Единица напряжения равная 1000 вольт

Как перевести Амперы в Киловатты. 1 Киловатт сколько это Ампер?

Как перевести амперы в киловатты и наоборот Как перевести амперы в киловатты и наоборот

Сколько Ватт знаю, а сколько Вольт-, что-то не припоминаю! Счастливо переводить единицы измерения!

это СТОДВАДЦАТЬ КИЛОВАТТ вольт это единица измерения напряжения сети ампер — единица измерения тока ватт — мощности ватт=ампер*вольт

120 тысяч вольт.

Читайте также: Однофазный и трехфазный ограничитель мощности – назначение и модельная линейка

кВт — это мощность в вольн это напряжение. Аналогичный вопрос: сколько метров в 3 килограмах

силу тока надо знать

;)

зависит от силы тока

Это разные понятия. Вольты (В) — ед. змерения напряжения Ватты (Вт) — ед. имзмерения мощности

120 киловатт (120 тысяч ватт) — это объем всей энергии, которая выделена (так, лампочка 60 ватт будет работать от этой энергии кучу времени- считай сам) а в вольтах это будет как сам захочешь — обычно 220 вольт делают.

120 КИЛОграмм — это сколько грамм? Вот вольт столько же.

Безопасное расстояние от ЛЭП до жилого дома

В виду того, что уменьшать передаваемое напряжение нецелесообразно, вокруг линий устанавливается, так называемая, санитарная зона, устанавливающая минимальное расстояние от участка расположения высоковольтной линии.

Так, согласно п.4.1 СанПиН 2971-84 можно выделить следующие параметры:

  • Для линий 330 кВ – расстояние должно быть не менее 20 м до ближайших построек;
  • Для ЛЭП номиналом 500 кВ – необходимо выдерживать дистанцию до 30 м;
  • Для ВЛ с напряжением в 750 кВ – не менее 40 м;
  • От опор воздушных линий 1150 кВ отступается расстояние более 55 м.

Рисунок 1: безопасное расстояние от ЛЭП

Остальные электроустановки являются относительно безопасными, так как конструктивного расстояния, установленного строительными нормативами и размерами охранной зоны должно быть вполне достаточно. Несмотря на эти нормы, в некоторых городах опасное излучение охватывает и другие высоковольтные номиналы, к примеру, в Москве запрещено приближение построек, садовых и огородных участков к ВЛ 110 кВ ближе 20 м.

Однако научные исследования за рубежом приводят ученых к мнению о том, что вышеприведенные величины являются недостаточными для безопасности человека, поэтому в ряде стран руководствуются мощностью ЛЭП, которая учитывает не только электрическую, но и магнитную составляющую. В европейских государствах к расстояниям до проводов ЛЭП применяют расширенную опасную зону в 4 – 10 раз большую, чем на постсоветском пространстве. Такая разница происходит за счет разграничения интенсивности воздействия магнитных и электрических составляющих на человеческий организм.

Правила перевода единиц

В инструкциях ко многим приборам попадаются обозначения в вольт-амперах. Различие их необходимо только специалистам, которым эти нюансы важны в профессиональном плане, но для обычных потребителей это не так важно, потому что используемые в этом случае обозначения характеризуют почти одно и то же. Что же касается киловатт/час и просто киловатт, то это две различных величины, которые нельзя путать ни при каких условиях.

Чтобы определить электрическую мощность через показатель сетевого тока, можно использовать различные инструменты, с помощью которых производятся замеры и вычисления:

  • с помощью тестера;
  • используя токоизмерительные клещи;
  • производя вычисления на калькуляторе;
  • с помощью специальных справочников.

Применив тестер, мы измеряем напряжение в интересующей нас электросети, а после этого используем токоизмерительные клещи для определения силы тока. Получив нужные показатели, и применив существующую формулу расчета постоянного и переменного тока, можно рассчитать мощность. Имеющийся результат в ваттах при этом делим на 1000 и получаем количество киловатт.

Однофазная электрическая цепь

В основном все бытовые электросети относятся к сетям с одной фазой, в которых применяется напряжение на 220 вольт. Маркировка нагрузки для них записывается в киловаттах, а сила тока в амперах и обозначается как АВ.

Читайте также: Расчёт электрического освещения методом коэффициента использования светового потока

Для перевода одних единиц в другие, применяется формула закона Ома, который гласит, что мощность (P) равна силе тока (I), умноженной на напряжение (U). То есть, расчет будет выглядеть так:

Как снизить потребление электроэнергии бытовыми приборами

Для снижения расхода электрической энергии, которую расходуют бытовые приборы, существует несколько действенных приемов. Хороший результат дает использование энергосберегающего холодильника, который может работать в таком режиме круглый год, независимо от погодных условий.

Систему освещения в доме лучше организовать с использованием современных светодиодных или энергосберегающих ламп. Их установка позволит не только экономить электроэнергию, они также характеризуются более длительным периодом работы. Хороший эффект дает установка местного освещения на кухне, в спальне, прихожей, в гостиной, что также позволяет экономить электроэнергию.

Обратите внимание! Использование удлинителей и переходников увеличивает потребление электроэнергии.

Холодильники и морозильные камеры следует своевременно размораживать. Наличие излишков льда на внутренних стенках устройств способствует увеличению расхода электроэнергии.

Советы по экономии потребления электроэнергии.

Во время работы компьютера можно выбрать для него оптимальный режим энергопотребления. Он будет автоматически выключаться, когда будет находиться в бездействии определенное время. При выходе из режима сна энергии понадобится намного меньше, в сравнении с обычным включением.

