Где используется 660 вольт напряжение

Понижающие трансформаторы ОС(ОСЗ) и ТС(ТСЗ) 660 на 380 вольт

В длинных коридорах горных выработок напряжение магистральных линий электропитания составляет 660 вольт. Это позволяет снизить потери, возникающие при транспорте электроэнергии в удалённые точки. Для подключения к таким линиям разнообразного промышленного оборудования с рабочим напряжением 380 вольт может быть использован понижающий трехфазный трансформатор напряжения ТСЗ 660 в 380 вольт. Серия ТСЗ, производимая , позволяет обеспечивать электропитанием установки до 500 кВА полной мощности.

Для трёхфазных преобразований в серии ТСЗ есть подгруппа трансформаторов, состоящая из четырнадцати моделей. Список номиналов мощностей этой группы следующий: 1; 1,6; 2; 2,5; 4; 6,3; 10; 16; 25; 40; 63; 100; 160; 250 кВА. В качестве типовой модели для серийных образцов принята установка с алюминиевыми обмотками, предназначенная для работы с напряжениями от 12 до 1000 вольт, изготовленная в стальном корпусе в двух модификациях (мобильный и для неподвижного монтажа). Все трансформаторы с рабочими мощностями до 6,3 кВА имеют каркасные обмотки, защищённые металлическими пластинами корпуса, к которому присоединены два поручня для ручной переноски. Подключение питания и потребителей в этом случае осуществляется с помощью кабелей, оконцованных защищёнными клеммными колодками. Понижающий трансформатор напряжения ТСЗ 660/380 вольт, предназначенный для неперемещаемой установки, имеет внутреннюю силовую раму, к которой прикреплены транспортировочные скобы и внешние защитные пластины. Нижняя плоскость установки приподнята над поверхностью на 150 мм. Мощности трансформаторов такого типа начинаются с 10 кВА.

Высокая универсальность без потери эффективности

Все изделия серии ТСЗ могут быть применены и для повышения напряжения, и для понижения. В качестве конструктивной поддержки этой особенности каждая рабочая точка обмоток выведена на панель и допускает быстрый монтаж с помощью зажимного соединения. Время перестройки схемы в режим обратного преобразования сведено к минимуму и не требует вскрытия корпуса. Все типы корпусов серии ТСЗ спроектированы таким образом, что в случае необходимости можно изменить параметры обмоток в сторону усиления мощности преобразования без смены корпуса изделия. Делается такая операция по специальному заказу.

Разновидности схем подключения

Существует несколько видов схем подключение трехфазного электродвигателя с помощью конденсаторов. Разновидности схем подключения 380 на 220 В обусловлены несколькими факторами, мощность (Р, кВт) и вид соединения обмоток. Если мощность более 1.5 кВт, то необходимо использовать пусковые конденсаторы, которые используются только при пуске двигателя и затем отключаются.

При выборе типа применения учитывают соединения обмоток асинхронного двигателя. Их две, звезда и треугольник. В первом случае, обмотки соединяются в одной точке, при треугольнике, начало обмотки соединяется с концом предыдущей.

Читайте также: Какое зарядное устройство выбрать для смартфона

Выводов на клемник агрегата три. Значит, соединение в звезду уже собрано. Но в некоторых случаях заводом изготовителем выводят 6 концов, а маркируются они С1, С2, С3 (начало обмоток), С4, С5, С6 (конец обмотки). Необходимо посмотреть на бирку, где обозначено соединение двигателя (треугольник, звезда) и согласно ей сделать соединение проводов. Лучше это предоставить электрику.

Рис.1. Включение двигателя до 1.5 кВт при соединении треугольник, звезда

схема включения звезда и треугольник

Тут нужно учитывать, при применении вида треугольника, теряется порядка 70 % номинальной мощности, а звездой потери могут достигать 50 %.

Как видно из рисунка, схема подключения электродвигателя простая. Фаза и ноль присоединяются к двум выводам обмоток (два провода на электродвигателе), а третий провод (обмотка) компенсируется через рабочий конденсатор к фазному проводу сети.

Рис.2. Схема включения при мощности электродвигателя более 1.5 кВт

В данной схеме необходимо добавить пусковой конденсатор параллельно рабочему, как показано на рисунке. Рекомендуется его включать через кнопку, то есть нажал, двигатель запустился и отпустил ее.

Если ротор вращается не в ту сторону, то просто нужно поменять фазу и ноль. Так же нужно правильно выбрать кабель.

ПЕРЕДЕЛКА ЭЛЕКТРОПРИБОРА 120 ВОЛЬТ НА 220 - схема Пересчет емкости конденсатора светильник с датчиком движения из США датчик освещенности - регулировка датчик освещенности Как адаптировать электронику американского производства на 220 электросети фото схемы датчика движения

Согласование силового трансформатора и другого оборудования

Когда необходимо внедрить новый узел преобразования в существующую схему электроснабжения, полный список факторов, сопровождающих такого рода изменения, далеко не всегда очевиден. Чтобы купить понижающий трансформатор напряжения ТСЗ 660 в 380 вольт максимально точно соответствующий поставленной задаче и не нарушающий работу сложной системы, мы рекомендуем обратиться к нашим специалистам. Если предварительное изучение условий задачи покажет необходимость сложного согласования, Вы можете заключить договор на разработку специального изделия. Обширный опыт в деле разработки трансформаторных установок и наличие гибкой производственной базы для мелкосерийного производства обеспечивают кратчайшие сроки выполнения подобных проектов. Трансформаторы с мощностью в пределах между 0,5 и 6,3 кВА будут подготовлены к производству через одну неделю. В случае заказа единичного изделия в этот срок будет изготовлено заказываемое изделие. Мощные устройства, работающие с мощностями до 500 кВА и ниже, мы разрабатываем и изготавливаем, как правило, за две недели. Перед заключением договора на разработку надо уточнить какая будет цена понижающего трансформатора напряжения ТП 660/380, изготавливаемого по специальному заказу.

Чем три фазы отличаются от одной?

