам, в динамиках их акустических систем в «режиме молчания»

прослушиваются хаотические щелчки, в номинальном режиме работы из-за искажений типа ступенька неверное воспроизведение тембра электрическою сигнала, а при отсутствии конденсатора, включенного между базами и эмиттерами, самовозбуждение в области ВЧ.

На рис.2 показан доработанный вариант рассмотренной ранее схемы, свободный от перечисленных недостатков. Транзисторы VT1, VГ2 поставлены в режим А, и через них протекает сквозной ток Iо. При указанных на схеме номиналах резисторов Iо=1,1А точная установка производится резистором R, а плавность установки обеспечивается введением резисторов R8, R9. Симметрия выходных напряжений плеч регулируется резистором R1.

При увеличении тока нагрузки нижнего плеча возрастают базовый и эмиттерный токи транзистора VT1, увеличивается эмиттерный и уменьшается базовый потенциалы, под воздействием которых транзистор призакрывается, уменьшая указанный ток нагрузки. При уменьшении тока нагрузки нижнего плеча реакция транзистора VT1 будет противоположной.

Аналогично работает нижний транзистор VT2. Кроме того, каждый из регулирующих транзисторов оказывает шунтирующее воздействие но смежное плечо. Таким образом, стабилизация потенциала общего провода производится при одновременном воздействии обоих описанных факторов.

Читайте также: Доработка усилителя «Вега 50У-122С» или о том, как «Вега» усилителем стала

На рис 3 показано схема, содержащая меньше элементов, в которой транзисторы используются в режиме источников тока. Так как в таком режиме они управляются потенциалом лучше, чем в режиме единичного усиления по напряжению, эффективность данной схемы примерно в 6,5 раза выше предыдущей. Принцип работы остается таким же.

Наилучшего результата по стабилизации нулевого потенциала общего провода можно добиться, применяя ОУ. Такая схема показана на рис.4. Вся величина старческого коэффициента усиления ОУ задействована на обеспечение 100% ООС. Он следит за разностью потенциалов ±(UA-UB) в точках А и В схемы и поддерживает эту величину на минимальном уровне с высокой точностью.

При обязательном равенстве резисторов R10=R13, R11=R12 точную установку сквозного тока Iо = 1,1А можно уменьшить либо подбором дискретных резисторов R11=R12, либо введением регулировочной цепи, показанной штрихованной линией. Плавность установки Iо достигается введением дополнительных резисторов R14, R15.

Для приведенных схем входные и выходные параметры примерно одинаковы. Напряжение плеча 15В. Ток нагрузки плеча 1А. Мощность, потребляемая плечом, 15Вт. Напряжение первичного источника 30В. Ток, потребляемый oт первичного источника, 2,2А. Мощность, потребляемая от первичного источника, 66Вт. КПД 45%.

Двухполярное питание из однополярного на микросхеме TPS65133

Главным достоинство этого преобразователя является то, что выходное напряжение составляет ±5В независимо от входного напряжения, которое может быть от 2.9 до 5 вольт (допустимо подавать до 6 вольт). Т.е. микросхема создана для непосредственного использования с 3.6 вольтовыми аккумуляторами. Но никто не запрещает запитать ее от usb или блока питания.

Частота преобразования тут 1.7МГц. Для аудио устройств это отличный вариант. При этом, для работы не требуется использование трансформаторов, которые нужны в большинстве SEPIC конвертеров. Для преобразования требуется только индуктивность которая, благодаря столь высокой частоте, достаточно мала.

Схема преобразователя однополярного напряжения в двухполярное на TPS65133 выглядит следующим образом:

Двухполярное питание из однополярного, преобразователь однополярного напряжения в двухполярное на TPS65133

Конденсаторы желательно устанавливать танталовые. Так же будет не лишним поставить дополнительно конденсаторы по 0.1 мкФ для фильтрации ВЧ-помех.

Что касается такого параметра как выходной ток, то тут все очень хорошо. Выходной ток может достигать 250 мА на плечо. Производитель заявляет, что при выходном токе от 50 до 200 мА КПД преобразователя превышает 90%, что является очень хорошим показателем для применения в портативной технике.