На заметку! Снизить затраты на электроэнергию удастся при установке многотарифного счетчика, ночные и дневные показания которого исчисляются по разным тарифам. Ночью стоимость электричества ниже.

При работе обогревательных приборов можно использовать теплоотражающие экраны, которые способствуют увеличению теплоотдачи и снижению потребления электроэнергии.

При выборе бытовой техники следует учитывать, сколько ватт (киловатт) расходует прибор в час. Лучше отдавать предпочтение экономичным устройствам, которые будут удовлетворять заявленным требованиям, при этом экономить энергоресурс, необходимый для их функционирования.

Почему существуют разные мощности

Разница возникает потому, что потребители электроэнергии могут отличаться по виду нагрузки. Активные виды, получая энергию от источника, полностью трансформируют её в работу. У них нет никакого сдвига фаз, и синусоида тока повторяет синусоиду напряжения.

Что такое электроэнергия

У реактивных видов нагрузок при получении энергии от источника они её сначала накапливают некоторое время. После чего отдают обратно в источник, тоже в течение некоторого времени. Возникает сдвиг фаз между синусоидами тока и напряжения в 900.

К сведению. Передача электроэнергии на расстояние к потребителю носит направленный характер. Такой возврат вреден для процесса. Поэтому реактивная часть S – одна из отрицательных характеристик электроцепей.

Читайте также: Магнитный пускатель. Схемы подключения пускателей.

Разница кВА и кВт

Как известно, ква – это киловольт-ампер, кВт – это киловатт, в этом заключается существенная разница.

Как перевести кВА в кВт

Чтобы это сделать, можно выбрать несколько вариантов:

  • приближённый перевод;
  • использование онлайн-калькулятора;
  • применение математической формулы.

Любой из методов поможет конвертировать одну величину в другую.

При переводе значений ква в квт необходимо работать с одинаковым разрядом чисел. К примеру, пытаясь определить 10 ква – это сколько квт, нужно обратить внимание на приставку «кило». Она равна 1*103, например: 1 кВ = 1*103В. Это значит, что 10 кВА – это 1*104 ВА.

Всё зависит от того, с точностью до какого знака после запятой необходимо получить результат перевода одной величины в другую. Для получения информации и использования её в бытовой ситуации достаточно приблизительного перевода. В предварительных расчётах можно воспользоваться онлайн калькулятором. Для вычисления точных значений при проектированиях и расчётах сетей нужны математические вычисления.

Количество изоляторов на линиях электропередач (в коридоре воздушных линий)

Количество изоляционных изоляторов в наземных волноводах на металлических и железобетонных носителях в чистом воздухе (с нормальным загрязнением воздуха).

Тип изолятора по ГОСТ Линия электропередачи 35 кВ 110 кВ ВЛ 150 кВ ВЛ 220 кВ ВЛ 330 кВ 500 кВ
PF6-A (P-4,5) 3 7 9 13 19
PF6-B (PM-4.5) 3 7 10 14 20
PF6-B (PFE-4,5) 3 7 9 13 19
(ПФЭ-11) 6 8-е место 11 16 21
PF16-A 6 8-е место 11 17 23
PF20-A (PFE-16) 10 14 20
(ПФ-8.5) 6 8-е место 11 16 22
(Р-11) 6 8-е место 11 15 21
PS6-A (PS-4.5) 3 8-е место 10 14 21
PS-11 (PS-8.5) 3 7 8-е место 12-е место 17 24
PS16-A 6 8-е место 11 16 22
PS16-B 6 8-е место 12-е место 17 24
PS22-A 10 15 21
PS30-A 11 16 22

Примеры расчетов

Ниже приведены практические применения расчётов. Рассматривается несколько вариантов.

Приближенный перевод кВа в кВт

Как перевести ватты в амперы

В этом случае результат получается с маленькой величиной погрешности, которой можно пренебречь.

От полезной мощности S отнимается 20%, получают активную P. Если взять 1 кВА, то 20% от него будет 0,2 кВА. Следовательно, 1– 0,2 = 0,8. Значит, для быстрого приближённого перевода достаточно данное значение умножить на 0,8. К примеру, S = 300 kVA, значит, P = 300*0,8 = 240 kW.

Приближенный перевод кВт в Ква

В этом случае нужно производить обратные действия – прибавлять 20%, значит, уже делить на 0,8. Пусть P = 200 кВт, значит, S = 200/0,8 = 250 кВА.

Точный перевод формула перевода кВА в кВт

Для перевода ква в кВт можно использовать формулу, которая выглядит так:

где:

  • P – активная мощность, кВт;
  • S – полная, кВА (kva);
  • cosϕ – коэффициент.

Так можно перевести любые значения полной мощности в активную величину.

Формула перевода кВт в кВА

Переводить в обратном порядке нужно, изменив формулу:

Все параметры, входящие в неё, уже известны.

Внимание! Электросчетчик, установленный для измерения количества потребляемой энергии, подсчитывает, сколько квт в час подано абоненту электричества. Если абонент использует в своих нуждах потребители реактивного типа, то он заплатит за полную мощность. Она будет больше, чем практически потраченная её активная величина.

Паспортные данные, отображаемые на устройствах

Практическое значение для обычных граждан, разница между этими двумя величинами существенны лишь при приобретении приборов и устройств. Не все обозначенные производителем данные указывают оба значения сразу. Чтобы понять, какую именно мощность выдаст тот или иной аппарат, нужно уметь перевести одну величину в другую.