В обоих видах питания присутствует рабочий нулевой проводник (НОЛЬ). Про защитное заземление я подробно рассказал здесь, это обширная тема. По отношению к нулю на всех трёх фазах – напряжение 220 Вольт. А вот по отношению этих трёх фаз друг к другу – на них 380 Вольт.

Напряжения в трёхфазной системе

Так получается, потому что напряжения (при активной нагрузке , и ток) на трёх фазных проводах отличаются на треть цикла, т.е. на 120°.

Подробнее можно ознакомиться в учебнике электротехники – про напряжение и ток в трехфазной сети, а также увидеть векторные диаграммы.

Получается, что если у нас есть трехфазное напряжение, то у нас есть три фазных напряжения по 220 В. И однофазных потребителей (а таких – почти 100% в наших жилищах) можно подключать к любой фазе и нулю. Только делать это надо так, чтобы потребление по каждой фазе было примерно одинаковым, иначе возможен перекос фаз.

Подробнее о перекосе фаз, и от чего он бывает – здесь.

А защититься от перекоса фаз лучше всего с помощью реле напряжения, например Барьер или ФиФ ЕвроАвтоматика.

Кроме того, чрезмерно нагруженной фазе будет тяжело и обидно, что другие “отдыхают”)

Читайте также: Диммер для светодиодной ленты: виды, какой лучше выбрать и почему

Оптимальный вариант оформления специального заказа

Чтобы избежать несовпадающих толкований электротехнических параметров, мы рекомендуем проконсультироваться у менеджеров отдела продаж, получить бланк заказа, в котором будут перечислены все определяющие параметры для трансформаторных устройств. Прежде всего, надо указать: тип преобразования (повышающий или понижающий), количество обмоток (входных и выходных), какие напряжения должны быть на входных обмотках и какие напряжения ожидаются на выходных. Далее надо определиться с материалом обмоток (медь или алюминий) и классификацией корпуса (IP XX и УХХ-Х). Чтобы купить понижающий трансформатор напряжения ТП 660v/380v, идеально подходящий для ваших условий, желательно указать в заказе и такие необязательные параметры, как температура рабочей среды и высота над уровнем моря в зоне установки устройства.

Понижающие трансформаторы

Итак, с распределительным видом разобрались. Теперь можно переходить к понижающим. Это самая распространенная категория, которая используется в быту. Начнем, как всегда, с конструктивных особенностей и принципа работы.

Устройство (к примеру, трансформатора 220 на 110 вольт) – это две катушки с обмоткой из медной проволоки. На первую катушку подается напряжение из сети (это 220 вольт), выходное напряжение со второй обмотки – 110 вольт. В принципе, это и есть схема работы прибора.

Принцип же действия основан на том, что электрический ток первой катушки создает магнитное поле, оно должно вращаться в определенную сторону. Оно же создает на вторичной катушке точно такое же магнитное поле. Именно второе поле образует на катушке ток. Как же уменьшается величина напряжения? Все дело в количестве витков на вторичной катушке. Чем их меньше, тем меньше напряжение выдается на выходе. Небольшой расчет поможет правильно собрать или подобрать сам трансформатор под необходимую величину напряжения на выходе.

Стандартное устройство трансформатора

Стандартное устройство трансформатора

Внимание! Изменение количества витков можно провести в ту или другую сторону. К примеру, повышающий прибор можно собрать, если увеличить число витков на вторичной обмотке, чтобы этот показатель был больше, чем на первичной.

Обратите внимание также на тот факт, что переменный ток, прошедший через трансформатор, будет только переменным. Можно получить и ток постоянного действия, только придется к трансформатору 220/110 В присоединить выпрямитель.

Гарантийные сроки и сопроводительная документация

Силовые трансформаторы серии ТСЗ, производимые , при продаже сопровождаются гарантией на срок до двух лет. Обслуживание гарантийных случаев производится по той же схеме, что и в других торговых организациях – при отсутствии признаков внешних повреждений и демонтажа элементов силовой части трансформатора. Если клиент заинтересован в получении документов, подтверждающих сертификацию, мы предоставляем копии наших сертификатов, заверенные печатью предприятия. Получить такого рода документацию можно не только в случаях приобретения оптовыми партиями, но и при покупке единичного изделия.

Средства измерения напряжения

В ходе изучения и познания окружающего мира, способы и средства измерения напряжения значительно эволюционировали от примитивных органолептических методов

— русский учёный Петров срезал часть эпителия на пальцах, чтобы повысить чувствительность к действию электрического тока — до простейших индикаторов напряжения и современных приборов разнообразных конструкций на основе электродинамических и электрических свойств различных веществ.

Вкус электричества. Когда-то, очень давно, если не было вольтметра, мы определяли напряжение языком!

К слову сказать, начинающие радиолюбители легко отличали «рабочую» плоскую батарейку на 4,5 В от «подсевшей» без каких-либо приборов по причине их полного отсутствия, просто лизнув её электроды. Протекавшие при этом электрохимические процессы давали ощущение определённого вкуса и лёгкого жжения. Отдельные выдающиеся личности брались определять таким способом пригодность батареек даже на 9 В, что требовало немалой выдержки и мужества!

Примером простейшего индикатора — пробника сетевого напряжения — может служить обыкновенная лампа накаливания с рабочим напряжением не ниже напряжения сети. В продаже имеются простые пробники напряжения на неоновых лампах и светодиодах, потребляющие малые токи. Осторожно, использование самодельных конструкций может быть опасным для Вашей жизни!

Читайте также: DDoS-атака: что такое, как работает и можно ли защититься

Необходимо отметить, что приборы для измерения напряжения (вольтметры) весьма отличаются друг от друга в первую очередь по типу измеряемого напряжения — это могут быть приборы постоянного или переменного тока. Вообще, в измерительной практике важно поведение измеряемого напряжения — оно может быть функцией времени и иметь различную форму — быть постоянным, гармоническим, негармоническим, импульсным и так далее, и его величиной принято характеризовать режимы работ электротехнических цепей и устройств (слаботочные и силовые).