Двухполярное питание из однополярного, преобразователь однополярного напряжения в двухполярное на TPS65133

Схема приставки к блоку питания

Схема простейшая, не требует специального подбора элементов и сложных настроек. Её может собрать любой, даже начинающий радиолюбитель из того, что буквально «есть под рукой».

Читайте также: 3. Измерение АЧХ акустических систем в домашних условиях

Данная схема — не моё изобретение. Она была найдена несколько лет назад на просторах инета. К сожалению, у меня не осталось информации об её авторстве, поэтому не могу дать ссылку на первоисточник. Но есть фрагмент текста, описывающий устройство и принцип работы схемы, который привожу ниже (с учётом обозначений элементов на моей, приведённой здесь схеме):

«Операционный усилитель OP1 измеряет разницу напряжений в средней точке делителя напряжения R1 — R2, Rрег с напряжением на «корпусе» и реагирует на их разницу увеличивая, или уменьшая выходное напряжение.

При подаче питания на устройство, происходит заряд конденсаторов С1 и С2 по пути «+» источника питания, конденсатор С1, конденсатор С2, «-» источника питания. Таким образом, каждый конденсатор зарядится половинным входным напряжением. Эти напряжения и будут на выходе устройства. Но это будет наблюдаться при сбалансированной нагрузке.

Рассмотрим случай, когда к устройству подключена несбалансированная нагрузка – например, сопротивление нагрузки в цепи положительного выходного напряжения намного меньше сопротивления нагрузки подключенной к цепи отрицательного выходного напряжения. Так как параллельно конденсатору С1 подключена цепь нагрузки – диод VD1 и малое сопротивление нагрузки, то заряд конденсатора С2 будет проходить не только через С1, но и по параллельной ему цепи — диод VD1, малое сопротивление нагрузки. Это приведёт к тому, что конденсатор С2 будет заряжаться большим напряжением, чем конденсатор С1, что в свою очередь приведёт к тому, что положительное выходное напряжение будет меньше отрицательного.

На корпусе устройства напряжение возрастёт по потенциалу относительно средней точки резисторов R1 — R2, Rрег, где потенциал равен половине входного напряжения. Это приведёт к появлению на выходе операционного усилителя отрицательного напряжения относительно корпуса устройства. И чем больше будет разница потенциалов на входе операционного усилителя, тем больше будет отрицательное напряжение.

В результате отрицательного напряжения на выходе ОУ, транзисторы VT1 и VT2 откроются и подобно цепи «диод VD1, малое сопротивление нагрузки» в положительной цепи, создаст шунтирующее действие на конденсатор С2 в отрицательной цепи. Это в свою очередь приведёт к уравновешиванию токов в положительной и отрицательной цепях и выровняет выходные напряжения. В случае разбалансировки нагрузки устройства в сторону отрицательного напряжения открываются транзисторы VT1 и VT2.

Таким образом, за счёт схемы автоматического контроля за потенциалом «нуля», осуществляется его балансировка в «среднее состояние» между плюсом и минусом питания.»

Ложка дегтя в бочку меда

При всех очевидных плюсах, самым большим минусом данной микросхемы является ее корпус. Микросхема выпускается только в корпусе предназначенном для поверхностного монтажа, размерами 3х3 мм. Размеры контактов составляют 0.6х0.2 мм, а расстояние между ними 0.25 мм.

Двухполярное питание из однополярного, преобразователь однополярного напряжения в двухполярное на TPS65133

Изготовить плату с такими контактами в домашних условиях — не самое простое занятие. Можно облегчить себе жизнь, если купить готовый модуль со впаянной микросхемой и обвязкой.

Вообще TPS65133 не единственная. В этом же ряду есть микросхемы TPS65130 TPS65131, TPS65132, TPS65135….. Однако либо их характеристики мене интересны, либо корпус еще хуже.

Буду очень признателен всем, кто подскажет микросхемы с аналогичными характеристиками. Жду Вас в комментах

Материал подготовлен исключительно для сайта

↑ Итоговая схема включения модулей LM2596

Схема проста и очевидна.