Чудесное спасение ребенка. Удар током в 10 тысяч вольт не оказался смертельным

При эксплуатации, обслуживании, и ремонте электроустановок, необходимо выполнять требования безопасности. Любые действия в электрических установках могут выполняться в следующих условиях:

Средства защиты в электроустановках 2

  • Полное снятие напряжения. Означает, что внутри электроустановки нет проводников и элементов с имеющимся потенциалом, а коммутационные устройства подачи питания разомкнуты. Безопасной считается ситуация, когда на объект не может быть подано питание — коммутационные устройства механически заблокированы. Можно производить работы, не применяя защитные средства в электроустановках.
  • Питание снято со всей электроустановки, но в любой момент может быть подано вновь. Механической блокировки коммутационных устройств нет, имеются лишь предупреждающие плакаты. Требуется применение защитных аксессуаров.
  • Напряжение снято частично. Это означает, что при проведении работ возможно касание элементов, имеющих потенциал. Средства индивидуальной защиты обязательны.
  • Электроустановка находится под питанием. Ситуация достаточно распространенная, и является нормой для квалифицированного персонала.

Обязательно используются как основные, так и дополнительные средства защиты в электроустановках. Работы производятся минимум вдвоем, защитными приспособлениями пользуется весь персонал.

Безопасность при обслуживании электрических установок обеспечивается коллективными и индивидуальными средствами защиты.

Коллективные средства защиты применяются постоянно, в процессе эксплуатации оборудования

Представляют собой комплекс технических решений и организационных мероприятий, обеспечивающих защиту обслуживающего персонала при повседневной эксплуатации объекта.

Читайте также: Накладные и встраиваемые влагозащищенные выключатели для улицы

К техническим способам защиты относятся

  • Защитная земля, зануление, используемые в комплексе с автоматическим отключением электросетей при возникновении нештатной (опасной) ситуации;
  • Изоляция проводников и частей установки, по которым протекает электрический ток. Разделение сетей (физическое и электрическое).
  • Установка ограждений на расстояниях, исключающих возможность прикосновения к токоведущим частям.
  • Сигнализация: звуковая и световая. Изменение характера сигнала при возникновении опасности должно идентифицироваться сотрудниками при любых условиях (отсутствие освещения, задымление, и пр.)
  • Установка предупреждающих знаков в местах, где наличие потенциальной угрозы не может быть определено без обозначений.

Средства защиты в электроустановках 3

К организационным мероприятиям относятся

Средства защиты в электроустановках 4

  • Определение ответственных лиц, которые руководят всеми работами на электроустановках (персональная ответственность).
  • Утверждение порядка проведения работ, перечня мероприятий, выполняемых согласно наряду.
  • Документальное оформление сроков, начала и окончания работ, а также перерывов.
  • Постоянное наблюдение за проведением работ уполномоченным лицом.
  • Предварительная подготовка рабочих мест, оснащение необходимым инструментом, предметами индивидуальной защиты.
  • Подготовка персонала: обучение, прием зачетов на знание техники безопасности, медицинский контроль.

Коллективные защитные приспособления в электрических установках не являются гарантией безопасности каждого сотрудника. Однако без этих мер, правильно организовать работы невозможно. Требования выполняются при работе в электрических установках до 1000 В, и выше 1000 В.

Все способы защиты на объектах выполняются в комплексе. Только сочетание коллективных организационных и технически мер, в сочетании с применением индивидуальной защиты, делают работы действительно безопасными.

Кроме того, перед началом работ в электрической установке, выполняются специальные технические мероприятия

  • Отключение коммутационных и защитных устройств, подающих напряжение к электроустановке.
  • Принятие технических мер, препятствующих не санкционированное включение: установка запоров, замков, временное удаление рукоятей включения автоматов защиты.
  • Установка дополнительных ограждений, снабженных предупредительными плакатами.
  • Непосредственно перед началом, производится проверка отсутствия напряжения на токоведущих частях, с немедленным наложением заземления.
  • Заземление удаляется только после завершения работ, и документального оформления закрытия наряда.
  • Подача напряжения производится после документального подтверждения факта отсутствия персонала в зоне проводившихся работ.

Электробезопасность при напряжении до 1000 вольт

Ремонт или обслуживание, монтаж электрической техники (приборов, сетей) подразумевают знания правил электробезопасности. Распространённая причина пожара, поражения людей электрическим током (иногда со смертельным исходом) — это элементарная невнимательность, несоблюдение простейших правил.

Внимательность и осторожность необходимы при использовании электроприборов. Перед использованием любого электрического устройства обязательно следует внимательно изучить инструкцию по электробезопасности.

Чем электричество опасно для людей

Опасность для человека представляет постоянное напряжение более 110 вольт. Еще более опасно переменное напряжение, — угрозу для человека представляет напряжение от 42 вольт.

В результате воздействия электрического тока человек может получить ожоги, возможны металлизация кожи, появление «электрических знаков» и другие повреждения. Электрические удары подразделяются на пять степеней (от едва заметной судороги до полной остановки дыхания, замедления пульса и прекращения работы сердца и, в результате, — смертельного исхода).

Ощутимое воздействие на организм возникает при силе тока порядка 10 мА для постоянного тока, и 1 мА -для переменного. При повышении тока возникают судороги, затрудняется дыхание, при токе 110 мА наступает паралич дыхательной и сердечной деятельности.

Пожарная опасность

Причинами возгорания проводов и электроустановок может быть перегрузка сети (в результате включения избыточной нагрузки или короткого замыкания). Основная защита – выбор правильного сечения проводников. Защитные устройства, обеспечивающие отключение участка сети в случае перегрузки – это автоматические выключатели различных типов, предохранители с плавкими вставками.