Различают следующие значения напряжения:

  • мгновенное,
  • амплитудное,
  • среднее,
  • среднеквадратичное (действующее).

Мгновенное значение напряжения Ui (см. рисунок) — это значение напряжения в определенный момент времени. Его можно наблюдать на экране осциллографа и определять для каждого момента времени по осциллограмме.

Амплитудное (пиковое) значение напряжения Ua — это наибольшее мгновенное значение напряжения за период. Размах напряжения Up-p — величина, равная разности между наибольшим и наименьшим значениями напряжения за период.

Среднее квадратичное (действующее) значение напряжения Urms определяется как корень квадратный из среднего за период квадрата мгновенных значений напряжения.

Все стрелочные и цифровые вольтметры обычно градуируются в среднеквадратических значениях напряжения.

Среднее значение (постоянная составляющая) напряжения — это среднее арифметическое всех его мгновенных значений за время измерения.

Средневыпрямленное напряжение определяется как среднее арифметическое абсолютных мгновенных значений за период.

Разность между максимальным и минимальным значениями напряжения сигнала называют размахом сигнала.

Сейчас, в основном, для измерения напряжения используются как многофункциональные цифровые приборы, так и осциллографы — на их экранах отображается не только форма напряжения, но и существенные характеристики сигнала. К таким характеристикам относится и частота изменения периодических сигналов, поэтому в технике измерений важен частотный предел измерений прибора.

Исторический экскурс

Единица измерения «вольт» была введена в 1861 году комитетом электрических эталонов, созданным Уильямом Томсоном. Её введение было связано с текущими нуждами инженерной физики. 1 июня 1898 года имперским законом в Германии 1 вольт был установлен как «законная» единица измерения ЭДС, равная ЭДС, возбуждающей в проводнике сопротивлением 1 ток силой 1 ампер[7]. В Международную систему единиц (СИ) вольт введён решением XI Генеральной конференцией по мерам и весам в 1960 году одновременно с принятием системы СИ в целом[8].

Впоследствии 1 вольт обычно определялся через единицу энергии джоуль и единицу заряда кулон.

Номинальные напряжения распределительных сетей

Согласно ГОСТ 21128-83, номинальные линейные напряжения трехфазной сети переменного тока до 1000 В составляют 40, 220, 380 и 660 В. Соответственно фазные напряжения равны 23, 127, 220 и 380 В. Линейные напряжения сети выше 1000 В в соответствии с ГОСТ 721-77 равны 3, 6, 10 и 20 кВ.

Номинальные напряжения первичных обмоток трансформаторов равны номинальным напряжениям сети или номинальным напряжениям генераторов, к шинам которых они подключаются. Номинальные напряжения вторичных обмоток трансформаторов ТП на 5% выше номинального напряжения сети.

Выбор номинального напряжения систем электроснабжения основывается на технико-экономическом сравнении вариантов схем электроснабжения, при составлении которых стремятся максимально сокращать число трансформаций энергии.

Распределительные сети напряжением до 1000 В в настоящее время выполняются, как правило, трехфазными с глухим заземлением нейтрали напряжением 380/220 В.

Напряжение 660 В применяется в промышленных сетях при протяженных и разветвленных линиях (угольная, нефтяная и химическая промышленность), наличии электродвигателей приемников на данное напряжение, при необходимости снижения токов короткого замыкания на стороне вторичного напряжения мощных подстанций (1000 кВА и более).

Напряжение 6 кВ применяется в основном в городских и промышленных сетях. Использование его в промышленных сетях обусловлено наличием на предприятии электроприемников или электростанций с генераторным напряжением 6 кВ. Применение напряжения 6 кВ в городских сетях (до 60% всех сетей) сложилось исторически в связи с тем, что распределительные линии подключались к шинам соответствующего генераторного напряжения городских электростанций.

В настоящее время существующие городские сети напряжением 6 кВ при реконструкции переводят на 10 кВ, а новые проектируются исключительно на 10 кВ. Номинальное напряжение 10 кВ широко применяется в городских, сельских и промышленных сетях (для внутризаводского распределения энергии).

Напряжение 20 кВ находит применение преимущественно в сельских электрических сетях, а в промышленных сетях — для электроснабжения отдельных удаленных объектов (карьеров, рудников и т. п.).

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Подписывайтесь на наш канал в Telegram!

Просто пройдите по ссылке и подключитесь к каналу.

Не пропустите обновления, подпишитесь на наши соцсети:

Какой двигатель можно подключать в “звезду-треугольник”, а какой нет?

Если нужны академические знания, с ними можно ознакомиться в книгах и учебниках, которые выложены для свободного скачивания у меня на блоге, на странице Скачать .

Какой двигатель можно подключать в “звезду-треугольник”, а какой нет?

Двигатели наша (и не наша) промышленность выпускает разные. Но наиболее ходовые у нас (большинство читателей подтвердит) – низковольтные, для работы в сетях 0,4 кВ 50 Гц. Мы будем рассматривать как раз такие асинхронники. Они в 99% бывают на 2 вида напряжения – 220/380 и 380/660 В. Первое число – это “треугольник”, второе – “звезда”. Такое разделение идёт в основном от мощности, “граница” проходит примерно по 4 кВт.

Бывают номиналы на новый стандарт 230/400 или 240/440 В, но это не так важно.

Как видим, оба вида имеют вариант подключения 380 В. В первом случае для этого нужно собрать схему “звезда”, во втором – “треугольник”.

Жаль, но тут возникла путаница, и нужно об этом помнить: Напряжения на двигателе обозначаются как “Треугольник/Звезда”, а схема, о которой речь – “Звезда/Треугольник”. В любом случае – номинальное напряжение в “Звезде” всегда больше в √3 раз!

Подробнее рассмотрим работу на этих напряжениях.