При длительной нагрузке током 1 А детали заметно нагреваются: диодный мост, микросхема, дроссель модуля, больше всего дроссель (дополнительные дроссели холодные). Нагрев на ощупь 50 градусов.
При работе от лабораторного блока питания, нагрев при токах 1,5 и 2 А терпимый в течение нескольких минут. Для длительной работы с большими токами желателен теплоотвод на микросхему и дроссель большего размера.

Преобразователь однополярного напряжения в двухполярное

Недавно решил сделать УМЗЧ. Встала проблема с двухполярным питанием, т.к. отсутствовал соответствующий трансформатор. Побродив по интернету и просмотрев пару книг, нашел схему с созданием виртуальной средней точки, но так как мне нужен был один двухполярный источник и один однополярный, я доработал схему. Схема преобразователя однополярного напряжения в двухполярноеВ своей плате я применил диодные мосты от нерабочего компьютерного БП. Конденсаторы взяты на 35 Вольт.Правда у меня небольшое отступление от схемы — не оказалось конденсаторов на заявленные в схеме 4700 мкФ. Использовал на 1000 мкФ. Вешний вид готового блока: Преобразователь однополярного напряжения в двухполярноеПри испытаниях этот блок спокойно питал мой усилитель на TDA 2030 в мостовом включении.

Список радиоэлементов

Прикрепленные файлы:

Теги:

Ульянов Д.А. Опубликована: 2012 г. 0 0

Вознаградить Я собрал 0 0

Оценить статью

  • Техническая грамотность

Средний балл статьи: 0 Проголосовало: 0 чел.

Комментарии (24) | Я собрал ( 0 ) | Подписаться

Для добавления Вашей сборки необходима регистрация

0

Анатолий 09.01.2013 23:33 #
Какое питание на входе и выходе?

0

дмитрий 10.01.2013 16:41 #

Это зависит от номиналов элементов. У меня применялись конденсаторы на 35 вольт. На вход я подавал с трансформатора 10 вольт. На выходе имел 16 с однополярного и +-16 с двухполярного выхода

0

Напряжение смещения какое у вас?

0

Дмитрий 02.04.2013 08:32 #

Извините, я не совсем понял о каком напряжении речь? Зачем здесь напряжение смещения? Это же практически простой диодный выпрямитель в мостовом включении. Конкретно в моем случае обе вторичные обмотки трансформатора одинаковые. С одной из которых переменное напряжение подается на два диодных моста с искусственной средней точкой

0

Алексей 19.04.2013 22:27 #

Трансформатор 22 вольта. Схема нижняя.
Греется сильно и быстро BR2. Стоят 4 диода от БП RL205 600В 2А.
Такие же стоят по стороне плюса. Со стороны плюса выдает около 40-46 вольт. По минусу около 24. Показания скачут, как я думаю по причине нагрева моста. Хочу питать ТДА7294 собранной по этой схеме
Пытался питать однополярным, но ничего не вышло. Вот решил применить Ваш метод. Как решить проблему нагрева?
Кондеры стоят 2 по 470 и 4 по 4700 на 50 вольт. 0.1 мкФ не ставил.

0

Дмитрий 08.07.2013 09:53 #

На микросхему ТДА7294 используемые вами диоды думаю не подойдут. Ведь у нее возможный пиковый ток 10 ампер. Греется возможно как раз потому, что через диоды протекает ток больше, чем они рассчитаны. Ну либо если и без нагрузки такая же ситуация, то не правильное включение. А кондеры на 0.1 мкФ желательно ставить. Это конечно не влияет на нагрев, но на качество звучания может.

0

Диодный мост слабый вот и греется. Или неправильно подключен. Из-за этого разбег в напряжении, еще может быть разбег из-за старого конденсатора (или не соблюдение полярности кондера)

0

Дмитрий 16.11.2014 14:16 #

У меня такой вопрос: Я собрал все как по плану, но только плата у меня вышла чуть масштабнее чем у автора, и пробую делать замеры, + и Gnd выдает 2.2 вольта, а Gnd и — выдает 10,3 вольта, входное напряжение постоянка 12,5 вольт, что к чему не могу понять! И как решить?