Для тушения проводов и установок под напряжением нельзя применять воду и пенные огнетушители, и вода, и пена огнетушителя – хорошие проводники, но только углекислотные или порошковые огнетушители. Первым делом перед непосредственно использованием средств пожаротушения необходимо обесточить аварийный участок сети.

место установки огнетушителя в помещении

Основные правила при проведении ремонтных работ

Начиная ремонт электрических сетей и электроприборов, следует предварительно отключить подачу напряжения, проверив отсутствие напряжения и, в случае необходимости, установив защитное заземление. Информация о проведении работ и запрете включать электричество должна содержаться на предупреждающей табличке, размещённой в месте отключения. Важно соблюдать это правило в домах, где отключение выполняется в общем щите на несколько квартир. Необходимо исключить ошибки и случайности, в силу которых к месту проведения работ неожиданно будет подано напряжение.

Требования к инструменту

При проведении электромонтажных работ следует использовать специальный изолированный инструмент. Ручки кусачек, плоскогубцев, пассатижей, круглогубцев, должны иметь изоляцию и упоры, предотвращающие соскальзывание руки. Только рабочая часть инструмента не защищается изолирующим материалом. Контакт рук мастера и металлических частей инструмента, находящихся под напряжением, должен быть исключён.

Читайте также: Провода и шнуры ПВС, ШВВП, ПВ1 (ПуВ), ПВ3 (ПуГВ)

Ручной изолирующий инструмент для электрика

Монтаж-демонтаж проводки

Электропроводку следует защищать от любых механических воздействий. Состояние внешней изоляции наружной электропроводки может быть ухудшено при проведении ремонтных работ даже просто в результате покраски (побелки) проводов.

Если выполняются ремонтные работы с проделыванием отверстий в стенах, забиванием гвоздей, всегда есть возможность случайного нарушения скрытой проводки и в результате – несчастных случаев. Хорошо, когда имеется схема расположения проводов в стенах ремонтируемого помещения. А при отсутствии схемы для выявления фактического их расположения следует использовать различные устройства для обнаружения скрытой электропроводки.

При демонтаже старой проводки также надо быть очень осторожными. Даже если со старой проводки снято напряжение, в стенах могут находиться кабели или провода, обеспечивающие подачу электричества в соседние помещения.

Использование электроприборов

Запрещается использовать неисправные (имеющие дефекты) электроприборы; держаться за провод, натягивать его, ставить на провод тяжёлые предметы, подвергать воздействию высокой температуры и агрессивных веществ. Нельзя прикасаться к подвижным рабочим частям прибора до полной его остановки, а замену рабочей части в патроне инструмента можно выполнять только убедившись в том, что прибор отключен от сети. Нельзя работать с электроинструментом с приставных лестниц. Нельзя использовать незаземлённые приборы, если заземление предусмотрено.

При перемещении инструмента с одного рабочего места в другое его следует отключить от сети и держать только за рукоятку. Также приборы необходимо отключить от сети в случае их внезапной остановки или заклинивании.

Избегайте одновременного контакта с работающим электроприбором и заземлёнными металлоконструкциями (радиаторы отопления, металлические трубы). При нарушении электрической изоляции несчастный случай Вам обеспечен.

Работа в помещениях с повышенной опасностью

Особое внимание необходимо проявлять при монтаже и ремонте электросетей в помещениях с повышенной влажностью. Использовать в этих условиях электроприборы также нужно с большой осторожностью. Нельзя мокрыми руками касаться включенных электроприборов. Светильники, розетки, выключатели должны быть дополнительно защищены.

Применение УЗО (устройств защитного отключения) для электроснабжения влажных помещений (например, в ванной комнате) вообще обязательно. Для питания электрических светильников и электроприборов в помещениях с повышенной опасностью и особо опасных помещениях предусматривается специальная сеть с пониженным напряжением (не выше 50 В, обычно – 36 В, а при более высокой степени опасности — 12 В).

Информация

Определение «Индивидуальные электрозащитные средства» не означает персонализацию перчаток или галош. Они используются всем персоналом по очереди, во время проведения работ. Сроки использования средств каждым сотрудником также никем не ограничены, установлена только периодичность испытаний.

Поскольку средства защиты обеспечивают безопасность (в том числе и жизни персонала), в установленные сроки проводятся испытания. Вне зависимости от напряжения использования, для каждого предмета установлены определенные сроки:

  • Перчатки проверяются каждые 6 месяцев, для ковриков и подставок нормы проверки не установлены.
  • Инструмент и указатели напряжения — один раз в год.
  • Галоши проверяются каждый год, боты раз в три года.
  • Изолирующие клещи испытывают каждые 2 года.

Средства защиты в электроустановках 7

Испытания проводятся в специализированных лабораториях. Как правило, процедура представляет собой погружение изолированного предмета в емкость с водой, и проверка на пробой при максимально допустимом напряжении. Если изоляция допускает пробой напряжения, изделие бракуется. Использование таких приспособлений запрещено.

Также не допускается восстановление защитных приспособлений. Бракованные изделия утилизируются, или применяются при работах без подачи напряжения.

Читайте также: Устранение неисправностей пылесосов Самсунг

Периодичность осмотра основных средств не установлена, это делается перед проведением работ. Проверяется целостность, чистота и сухость средств безопасности.