220/380 В

Вариант с низкими напряжениями 220/380 можно подключать на 220 В только в однофазную сеть через фазосдвигающий конденсатор либо от однофазного преобразователя частоты . И только в “Треугольнике”! А 380 В – можно подключать в трехфазную сеть через контактор, либо УПП, либо частотник только в “Звезде”! Важно, что такие двигатели для работы в схеме “Звезда/Треугольник” использовать нельзя!

Центральная точка звезды, обозначенная “0”, может быть подключена к нейтрали N, если она, конечно, есть. Но этого никто никогда не делает – ток по этому проводу будет мизерный, ибо двигатель – нагрузка симметричная.

Читайте также: Сгорела стиральная машина от перепада напряжения кто виноват

Реальные примеры движков 220-380:

Шильдик электродвигателя на напряжение 220 – 380 В. Для схемы “Звезда-Треугольник” не подходит.

Как будет выглядеть подключение подобного двигателя в коробке:

Внизу “тройная” клемма – та самая точка “0”, которая никуда не подключается.

380/660 В

Вариант двигателя с высокими напряжениями 380/660 идеально подходит для работы в схеме “Звезда/Треугольник”. Для работы напрямую (через контактор или ПЧ) обмотки нужно собрать в “Треугольник”.

Общие сведения о системах электроснабжения. Схемы электрических сетей напряжением до 1 кВ. Защита ЭП и электрических сетей от аномальных режимов , страница 4

Вопрос выбора тока в настоящее время утратил свою остроту. Централизованные СЭС на постоянном токе практически отсутствуют.

Производство ЭЭ в зависимости от применяемых генераторов, передача и распределение ЭЭ в зависимости от передаваемых величин нагрузки, а также от расстояния, на которое они передаются, использование ЭЭ в зависимости от применяемых ЭП осуществляется на различных напряжениях. Для того, чтобы согласовать режимы работы энергосистем, их элементов и СЭС, начиная от генераторов и заканчивая ЭП существуют стандартизированные напряжения которые приводятся в виде шкалы номинальных напряжений. В соответствии с ГОСТ до 1 кВ установлены следующие шкалы номинальных напряжений (основные шкалы) для электрических сетей ЭП:

— для однофазного переменного тока:

— для трехфазного переменного тока:

Основная шкала для электрических сетей напряжением выше 1 кВ:

Номинальное напряжение генераторов и вторичных обмоток трансформаторов, питающих электрические сети на 5-10 % выше номинально напряжения сети.

Напряжение на котором производится ЭЭ (3,15; 6,3; 10,5; 21 кВ) называется генераторным напряжением.

Для передачи больших мощностей в энергосистемах (межсистемные связи) применяется высокое и сверхвысокое напряжение от 500 кВ и выше.

Основным критерием для выбора напряжения внешнего и внутризаводского электроснабжения является минимум приведенных затрат, определяемых величиной передаваемой нагрузки и расстоянием, на которое она передается. Важным фактором при выборе величины напряжения является требование технологии. Электрические печи от 100 В до 110 кВ, электролиз – 5-15 В.

Основными приемниками промышленных предприятий являются ЭД с напряжением:

Шкала номинальных напряжений определяется уровнем развития народного хозяйства, так в последних действующих ГОСТах введены напряжения 660 В и 20 кВ, которые являются более целесообразными особенно для питания крупных ЭП большой величины нагрузки с напряжением 380 и 10 кВ.

С 1933г. была запрещена система напряжения 220/127 В для вновь строящихся и реконструирующихся предприятий.

В 1962 г. введено напряжение ГОСТ 660 В, которое является перспективным для цехового электроснабжения, но для применения его необходимо достаточно полное технико-экономическое обоснование. Применение напряжения 660 В сдерживается дефицитом и относительной дороговизной аппаратов защиты и управления.

Преимущества напряжения 660 В в сравнении с напряжением 380 В:

— увеличение пропускной способности в раз и уменьшение потерь мощности и энергии в 3 раза;

— уменьшение тока в раз позволяет разрабатывать ЭД до 500 кВт и выше;

— уменьшение тока КЗ облегчает выбор оборудования по термической и динамической стойкости. В связи с уменьшением токов КЗ можно увеличить мощность силовых трансформаторов ЦТП свыше 100 кВА;

— увеличение радиуса обслуживания сетей напряжением до 1 кВ позволяет уменьшить количество силовых трансформаторов ТП вследствие увеличения их мощностей.

В настоящее время применение в проектах напряжения 660 В должно быть технико-экономически обоснованно. Применение этого напряжения сдерживается дефицитом и дороговизной аппаратов управления и защиты.

Напряжение 660 В целесообразно применять:

— для предприятий, у которых по генлану затруднено разукрупнение (дробление) ЦТП и приходиться применять относительно протяженные сети напряжением до 1 кВ (добывающая, нефтяная промышленность);

— при высокой плотности электрических нагрузок, которые обуславливает применение трансформаторов большой номинальной мощностью (1600 и более кВА)

— целесообразно применять в сочетании с напряжением 10 кВ.

Недостатки напряжения 660 В:

— раздельное питание силовых и осветительных ЭП и применение для ИС местных трансформаторов 660/220 и 380/220 В.