0

У вас наверное емкость у конденсаторов C1 и C2 разная

0

Дмитрий 24.02.2015 21:18 #

Нет. они одинаковые. одна фирма, один вольтаж, одна ёмкость, все парные идут от одинаковых производителе и т.д. и т.п.

0

дмитрий 10.12.2014 19:45 #
На вход можно подавать только переменное напряжение! Иначе работать не будет

0

аноним 09.01.2015 22:03 #
Получается авто аккум подключить никак?

0

Сергей 19.02.2015 11:28 #
Для чего в данной схеме C3 и C4, два полярных электролита в переменной цепи?

0

Собрал схему. Конденсоры C3, C4 грелись — один взорвался, при подаче питания 30В перемененного, выходит со схемы 90В постоянного

0

дмитрий 03.03.2015 13:45 #

Схема 100% рабочая. У кого не работает, то где-то допущена ошибка. Либо элементы неисправные. Я три раза для разных нужд и под разные напряжения собирал и все прекрасно работает!

0

Человек 19.06.2015 16:44 #

Существенно снизится просадка напряжения в отрицательном плече если конденсаторы С3 и С4 поставить большей емкости, например, 4700 мкФ

0

FilPlato 07.01.2016 04:27 #

Попробовал повторить: в отрицательном плече синусоида получается лишь на минимальном уровне входного сигнала. Как только сигнал растет, увеличение потребляемого тока просаживает отрицательное напряжение раза в три. И синусоида естественным образом превращается в положительную полуволну.
Все детали использовались строго по номиналам, указанным автором. Трансформатор ТН54, с током вторичных обмоток 4,45 а, мосты шестиамперные. Словом, все соответствовало потребностям УНЧ на микросхеме А2050. Но отрицательное плечо не работает.

0

androne 11.03.2016 01:43 #
Есть вариант попроще .
Прикрепленный файл: 2полярка.jpg

0

александр 21.08.2016 17:52 #

Самый правильный вариант! И не нужно никаких городушек, и деталей мизер, просадка по плечам одинаковая.

0

Дмитрий 10.01.2019 08:29 #
Один недостаток — пульсации вместо 100 Гц — 50. Сложнее фильтровать.

0

Георгий 23.02.2017 23:18 #

Прошу помочь понять следующее явление: по вашей схеме вторичную обмотку пустил напрямую на мост, второй мост запитал через конденсаторы (200мкф) . Минус первого моста соединил с плюсом второго моста и получил среднюю точку. Плюс первого моста соединил с средней точкой электролитом (200 мкф) . Аналогично минс второго моста соединил таким же электролитом со средней точкой. Далее проводил проверку- поочередно подключал активную нагрузку к выходам первого и второго моста. У меня Мосты отдают в нагрузку разный ток. Первый мост дал 0,8А , второй мост смог дать лишь 0,3А. Почему? Конденсаторы заведомо меньше чем у вас , Вторичка трансформатора способна отдавать 12В при токе 2,6А. А вот мосты в пробном тесте отдают неодинаковый ток. Напряжение на выходах мостов одинаковое. Спасибо за консультацию

0

Емкость С3 и С4 явно занижена, отсюда и плохая нагрузочная способность. Да и вся схема сильно сомнительная. Давно есть решения попроще — один мост, два конденсатора, включенных последовательно, масса берется со средней точки. Напряжение, конечно в 2 раза меньше, но схема классическая, проверенная.

0

с3 с4 должны быть как минимум равны с1 и с2.
И вообще: традиционный выпрямитель с удвоением проще и надёжнее

+1

евгений 24.11.2017 16:07 #

Бред какой-то..не занимайтесь ерундой..эти *схемы* работают при очень небольших токах..и варианты их использования возникают при банальном нежелании намотать(купить.достать и т.д.) нормальный трансформатор. плечо питания через конденсаторы будет неминуемо *просаживаться*

DC-DC регулируемый преобразователь 1.5-37В 2А с индикатором

DC-DC регулируемый преобразователь 1.5-37В 2А с индикатором

USB осциллограф DSO-2090 Макетная плата для пайки (10 шт)

1999-2023 Сайт-ПАЯЛЬНИК ‘cxem.net’
При использовании материалов сайта, обязательна
ссылка на сайт ПАЯЛЬНИК и первоисточник