Зачем нужно рассчитывать ток

На большинстве электроприборов указывается мощность потребления. Это необходимо для того, чтобы правильно вести учет потребления электроэнергии. Но для всего остального значение мощности несет мало информации. Параметры автоматов защиты и плавких вставок, сечение электропроводки, требуют знать протекающий ток или, как говорят электрики, ампераж нагрузки.

Вам это будет интересно Светильник ДРЛ 400

Простой пример: какой паяльник сильнее перегружает электропроводку, 42-х вольтовый на 80 Вт или 220-и вольтовый на 100 Вт? Логичный ответ, что более мощный, является неправильным. Ведь на самом деле, при включении второго паяльника в сети протекает ток около 0.5 А, а при включении первого — почти 2 А. Соответственно, для таких устройств требуется различная электропроводка и номинал защитных устройств. При одинаковой толщине проводов питания нагрев будет сильнее, при работе с низковольтным инструментом.

По этой же причине в линиях электропередач стремятся по максимуму повысить передаваемое напряжение. Поскольку мощность нагрузки остается одинаковой, при более высоком напряжении по проводам протекает меньший ток и поэтому:

  • Снижаются потери;
  • Уменьшается нагрев;
  • Снижается сечение проводов и, как следствие, их масса и нагрузка на опоры линий электропередач.

Высоковольтная опора ЛЭП

Как правильно рассчитать амперы по мощности и напряжению

Для того, чтобы правильно произвести вычисления, все используемые величины должны быть одной размерности, то есть, если мощность выражается в ваттах, то напряжение должно быть выражено в вольтах, а ток — в амперах.

Если оперируют мощностью в киловатт, то, соответственно, напряжение должно быть в киловольтах, а ток в килоамперах.

Обратите внимание! Последний случай характерен только для мощной энергетики, а в быту обычно используют ватт, вольт и ампер.

Лучше обновить в памяти правила перевода кратных единиц:

  • Кило — тысяча;
  • Киловатт — тысяча ватт (1кВт = 1000 Вт);
  • Киловольт — тысяча вольт (1кВ = 1000 В);
  • Килоампер — тысяча ампер (1кА = 1000А);
  • Милли — одна тысячная;
  • милливатт — одна тысячная ватта (1мВт = 0.001Вт);
  • милливольт — одна тысячная вольта (1мВ = 0.001В);
  • миллиампер — одна тысячная ампера (1мА = 0.001А).

Вам это будет интересно Как заряжается конденсатор

Сейчас большое количество бытовой техники потребляют мощность более киловатта, поэтому для правильных вычислений нужно данную величину перевести в ватт.

Например: На электрочайнике написано, что мощность потребления равна 1.8 кВт. Для того, чтобы рассчитать величину тока при подключении к бытовой сети 220 В, в формулу надо подставлять 1800 Вт. Тогда на выходе получается ток в амперах.

Защитные средства в электроустановках до и выше 1000В

Электрику

Электрические установки и электрические сети, напряжение в которых не превышает 1000 Вольт, имеют глухозаземленную нейтраль. Во вех других типах установок необходима нейтраль с изолированием. То есть применяемый трансформатор с напряжением менее 1000 Вольт заземлен электрическим соединением. В результате однофазные потребители получают одинаковое электрическое питание даже при асимметричной нагрузке. Если установка приобретается для бытовых нужд, то для нее верно стандартное значение 220 Вольт.

С другой стороны, глухозаземленная нейтраль при возникновении короткого замыкания к земле увеличит ток. В результате срабатывает специальная автоматика защиты. Соответственно, вся аппаратура с таким значением должна иметь максимальную токовую защиту.

Какое напряжение в контактной сети на РЖД и действительно ли оно доходит до 30 тысяч вольт?

Здравствуйте любители железных дорог и все, кому это интересно!

Сегодня отвечу на вопрос, часто задаваемый читателями : Почему на железных дорогах Дальнего Востока напряжение в контактной сети 30 000 Вольт а на Западных дорогах 3 000 Вольт?

контактная сеть

Читайте также: Сетевой разветвитель для интернета на 2 компьютера

Сразу поясняю, 30 000 Вольт, это напряжение в контактной сети переменного тока и если быть точным, величина напряжения варьируется от 27 000 до 30 000 Вольт. 3 000 Вольт, это напряжение в контактной сети постоянного тока.

Да, дороги востока России электрифицированы на переменном токе, а вот в Сибири, многие дороги работают на постоянном токе. Постоянный ток преобладает на дорогах центральных регионов нашей страны, но не везде. На западе страны многие дороги электрифицированы на переменном токе, например юг России и недалеко от Москвы, например, Северная железная дорога. Поедем из Москвы с Ярославского вокзала в сторону Дальнего Востока и уже через несколько часов наш московский электровоз на станции Данилов отцепится от поезда и прицепится электровоз переменного тока, тоже происходит и на станции Рязань, если мы едем на юг. Только сейчас уже вовсю эксплуатируются электровозы двойного питания. Что это такое? Это электровоз, который может работать как на постоянном так и на переменном токе, это очень здорово! Если раньше поезда стояли на станциях смены рода тока по 30 – 40 минут ожидая смены локомотивов, то теперь стоянка составляет несколько минут, достаточно опустить токоприемник и перевести электровоз в режим работы от другого рода тока, поднимаем токоприемник и поехали дальше!