  • АлтГТУ 419
  • АлтГУ 113
  • АмПГУ 296
  • АГТУ 267
  • БИТТУ 794
  • БГТУ «Военмех» 1191
  • БГМУ 172
  • БГТУ 603
  • БГУ 155
  • БГУИР 391
  • БелГУТ 4908
  • БГЭУ 963
  • БНТУ 1070
  • БТЭУ ПК 689
  • БрГУ 179
  • ВНТУ 120
  • ВГУЭС 426
  • ВлГУ 645
  • ВМедА 611
  • ВолгГТУ 235
  • ВНУ им. Даля 166
  • ВЗФЭИ 245
  • ВятГСХА 101
  • ВятГГУ 139
  • ВятГУ 559
  • ГГДСК 171
  • ГомГМК 501
  • ГГМУ 1966
  • ГГТУ им. Сухого 4467
  • ГГУ им. Скорины 1590
  • ГМА им. Макарова 299
  • ДГПУ 159
  • ДальГАУ 279
  • ДВГГУ 134
  • ДВГМУ 408
  • ДВГТУ 936
  • ДВГУПС 305
  • ДВФУ 949
  • ДонГТУ 498
  • ДИТМ МНТУ 109
  • ИвГМА 488
  • ИГХТУ 131
  • ИжГТУ 145
  • КемГППК 171
  • КемГУ 508
  • КГМТУ 270
  • КировАТ 147
  • КГКСЭП 407
  • КГТА им. Дегтярева 174
  • КнАГТУ 2910
  • КрасГАУ 345
  • КрасГМУ 629
  • КГПУ им. Астафьева 133
  • КГТУ (СФУ) 567
  • КГТЭИ (СФУ) 112
  • КПК №2 177
  • КубГТУ 138
  • КубГУ 109
  • КузГПА 182
  • КузГТУ 789
  • МГТУ им. Носова 369
  • МГЭУ им. Сахарова 232
  • МГЭК 249
  • МГПУ 165
  • МАИ 144
  • МАДИ 151
  • МГИУ 1179
  • МГОУ 121
  • МГСУ 331
  • МГУ 273
  • МГУКИ 101
  • МГУПИ 225
  • МГУПС (МИИТ) 637
  • МГУТУ 122
  • МТУСИ 179
  • ХАИ 656
  • ТПУ 455
  • НИУ МЭИ 640
  • НМСУ «Горный» 1701
  • ХПИ 1534
  • НТУУ «КПИ» 213
  • НУК им. Макарова 543
  • НВ 1001
  • НГАВТ 362
  • НГАУ 411
  • НГАСУ 817
  • НГМУ 665
  • НГПУ 214
  • НГТУ 4610
  • НГУ 1993
  • НГУЭУ 499
  • НИИ 201
  • ОмГТУ 302
  • ОмГУПС 230
  • СПбПК №4 115
  • ПГУПС 2489
  • ПГПУ им. Короленко 296
  • ПНТУ им. Кондратюка 120
  • РАНХиГС 190
  • РОАТ МИИТ 608
  • РТА 245
  • РГГМУ 117
  • РГПУ им. Герцена 123
  • РГППУ 142
  • РГСУ 162
  • «МАТИ» — РГТУ 121
  • РГУНиГ 260
  • РЭУ им. Плеханова 123
  • РГАТУ им. Соловьёва 219
  • РязГМУ 125
  • РГРТУ 666
  • СамГТУ 131
  • СПбГАСУ 315
  • ИНЖЭКОН 328
  • СПбГИПСР 136
  • СПбГЛТУ им. Кирова 227
  • СПбГМТУ 143
  • СПбГПМУ 146
  • СПбГПУ 1599
  • СПбГТИ (ТУ) 293
  • СПбГТУРП 236
  • СПбГУ 578
  • ГУАП 524
  • СПбГУНиПТ 291
  • СПбГУПТД 438
  • СПбГУСЭ 226
  • СПбГУТ 194
  • СПГУТД 151
  • СПбГУЭФ 145
  • СПбГЭТУ «ЛЭТИ» 379
  • ПИМаш 247
  • НИУ ИТМО 531
  • СГТУ им. Гагарина 114
  • СахГУ 278
  • СЗТУ 484
  • СибАГС 249
  • СибГАУ 462
  • СибГИУ 1654
  • СибГТУ 946
  • СГУПС 1473
  • СибГУТИ 2083
  • СибУПК 377
  • СФУ 2424
  • СНАУ 567
  • СумГУ 768
  • ТРТУ 149
  • ТОГУ 551
  • ТГЭУ 325
  • ТГУ (Томск) 276
  • ТГПУ 181
  • ТулГУ 553
  • УкрГАЖТ 234
  • УлГТУ 536
  • УИПКПРО 123
  • УрГПУ 195
  • УГТУ-УПИ 758
  • УГНТУ 570
  • УГТУ 134
  • ХГАЭП 138
  • ХГАФК 110
  • ХНАГХ 407
  • ХНУВД 512
  • ХНУ им. Каразина 305
  • ХНУРЭ 325
  • ХНЭУ 495
  • ЦПУ 157
  • ЧитГУ 220
  • ЮУрГУ 309

Напряжение 660 вольт применение

Общие сведения о системах электроснабжения. Схемы электрических сетей напряжением до 1 кВ. Защита ЭП и электрических сетей от аномальных режимов , страница 4

Вопрос выбора тока в настоящее время утратил свою остроту. Централизованные СЭС на постоянном токе практически отсутствуют.

Производство ЭЭ в зависимости от применяемых генераторов, передача и распределение ЭЭ в зависимости от передаваемых величин нагрузки, а также от расстояния, на которое они передаются, использование ЭЭ в зависимости от применяемых ЭП осуществляется на различных напряжениях. Для того, чтобы согласовать режимы работы энергосистем, их элементов и СЭС, начиная от генераторов и заканчивая ЭП существуют стандартизированные напряжения которые приводятся в виде шкалы номинальных напряжений. В соответствии с ГОСТ до 1 кВ установлены следующие шкалы номинальных напряжений (основные шкалы) для электрических сетей ЭП:

— для однофазного переменного тока:

— для трехфазного переменного тока:

Основная шкала для электрических сетей напряжением выше 1 кВ:

Номинальное напряжение генераторов и вторичных обмоток трансформаторов, питающих электрические сети на 5-10 % выше номинально напряжения сети.

Напряжение на котором производится ЭЭ (3,15; 6,3; 10,5; 21 кВ) называется генераторным напряжением.

Для передачи больших мощностей в энергосистемах (межсистемные связи) применяется высокое и сверхвысокое напряжение от 500 кВ и выше.

Основным критерием для выбора напряжения внешнего и внутризаводского электроснабжения является минимум приведенных затрат, определяемых величиной передаваемой нагрузки и расстоянием, на которое она передается. Важным фактором при выборе величины напряжения является требование технологии. Электрические печи от 100 В до 110 кВ, электролиз – 5-15 В.

Основными приемниками промышленных предприятий являются ЭД с напряжением:

Шкала номинальных напряжений определяется уровнем развития народного хозяйства, так в последних действующих ГОСТах введены напряжения 660 В и 20 кВ, которые являются более целесообразными особенно для питания крупных ЭП большой величины нагрузки с напряжением 380 и 10 кВ.

С 1933г. была запрещена система напряжения 220/127 В для вновь строящихся и реконструирующихся предприятий.

В 1962 г. введено напряжение ГОСТ 660 В, которое является перспективным для цехового электроснабжения, но для применения его необходимо достаточно полное технико-экономическое обоснование. Применение напряжения 660 В сдерживается дефицитом и относительной дороговизной аппаратов защиты и управления.

Преимущества напряжения 660 В в сравнении с напряжением 380 В:

— увеличение пропускной способности в раз и уменьшение потерь мощности и энергии в 3 раза;

— уменьшение тока в раз позволяет разрабатывать ЭД до 500 кВт и выше;

— уменьшение тока КЗ облегчает выбор оборудования по термической и динамической стойкости. В связи с уменьшением токов КЗ можно увеличить мощность силовых трансформаторов ЦТП свыше 100 кВА;

— увеличение радиуса обслуживания сетей напряжением до 1 кВ позволяет уменьшить количество силовых трансформаторов ТП вследствие увеличения их мощностей.

В настоящее время применение в проектах напряжения 660 В должно быть технико-экономически обоснованно. Применение этого напряжения сдерживается дефицитом и дороговизной аппаратов управления и защиты.

Напряжение 660 В целесообразно применять:

— для предприятий, у которых по генлану затруднено разукрупнение (дробление) ЦТП и приходиться применять относительно протяженные сети напряжением до 1 кВ (добывающая, нефтяная промышленность);

— при высокой плотности электрических нагрузок, которые обуславливает применение трансформаторов большой номинальной мощностью (1600 и более кВА)

— целесообразно применять в сочетании с напряжением 10 кВ.

Недостатки напряжения 660 В:

— раздельное питание силовых и осветительных ЭП и применение для ИС местных трансформаторов 660/220 и 380/220 В.

  • АлтГТУ 419
  • АлтГУ 113
  • АмПГУ 296
  • АГТУ 267
  • БИТТУ 794
  • БГТУ «Военмех» 1191
  • БГМУ 172
  • БГТУ 603
  • БГУ 155
  • БГУИР 391
  • БелГУТ 4908
  • БГЭУ 963
  • БНТУ 1070
  • БТЭУ ПК 689
  • БрГУ 179
  • ВНТУ 120
  • ВГУЭС 426
  • ВлГУ 645
  • ВМедА 611
  • ВолгГТУ 235
  • ВНУ им. Даля 166
  • ВЗФЭИ 245
  • ВятГСХА 101
  • ВятГГУ 139
  • ВятГУ 559
  • ГГДСК 171
  • ГомГМК 501
  • ГГМУ 1966
  • ГГТУ им. Сухого 4467
  • ГГУ им. Скорины 1590
  • ГМА им. Макарова 299
  • ДГПУ 159
  • ДальГАУ 279
  • ДВГГУ 134
  • ДВГМУ 408
  • ДВГТУ 936
  • ДВГУПС 305
  • ДВФУ 949
  • ДонГТУ 498
  • ДИТМ МНТУ 109
  • ИвГМА 488
  • ИГХТУ 131
  • ИжГТУ 145
  • КемГППК 171
  • КемГУ 508
  • КГМТУ 270
  • КировАТ 147
  • КГКСЭП 407
  • КГТА им. Дегтярева 174
  • КнАГТУ 2910
  • КрасГАУ 345
  • КрасГМУ 629
  • КГПУ им. Астафьева 133
  • КГТУ (СФУ) 567
  • КГТЭИ (СФУ) 112
  • КПК №2 177
  • КубГТУ 138
  • КубГУ 109
  • КузГПА 182
  • КузГТУ 789
  • МГТУ им. Носова 369
  • МГЭУ им. Сахарова 232
  • МГЭК 249
  • МГПУ 165
  • МАИ 144
  • МАДИ 151
  • МГИУ 1179
  • МГОУ 121
  • МГСУ 331
  • МГУ 273
  • МГУКИ 101
  • МГУПИ 225
  • МГУПС (МИИТ) 637
  • МГУТУ 122
  • МТУСИ 179
  • ХАИ 656
  • ТПУ 455
  • НИУ МЭИ 640
  • НМСУ «Горный» 1701
  • ХПИ 1534
  • НТУУ «КПИ» 213
  • НУК им. Макарова 543
  • НВ 1001
  • НГАВТ 362
  • НГАУ 411
  • НГАСУ 817
  • НГМУ 665
  • НГПУ 214
  • НГТУ 4610
  • НГУ 1993
  • НГУЭУ 499
  • НИИ 201
  • ОмГТУ 302
  • ОмГУПС 230
  • СПбПК №4 115
  • ПГУПС 2489
  • ПГПУ им. Короленко 296
  • ПНТУ им. Кондратюка 120
  • РАНХиГС 190
  • РОАТ МИИТ 608
  • РТА 245
  • РГГМУ 117
  • РГПУ им. Герцена 123
  • РГППУ 142
  • РГСУ 162
  • «МАТИ» — РГТУ 121
  • РГУНиГ 260
  • РЭУ им. Плеханова 123
  • РГАТУ им. Соловьёва 219
  • РязГМУ 125
  • РГРТУ 666
  • СамГТУ 131
  • СПбГАСУ 315
  • ИНЖЭКОН 328
  • СПбГИПСР 136
  • СПбГЛТУ им. Кирова 227
  • СПбГМТУ 143
  • СПбГПМУ 146
  • СПбГПУ 1599
  • СПбГТИ (ТУ) 293
  • СПбГТУРП 236
  • СПбГУ 578
  • ГУАП 524
  • СПбГУНиПТ 291
  • СПбГУПТД 438
  • СПбГУСЭ 226
  • СПбГУТ 194
  • СПГУТД 151
  • СПбГУЭФ 145
  • СПбГЭТУ «ЛЭТИ» 379
  • ПИМаш 247
  • НИУ ИТМО 531
  • СГТУ им. Гагарина 114
  • СахГУ 278
  • СЗТУ 484
  • СибАГС 249
  • СибГАУ 462
  • СибГИУ 1654
  • СибГТУ 946
  • СГУПС 1473
  • СибГУТИ 2083
  • СибУПК 377
  • СФУ 2424
  • СНАУ 567
  • СумГУ 768
  • ТРТУ 149
  • ТОГУ 551
  • ТГЭУ 325
  • ТГУ (Томск) 276
  • ТГПУ 181
  • ТулГУ 553
  • УкрГАЖТ 234
  • УлГТУ 536
  • УИПКПРО 123
  • УрГПУ 195
  • УГТУ-УПИ 758
  • УГНТУ 570
  • УГТУ 134
  • ХГАЭП 138
  • ХГАФК 110
  • ХНАГХ 407
  • ХНУВД 512
  • ХНУ им. Каразина 305
  • ХНУРЭ 325
  • ХНЭУ 495
  • ЦПУ 157
  • ЧитГУ 220
  • ЮУрГУ 309