электровоз ЭП20

Это электровозы серии ЭП20, присмотритесь, если увидите на вокзале. Ну а почему такой разброс, это в основном вопрос экономический. Первыми в стране электрифицировались железные дороги в центре страны и дешевле было применить в этом деле ток постоянный, напряжением 3 000 Вольт. Железные дороги востока страны переходили на электрическую тягу гораздо позже и здесь уже применялся ток переменный, а потому-что это и экономически и в тяговом аспекте более выгодно, чем ток постоянный. Во- первых для работы линии на постоянном токе требуется через каждые 25 километров строить тяговые подстанции, для улучшения токосъема требовалось прокладывать двойной контактный провод ну и постоянный ток обладает таким нехорошим свойством – он разрушает близлежащие металлические детали и опоры контактной сети, да и в тяге он проигрывает переменному току. Вообщем потери налицо.

грузовой состав

Переменный ток лишен этих недостатков : тяговые подстанции можно строить на расстоянии 50 – 80 километров друг от друга, контактный провод прокладывается один, металлические детали не разрушаются, правда переменный ток негативно влияет на работу радиосвязи, но это мелочи. Как видите преимущества налицо!

Перспективность электротяги была доказана ведущими институтами и учеными и конечно впоследствии переменный ток взял верх над постоянным. В настоящее время многие участки с постоянным током, в том числе и на западе страны переводятся на переменный. Как пример, в конце 90-х годов прошлого века была проведена колоссальная работа по переделке большого участка Слюдянка – Зима, Восточно-Сибирской железной дороги с постоянного на переменный ток, поезда не ходили по Транссибу около шести суток! Сильно отличаются по устройству электровозы постоянного и переменного тока. Электровозы постоянного тока попроще да и в весе полегче, так как оборудования на них поменьше.

Внутри электровоза переменного тока ЭП-1

Внутри электровоза переменного тока ЭП-1

Электровозы переменного тока гораздо сложнее, весят они побольше, потому что оборудования на них больше. Электровозы переменного тока мощнее своих постоянных собратьев, соответственно можно существенно увеличить вес поездов, хотя представители постоянного тока в этом соревновании не уступают. Темой устройства, преимуществ и недостатков электровозов переменного и постоянного тока мы еще займемся. Ну вот пока все!

зацеперы на крыше электропоезда

На дорогах с напряжением 30 000 Вольт нет проблемы ЗАЦЕПЕРОВ, особенно которые любят побегать по крыше состава, а самые отчаянные умудряются при этом еще и виснуть на токоприемнике. Зацепинг проблема запада и все дело далеко не в разном менталитете, просто 30 000 Вольт переменного тока как вы понимаете гораздо опасней 3 000 Вольт постоянного тока. Вероятность поражения электрическим током, если вы находитесь на крыше состава очень высока, а шансов остаться в живых после случайного соприкосновения с токоведущими элементами локомотива или электропоезда практически нет!

Похожее

Необходимость заземления установок до 1000

Основная опасность установок до 1000 Вольт заключается в возможности поражения электротоком человека, прикоснувшегося к незаземленной аппаратуре. В результате такого прикосновения к незаземленному корпусу электроустановки ток пройдет через человека, что опасно для жизни и здоровья. Только заземление позволит току уйти в землю при возникновении пробоя в электросети до 1000 Вольт. Поэтому все работы по монтажу электроустановок должны проводиться в строгом соответствии с нормами и требованиями СНиП и ПУЭ.

Тушение электрического оборудования Защитные средства в электроустановках до и выше 1000В Требования к выбору огнетушителей

DC-генератор высокого напряжения

Как мы определяем, что напряжение высокое? 100, 1000, или 10000Вольт считается высоким напряжением? По сравнению с 10-тью Вольтами, все они могут считаться высоким напряжением. Высокое напряжение опасно для человеческой жизни. Уровень опасности зависит от тока. Очевидно, что 1000 вольт с током 100 мА представляют большую опасность, чем 100 Вольт с таким же током, но это не означает, что с этой сотней Вольт можно халатно обращаться. Все же 100 Вольт все еще считается высоким напряжением и этот факт должен быть понят.

Читайте также: Как снять выключатель или розетку перед поклейкой стен обоями – Блог Stroyremontiruy

Генератор высокого напряжения приведенный в этой статье, способен выдавать 10000 Вольт. Столь высокое напряжение может ионизировать воздух и газы, заряжать высоковольтные конденсаторы, обеспечивать работу маленького лазера или кинескопа, а также может быть полезно для различных экспериментов.

Схема DC-генератора высокого напряжения

Описание схемы Выше приведена схема генератора высокого напряжения, в данном случае она работает от 12 вольт. Схема преобразует входные 12 Вольт в 10000 выходных вольт, но уже с другой частотой. К вторичной обмотке трансформатора подключен умножитель напряжения с которого можно снимать от 1 до 10 кВ. Микросхема CD4584 это триггера Шмитта. Триггер U1a работает как генератор прямоугольных импульсов. Выход генератора соединен с U1-b—-U1-f, а они соединены параллельно для увеличения тока. Затем с U1-b—-U1-f подаются импульсы на базу транзистора Q1, транзистор открывается и через него протекает нарастающий ток Iк. Этот же ток будет протекать и через обмотку W1 трансформатора Т1, что приведет к тому, что в сердечнике трансформатора увеличивается магнитный поток, при этом во вторичной обмотке W2 трансформатора наводится ЭДС самоиндукции. В конечном итоге на выходе диода VD появиться положительное напряжение. (При этом если мы будем увеличивать длительность импульса приложенного к базе транзистора VT1, во вторичной цепи будет увеличиваться напряжение, т.к энергии будет отдаваться больше, а если уменьшать длительность, соответственно напряжение будет уменьшаться. Таким образом, изменяя длительность импульса в цепи базы транзистора, мы можем изменять выходные напряжения вторичной обмотки Т1).