Читайте также: Nokia 3310 зарядное устройство напряжение

Полный список ВУЗов

Чтобы распечатать файл, скачайте его (в формате Word).

Какой двигатель можно подключать в “звезду-треугольник”, а какой нет?

Если нужны академические знания, с ними можно ознакомиться в книгах и учебниках, которые выложены для свободного скачивания у меня на блоге, на странице Скачать .

Какой двигатель можно подключать в “звезду-треугольник”, а какой нет?

Двигатели наша (и не наша) промышленность выпускает разные. Но наиболее ходовые у нас (большинство читателей подтвердит) – низковольтные, для работы в сетях 0,4 кВ 50 Гц. Мы будем рассматривать как раз такие асинхронники. Они в 99% бывают на 2 вида напряжения – 220/380 и 380/660 В. Первое число – это “треугольник”, второе – “звезда”. Такое разделение идёт в основном от мощности, “граница” проходит примерно по 4 кВт.

Бывают номиналы на новый стандарт 230/400 или 240/440 В, но это не так важно.

Как видим, оба вида имеют вариант подключения 380 В. В первом случае для этого нужно собрать схему “звезда”, во втором – “треугольник”.

Жаль, но тут возникла путаница, и нужно об этом помнить: Напряжения на двигателе обозначаются как “Треугольник/Звезда”, а схема, о которой речь – “Звезда/Треугольник”. В любом случае – номинальное напряжение в “Звезде” всегда больше в √3 раз!

Подробнее рассмотрим работу на этих напряжениях.

220/380 В

Вариант с низкими напряжениями 220/380 можно подключать на 220 В только в однофазную сеть через фазосдвигающий конденсатор либо от однофазного преобразователя частоты . И только в “Треугольнике”! А 380 В – можно подключать в трехфазную сеть через контактор, либо УПП, либо частотник только в “Звезде”! Важно, что такие двигатели для работы в схеме “Звезда/Треугольник” использовать нельзя!

Читайте также: От чего кроме напряжения зависит сила тока в проводнике как

Центральная точка звезды, обозначенная “0”, может быть подключена к нейтрали N, если она, конечно, есть. Но этого никто никогда не делает – ток по этому проводу будет мизерный, ибо двигатель – нагрузка симметричная.

Реальные примеры движков 220-380:

Шильдик электродвигателя на напряжение 220 – 380 В. Для схемы “Звезда-Треугольник” не подходит.

Как будет выглядеть подключение подобного двигателя в коробке:

Внизу “тройная” клемма – та самая точка “0”, которая никуда не подключается.

380/660 В

Вариант двигателя с высокими напряжениями 380/660 идеально подходит для работы в схеме “Звезда/Треугольник”. Для работы напрямую (через контактор или ПЧ) обмотки нужно собрать в “Треугольник”.

Номинальные напряжения распределительных сетей

Согласно ГОСТ 21128-83, номинальные линейные напряжения трехфазной сети переменного тока до 1000 В составляют 40, 220, 380 и 660 В. Соответственно фазные напряжения равны 23, 127, 220 и 380 В. Линейные напряжения сети выше 1000 В в соответствии с ГОСТ 721-77 равны 3, 6, 10 и 20 кВ.

Номинальные напряжения первичных обмоток трансформаторов равны номинальным напряжениям сети или номинальным напряжениям генераторов, к шинам которых они подключаются. Номинальные напряжения вторичных обмоток трансформаторов ТП на 5% выше номинального напряжения сети.

Выбор номинального напряжения систем электроснабжения основывается на технико-экономическом сравнении вариантов схем электроснабжения, при составлении которых стремятся максимально сокращать число трансформаций энергии.

Распределительные сети напряжением до 1000 В в настоящее время выполняются, как правило, трехфазными с глухим заземлением нейтрали напряжением 380/220 В.

Напряжение 660 В применяется в промышленных сетях при протяженных и разветвленных линиях (угольная, нефтяная и химическая промышленность), наличии электродвигателей приемников на данное напряжение, при необходимости снижения токов короткого замыкания на стороне вторичного напряжения мощных подстанций (1000 кВА и более).

Напряжение 6 кВ применяется в основном в городских и промышленных сетях. Использование его в промышленных сетях обусловлено наличием на предприятии электроприемников или электростанций с генераторным напряжением 6 кВ. Применение напряжения 6 кВ в городских сетях (до 60% всех сетей) сложилось исторически в связи с тем, что распределительные линии подключались к шинам соответствующего генераторного напряжения городских электростанций.

В настоящее время существующие городские сети напряжением 6 кВ при реконструкции переводят на 10 кВ, а новые проектируются исключительно на 10 кВ. Номинальное напряжение 10 кВ широко применяется в городских, сельских и промышленных сетях (для внутризаводского распределения энергии).