На выходе вторичной обмотки получается от 800 до 1000 вольт, потом идет умножитель напряжения который увеличивает выходное напряжение в 10 раз.

Для нормальной работы схемы нужно установить выходную частоту генератора (U1-а) элементами R1, R5 и C1 (приведенные на схеме номиналы составляет около 15 кГц). Потенциометр R5 используется для тонкой настройки выходной частоты генератора. Чем выше частота генератора, тем меньше емкостное сопротивление на множитель.

Светодиод показывает, что схема подключена к источнику питания, неоновая лампа дает нам знать, что схема работает нормально. Чтобы получить максимальное напряжение на умножителе нужно подключить к нему осциллограф через высоковольтный делитель и переменным резистором R5 добиться максимальной амплитуды сигнала. Если нет осциллографа, то можно визуально настроить схему, для этого нужно выходной провод умножителя разместить на полдюйма от провода заземления и вращая R5 добиться максимальной длинны искры.

Список деталей Все резисторы 1/2Ватт, допуск 5% R1 = 1K5 (1.5K) (коричневый-зеленый-красный) R2 = 300 Ом (оранжевый-черный-коричневый) R3 = 220 Ом (красный- красный-коричневый) R4 = 1 МОм (коричневый-черный-зеленый) R5 = 10K переменный резистор Конденсаторы C1 = 0.022uF, 50 Вольт, металлизированная пленка C2 = нет C3-C12 = 0.001uF, 2000 Вольт, керамический диск С13 = 220uF, 25 Вольт, электролитический C14 = 4700uF, 35 Вольт, электролитический D1-D11 = 1N4007, 1А, 1000 Вольт Q1 = TIP31A, NPN U1 = MC1458BAL (CD4584) триггера Шмитта LED1 = зеленый светодиод Другие компоненты Ne1 = Ne2—неоновые лампы T1 = HVM COR-2B, ферритовый сердечник повышающего трансформатора (см. текст) Высоковольтный трансформатор можно взять готовый (транс строчной развертки от лампового телевизора идеально подойдет), или намотать самому, пользуясь программой для расчета импульсных трансформаторов.

Внимание Если вы дотронетесь до выходного провода умножителя, то получите сильный электрический удар. Кроме того, после отключения питания от схемы, заряд в конденсаторах сохраняется на некоторое время. В целях безопасности необходимо замыкать выходной провод умножителя на землю.

Микросхема U1 представляет собой устройство КМОП и является чувствительным к статическому электричеству. Максимальное напряжение питания 15 вольт. Диод D11 защищает схему от неправильной полярности. Конденсаторы и диоды работающие в умножителе должны быть с двойным запасом по напряжению. Диоды D1— D10 состоят из двух последовательно включенных диода на 1000 Вольт 1 Ампер.

Само устройство может быть собрано на любой подходящей плате. Транзистор Q1 должен иметь хороший радиатор, иначе может случиться тепловой пробой. Умножитель собран таким образом, чтобы не было утечек (небольших крон) , все пайки должны быть закругленными и гладкими. В целях безопасности следует заизолировать умножитель, автор использовал высоковольтную шпатлевку. Выходной провод умножителя лучше взять с строчного трансформатора от телевизора, который идет на анод кинескопа. Этот провод может держать напряжение порядка 20000 вольт (зависит от модели телевизора)

Положительные и отрицательные ионы: Полярность диода в умножителе будет определять полярность ионов. В прототипе автора, умножитель настроен на положительные ионы. Выходное напряжение 10000вольт. Если поменять полярность диодов, то будут отрицательные ионы. Выходное напряжение при этом будет — 10000вольт.

Эксперимент: Если поместить выходной провод умножителя на расстояние от ½ до ¾ дюйма от провода заземления, то можно будет наблюдать искры. Следует помнить, что микросхема в генераторе чувствительна к статике, чтобы избежать выхода из строя микросхемы следует заземлить схему.

Если к умножителю подключить лампу, то в ней будут появляться небольшие грозы и вспышки. Конструкция умножителя позволяет снимать с него ряд напряжений от 1000 вольт до 10000 вольт. Если схема не работает, то прежде всего нужно проверить напряжение питания, потом с помощью осциллографа посмотреть импульсы на 6 ножке U1, там должны быть прямоугольные импульсы частотой примерно 12 кГц. Транзистор Q1 должен быть установлен на радиатор.

Следует также проверить высоковольтный трансформатор, для этого нужно отключить умножитель и убедиться, что на выходе 800-1000вольт. Проверить компоненты умножителя, вначале прозвонить тестером диоды, а потом проверить конденсаторы. Все эксперименты следует проводить в хорошо проветриваемом месте, так как при разрядах выделяется много озона. Он является вредным в больших концентрациях. При разряде, схема излучает радио и телевизионные помехи (RFI). Они могут проявиться как шум на AM-радио или помехи на ТВ.

Эта статья первоначально была написана Vincent Vollono и опубликована в » Electronics Now » и «Popular Electronics» журналах 1992 г. Переписана и повторена Tony van Roon. (VA3AVR)

Читайте также: Работа и мощность электрического тока. Закон Джоуля-Ленца

Список радиоэлементов

Обозначение Тип Номинал Количество Примечание Магазин Мой блокнот
U1 Микросхема CD4584 1 74C14 Поиск в Aliexpress В блокнот
Q1 Биполярный транзистор TIP31A 1 Поиск в Aliexpress В блокнот
D1-D11 Выпрямительный диод 1N4007 21 В D11 входит один диод, в остальные по два Поиск в Aliexpress В блокнот
С1 Конденсатор 0.022 мкФ 50 В 1 Метализированная пленка Поиск в Aliexpress В блокнот
С3-С12 Конденсатор 0.01 мкФ 2000 В 10 Керамический диск Поиск в Aliexpress В блокнот
С13 Электролитический конденсатор 220 мкФ 25 В 1 Поиск в Aliexpress В блокнот
R1 Резистор 1.5 кОм 1 Поиск в Aliexpress В блокнот
R2 Резистор 330 Ом 1 Поиск в Aliexpress В блокнот
R3 Резистор 220 Ом 1 Поиск в Aliexpress В блокнот
R4 Резистор 1 МОм 1 Поиск в Aliexpress В блокнот
R5 Переменный резистор 10 кОм 1 Поиск в Aliexpress В блокнот
Led Светодиод 1 Поиск в Aliexpress В блокнот
Ne1 Неоновая лампа 2 Две неонки соединены последовательно. Поиск в Aliexpress В блокнот
S1 Выключатель 1 Поиск в Aliexpress В блокнот
Т1 Трансформатор 1 От строчной развертки лампового телевизора Поиск в Aliexpress В блокнот
Батарея питания 6 — 15 В 1 Поиск в Aliexpress В блокнот
Добавить все

Теги:

  • Высокое напряжение
  • Перевод

Где применяются электроустановки до 1000 Вольт?

Существует достаточно большое количество направлений, где используются глухо заземленные электроустановки с номинальным напряжением, не превышающим 1000 Вольт. В основном все они разделяются на три основных группы:

  • стационарные установки;
  • передвижныеустановки;
  • переносные установки.

Если передвижные и переносные электроустановки являются результатом заводской сборки и включают в комплект все необходимое для работы, то для монтажа стационарных объектов необходимо привлекать специалистов профильных компаний.

Допустимые отклонения напряжения в сети

Не всегда в нашей сети ровно 230 Вольт.

Зачастую устаревшее сетевое оборудование, ошибки в проектировании сетей, некачественное обслуживание, износ самих сетей, большой рост потребления электроэнергии приводят к значительному отклонению от существующих стандартов.

В таблице (ГОСТ 29322-2014), фрагмент которой представлен ниже, нормируется наибольший и наименьший вольтаж в системах переменного тока до 1000 В.

По ГОСТу 29322-2014 в 2020 году в сети должно быть:

  • 230 Вольт;
  • допустимые отклонения 207 — 253 В.

Сколько нужно для электроприборов

Оборудование, выпускаемое в России для внутренних потребителей, работает и при 220 В, и при 230 В, потому что производители закладывают необходимый запас от -15 % до +10 %. от номинала. Но в каждом конкретном случае допустимый диапазон характеристик питающей сети для прибора указывается в паспорте изделия или на его этикетке. Например, компьютеры могут работать при 140 — 240 В, а зарядное устройство телефона при 110 — 250 В. Данные маркировки часто наносятся на само изделие.

Наиболее чувствительны к качеству электроэнергии устройства, имеющие электродвигатели. Здесь пониженное напряжение может привести к сложностям в запуске и к сокращению срока службы оборудования, а повышенное приведёт к перегрузкам, также сокращающим период эксплуатации. Если взять обычную лампу накаливания и понизить напряжение питания на 10%, то интенсивность свечения заметно уменьшится, а если его увеличить — её срок службы сократится в 4 раза.

Допустимая максимальная норма в сети — 253 В. Эта величина может оказаться слишком высокой для электрооборудования, рассчитанного на 220 вольт. Разница в напряжении приведет к перегреву блоков питания, сетевых адаптеров, к преждевременному выходу приборов из строя.

Если вы заметили, что ваша техника стала перегреваться, выходить из строя, проверьте напряжение в сети. При обнаружении отклонения более чем на 10%, срочно обратитесь в вашу сетевую компанию. Там обязаны принять меры по ликвидации факторов, вызвавших нарушения.

Теперь вы знаете, какая все же норма напряжения в сети РФ по ГОСТ. Если возникли вопросы, задавайте комментарии под статьей. Надеемся, информация была для Вас полезной и интересной!

Зачем нужно рассчитывать ток

На большинстве электроприборов указывается мощность потребления. Это необходимо для того, чтобы правильно вести учет потребления электроэнергии. Но для всего остального значение мощности несет мало информации. Параметры автоматов защиты и плавких вставок, сечение электропроводки, требуют знать протекающий ток или, как говорят электрики, ампераж нагрузки.

Вам это будет интересно Особенности кабеля Frls

Простой пример: какой паяльник сильнее перегружает электропроводку, 42-х вольтовый на 80 Вт или 220-и вольтовый на 100 Вт? Логичный ответ, что более мощный, является неправильным. Ведь на самом деле, при включении второго паяльника в сети протекает ток около 0.5 А, а при включении первого — почти 2 А. Соответственно, для таких устройств требуется различная электропроводка и номинал защитных устройств. При одинаковой толщине проводов питания нагрев будет сильнее, при работе с низковольтным инструментом.

По этой же причине в линиях электропередач стремятся по максимуму повысить передаваемое напряжение. Поскольку мощность нагрузки остается одинаковой, при более высоком напряжении по проводам протекает меньший ток и поэтому:

  • Снижаются потери;
  • Уменьшается нагрев;
  • Снижается сечение проводов и, как следствие, их масса и нагрузка на опоры линий электропередач.

Высоковольтная опора ЛЭП