Напряжение 20 кВ находит применение преимущественно в сельских электрических сетях, а в промышленных сетях — для электроснабжения отдельных удаленных объектов (карьеров, рудников и т. п.).

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Подписывайтесь на наш канал в Telegram!

Просто пройдите по ссылке и подключитесь к каналу.

Не пропустите обновления, подпишитесь на наши соцсети:

Номинальные напряжения электрических сетей и области их применения

Номинальным напряжением U н источников и приемников электроэнергии (генераторов, трансформаторов) называется такое напряжение, на которое они рассчитаны в условиях нормальной работы.

Номинальные напряжения электрических сетей и присоединяемых к ним источников и приемников электрической энергии устанавливаются ГОСТом.

Шкала номинальных напряжений для сетей переменного тока частотой 50 Гц междуфазное напряжение должно быть 12, 24, 36, 42, 127, 220, 380 В; 3, 6, 10, 20, 35, 110, 150, 220, 330, 500, 750, 1150 кВ, для сетей постоянного тока -12, 24, 36, 48, 60, 110, 220, 440, 660, 3000 В.

Для электрических сетей трехфазного переменного тока напряжением до 1 кВ и присоединенным к ним источников и приемников электроэнергии ГОСТ 721-78 устанавливает следующие значения номинальных напряжений:

Сети и приемники — 380/220 В; 660/380 В

Источники — 400/230 В; 690/400 В.

Номинальное напряжение генераторов с целью компенсации потери напряжения в питаемой ими сети принимается на 5% больше номинального напряжения этой сети (см. табл. 1).

Читайте также: Источник постоянного напряжения 27в

Номинальные напряжения первичных обмоток, повышающих трансформаторов, присоединяемых к генераторам, приняты также на 5% больше номинальных напряжений подключаемых к ним линий.

Первичные обмотки понижающих трансформаторов имеют номинальные напряжения, равные номинальным напряжениям питающих их линий.

В табл. 1. приведены номинальные и наибольшие рабочие напряжения электрических сетей, генераторов и трансформаторов напряжением выше 1 кВ, принятые ГОСТ 721 — 78.

Таблица 1.1. Номинальные напряжения трехфазного тока, кВ

Сети и приемники Трансформаторы и автотрансформаторы Наибольшее рабочее напряжение
без РПН c РПН
первичные обмотки вторичные обмотки первичные обмотки вторичные обмотки
6 6 и 6,3 6,3 и 6,6 6 и 6,3 6,3 и 6,6 7,2
10 10 и 10,5 10,5 и 11 10 и 10,5 10,5 и 11 12,0
20 20 22 20 и 21,0 22,0 24,0
35 35 38,5 35 и 36,5 38,5 40,5
110 121 110 и 115 115 и 121 126
220 242 220 и 230 230 и 242 252
330 330 347 330 330 363
500 500 525 500 525
750 750 787 750 787

Питание цепей управления, сигнализации и автоматизации электроустановок, а также электрифицированного инструмента и местного освещения в производственных цехах осуществляется на постоянном токе напряжениями 12, 24, 36, 48 и 60 В и на переменном однофазном токе 12, 24 и 36 В. Электроприемники постоянного тока питаются на напряжениях 110; 220 и 440 В. Напряжения генераторов постоянного тока 115; 230 и 460 В.

Электрифицированный транспорт и ряд технологических установок (электролиз, электропечи, некоторые виды сварки) получают питание на напряжениях, отличных от приведенных выше.

У повышающих силовых трансформаторов номинальное напряжение первичной обмотки совпадает с номинальным напряжением трехфазных генераторов. У понижающих трансформаторов первичная обмотка является приемником электроэнергии, и ее номинальное напряжение равно напряжению сети.

Номинальные напряжения вторичных обмоток трансформаторов, питающих электрические сети, на 5 или 10 % выше номинальных напряжений сети, что дает возможность компенсировать потери напряжения в линиях: 230, 400, 690 В и 3,15 (или 3,3); 6,3 (или 6,6); 10,5 (или 11); 21 (или 22); 38,5; 121; 165; 242; 347; 525; 787 кВ.

Напряжение 660 В рекомендуется для питания силовых электроприемников. По сравнению с напряжением 380 В оно имеет ряд преимуществ: меньшие потери энергии и расход проводникового материала, возможность применения более мощных электродвигателей, меньшее количество цеховых ТП. Однако для питания мелких двигателей, цепей управления электроприводом и сетей электроосвещения необходимо устанавливать дополнительный трансформатор на 380 В.

Напряжение 3 кВ используется только для питания электроприемников, работающих на этом напряжении.

Электроснабжение предприятий, внутризаводское распределение энергии и питание отдельных электроприемников выполняются на напряжениях свыше 1000 В.

Напряжения 500 и 330 кВ применяются для питания особенно крупных предприятий от сетей энергосистемы. На напряжениях 220 и 110 кВ осуществляется питание крупных предприятий от энергосистемы и распределение энергии на первой ступени электроснабжения.

На напряжении 35 кВ питаются предприятия средней мощности, удаленные электропотребители, крупные электроприемники и распределяется энергия по системе глубоких вводов.

Напряжения 6 и 10 кВ используются для питания предприятий малой мощности и в распределительных сетях внутреннего электроснабжения. Напряжение 10 кВ целесообразнее, если источник питания работает на этом напряжении, а число электроприемников на 6 кВ невелико.

Напряжения 20 и 150 кВ широкого применения на промышленных предприятиях не находят из-за использования их только в некоторых энергосистемах и отсутствия соответствующего электрооборудования.

Выбор напряжения сети производится одновременно с выбором схемы электроснабжения, а в некоторых случаях — на основе технико-экономического сравнения вариантов.

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Подписывайтесь на наш канал в Telegram!

Просто пройдите по ссылке и подключитесь к каналу.

Не пропустите обновления, подпишитесь на наши соцсети: