Где используется резонанс напряжений

Резонанс тока

Наглядное представление о резонансе токов дает колебательный контур, применяемый в электронных схемах. В его состав входит конденсатор с емкостью С и катушка с индуктивностью L, включенные параллельно. В процессе передачи энергии из электрического поля емкости в магнитное поле индуктивности возникают самозатухающие колебания с определенной частотой. Возникновение колебаний происходит благодаря активному сопротивлению R, препятствующему свободному прохождению тока.

Явление резонанса токов появляется в цепи, куда параллельно включены конденсатор и катушка. Их номиналы подобраны с таким расчетом, чтобы токи, протекающие по С и L, были равны. Поэтому в контуре С-L ток будет выше, чем его значение на остальных участках цепи.

Максимальное значение магнитного поля достигается при полном разряде конденсатора. Таким образом, вся энергия, накопленная конденсатором, преображается в магнитное поле индуктивности. Заряженные частицы продолжают двигаться, благодаря самоиндукции катушки.

Поскольку противоток от разряженного конденсатора уже отсутствует, он подвергается повторной зарядке, но уже с изменившейся полярностью. Это приводит к преобразованию поля катушки в заряд конденсатора и повторению всего процесса. Активная составляющая R приводит к постепенному угасанию колебаний. В этом и заключается основная суть резонанса.

Реактивные сопротивления индуктивности и емкости

Индуктивностью называется способность тела накапливать энергию в магнитном поле. Для нее характерно отставание тока от напряжения по фазе. Характерные индуктивные элементы — дросселя, катушки, трансформаторы, электродвигатели.

Емкостью называются элементы, которые накапливают энергию с помощью электрического поля. Для емкостных элементов характерно отставание по фазе напряжения от тока. Емкостные элементы: конденсаторы, варикапы.

Приведены их основные свойства, нюансы в пределах этой статьи во внимание не берутся. Кроме перечисленных элементов другие также имеют определенную индуктивность и емкость, например в электрических кабелях распределенные по его длине. Кроме перечисленных элементов другие также имеют определенную индуктивность и емкость, например в электрических кабелях распределенные по его длине

Кроме перечисленных элементов другие также имеют определенную индуктивность и емкость, например в электрических кабелях распределенные по его длине.

Практическое использование резонанса токов

Резонанс токов широко используется на практике. В случае изменения величины емкости конденсатора или индуктивности контура, становится возможной регулировка частоты свободных колебаний. Таким образом, контур может быть настроен на определенную частоту.

Природа свободных электрических колебаний, возникающих в контуре, всегда затухающая. Колебания затухают постепенно под влиянием сопротивления, которым обладают соединительные провода. Кроме того, энергия затрачивается на нагрев провода катушки индуктивности при прохождении в контуре электрического тока. Потери энергии приводят к постепенному снижению амплитуды колебаний и их окончательное затухание. Сопротивление контура оказывает непосредственное влияние на скорость затухания колебаний, связанную с потерями энергии.

Резонанс тока

Для электронных устройств очень важно иметь возможность получения незатухающих электрических колебаний с неизменной амплитудой в течение продолжительного времени. Для обеспечения этого процесса выполняется подключение к контуру генератора переменного тока

В результате, частота вынужденных колебаний не будет зависеть от емкости и индуктивности контура, а будет находится в зависимости от частоты переменного тока, вырабатываемого генератором.

Необходимо соблюдать условия, когда токи в емкости и индуктивности имели бы одинаковое значение

Это важное свойство дает возможность регулировок на любых участках электронных схем

Резонанс тока

Резонанс тока

Расчет резонансной частоты контура

Резонанс тока

Принцип работы катушки Тесла

Резонанс тока

Принцип работы конденсатора

Резонанс тока

Реактивное сопротивление конденсатора

Резонанс напряжений

Если последовательно с генератором соединить конденсатор и катушку индуктивности, то, при условии равенства их реактивных сопротивлений, возникнет резонанс напряжений. При этом активная часть Z должно быть как можно меньшей.

Резонанс тока

Стоит отметить, что индуктивность и емкость обладает только реактивными качествами лишь в идеализированных примерах. В реальных же цепях и элементах всегда присутствует активное сопротивление проводников, хоть оно и крайне мало.

При резонансе происходит обмен энергией между дросселем и конденсатором. В идеальных примерах при первоначальном подключении источника энергии (генератора) энергия накапливается в конденсаторе (или дросселе) и после его отключения происходят незатухающие колебания за счет этого обмена.

Напряжения на индуктивности и емкости примерно одинаковы, согласно закону Ома:

Где X — это Xc емкостное или XL индуктивное сопротивление соответственно.

Цепь, состоящую из индуктивности и емкости, называют колебательным контуром. Его частота вычисляется по формуле:

Период колебаний определяется по формуле Томпсона:

Так как реактивное сопротивление зависит от частоты, то сопротивление индуктивности с ростом частоты увеличивается, а у ёмкости падает. Когда сопротивления равны, то общее сопротивление сильно снижается, что отражено на графике:

Основными характеристиками контура являются добротность (Q) и частота. Если рассмотреть контур в качестве четырехполюсника, то его коэффициент передачи после несложных вычислений сводится к добротности:

А напряжение на выводах цепи увеличивается пропорционально коэффициенту передачи (добротности) контура.

Популярные статьи как измерить напряжение мультиметром в розетке 220в

При резонансе напряжений, чем выше добротность, тем больше напряжение на элементах контура будет превышать напряжение подключенного генератора. Напряжение может повышаться в десятки и сотни раз. Это отображено на графике:

Потери мощности в контуре обусловлены только наличием активного сопротивления. Энергия из источника питания берется только для поддержания колебаний.

Коэффициент мощности будет равен:

Эта формула показывает, что потери происходят за счет активной мощности:

Принцип действия резонансных токов

Наглядное представление о резонансе токов дает колебательный контур, применяемый в электронных схемах. В его состав входит конденсатор с емкостью С и катушка с индуктивностью L, включенные параллельно. В процессе передачи энергии из электрического поля емкости в магнитное поле индуктивности возникают самозатухающие колебания с определенной частотой. Возникновение колебаний происходит благодаря активному сопротивлению R, препятствующему свободному прохождению тока.

Резонанс токов базовые принципы. признаки резонанса Как возникает резонанс напряжения и токов: в чем опасность явления, как его можно использовать Условия резонанса Резонанс тока Резонанс токов: в цепи переменного тока и напряжения Резонанс в электрической цепи Резонанс токов - описание явления и области применения Резонанс в электрической цепи - класс!ная физика Что такое резонанс токов Понятие резонанса напряжений в электрических цепях переменного тока

Явление резонанса токов появляется в цепи, куда параллельно включены конденсатор и катушка. Их номиналы подобраны с таким расчетом, чтобы токи, протекающие по С и L, были равны. Поэтому в контуре С-L ток будет выше, чем его значение на остальных участках цепи.

Принцип работы такого контура заключается в следующем. При подаче питания конденсатор накапливает определенную величину заряда, равную номинальному напряжению источника тока. После этого источник отключается, а конденсатор замыкается в цепь контура, чтобы на катушку пошел разряд. Ток проходит по ней, тем самым вызывает генерацию магнитного поля. В результате создается электродвижущая сила самоиндукции, направленная навстречу току.

Максимальное значение магнитного поля достигается при полном разряде конденсатора. Таким образом, вся энергия, накопленная конденсатором, преображается в магнитное поле индуктивности. Заряженные частицы продолжают двигаться, благодаря самоиндукции катушки.

Поскольку противоток от разряженного конденсатора уже отсутствует, он подвергается повторной зарядке, но уже с изменившейся полярностью. Это приводит к преобразованию поля катушки в заряд конденсатора и повторению всего процесса. Активная составляющая R приводит к постепенному угасанию колебаний. В этом и заключается основная суть резонанса.

Применение на практике резонанса

Рассмотрим, какая польза и вред резонанса токов и напряжений. Наибольшую пользу явления резонанса принесли в радиопередающей аппаратуре. Простыми словами, а схеме приемника установлены катушка и конденсатор , подключенные к антенне. С помощью изменения индуктивности (например, перемещая сердечник) или величины емкости (например, воздушным переменным конденсатором) вы настраиваете резонансную частоту. В результате чего напряжение на катушке повышается и приемник ловит определенную радиоволну.

Вред эти явления могут на нести в электротехнике, например, на кабельных линиях. Кабель представляет собой распределенную по длине индуктивность и емкость, если на длинную линию подать напряжение в режиме холостого хода (когда на противоположном от источника питания конце кабеля нагрузка не подключена). Поэтому есть опасность того, что произойдет пробой изоляции, во избежание этого подключается нагрузочный балласт. Также аналогичная ситуация может привести к выходу из строя электронных компонентов, измерительных приборов и другого электрооборудования – это опасные последствия возникновения этого явления.

Описание явления

Если в некой электрической цепи (см. рис. 1) имеются ёмкостные и индуктивные элементы, которые обладают собственными резонансными частотами, то при совпадении этих частот амплитуда колебаний резко возрастёт. То есть происходит резкий всплеск напряжений на этих элементах. Это может вызвать разрушение элементов электрической цепи.

Давайте рассмотрим на этом примере, какие явления будут происходить при подключении генератора переменного тока к контактам схемы. Заметим, что катушки и конденсаторы обладают свойствами, которые можно сравнить с аналогом реактивного резистора. В частности, дроссель в электрической цепи создаёт индуктивное сопротивление. Конденсатор является причиной ёмкостного сопротивления.

Резонансная частота

При подаче на два КК (параллельного и последовательного) переменного напряжения с изменяющейся частотой их реактивные сопротивления C и L будут меняться. Изменения происходят следующим образом:

  • с увеличением f – ёмкостное сопротивление уменьшается, а индуктивное увеличивается;
  • с уменьшением f – ёмкостное сопротивление увеличивается, а индуктивное уменьшается.

Частота, при которой реактивные сопротивления обоих элементов контура равны, называется резонансной.

Важно! При fрез сопротивление параллельного КК будет максимальным, а последовательного КК – минимальным. Резонансная частота формула, которой имеет вид:. Резонансная частота формула, которой имеет вид:

Резонансная частота формула, которой имеет вид:

  • L – индуктивность, Гн;
  • C – ёмкость, Ф.

Подставляя известные значения ёмкости и индуктивности в формулу резонансной частоты колебательного контура любой конфигурации, можно рассчитать этот параметр.

Для определения периода колебаний КК и частоты резонанса можно воспользоваться онлайн калькулятором на соответствующем портале в сети. Профессиональная программа имеет несложный интерфейс.

Резонанс тока

Пример интерфейса онлайн калькулятора LC-контура

Резонанс напряжений

Если в цепи синусоидального тока с последовательно соединенными конденсатором ёмкостью и катушкой с сопротивлением и индуктивностью (рис. 9.16 а) равны реактивные сопротивления, то в цепи наступает резонанс напряжений. Равенство реактивных сопротивлений является условием резонанса напряжений.

тогда частота резонанса определяется выражением

Резонанс напряжений имеет место в неразветвленной цепи с и тогда, когда частота вынужденных колебаний (частота источника) , будет равна частоте собственных колебаний резонансного контура .

Популярные статьи Основы электротехники для начинающих

Следовательно, добиться резонанса напряжений можно изменением частоты источника или изменением параметров колебательного контура или , т.е. изменением частоты собственных колебаний .

Резонанс тока

Резонанс тока

Полное сопротивление цепи (рис. 9.16 а) при резонансе напряжений определяется по формуле: , так как, .

Ток в неразветвленной цепи при резонансе напряжений максимальный:

Реактивные сопротивления при резонансе напряжений равны между собой, т. е.

Таким образом, реактивные сопротивления при резонансе напряжений равны (каждое) волновому сопротивлению , которое называют характеристическим сопротивлением:

Напряжения на индуктивности и на емкости при резонансе напряжений равны между собой, так как равны сопротивления.

Данное равенство определяет название «резонанс напряжений» Так как и изменяются в противофазе, то напряжение в резонансном режиме равно напряжению на активном сопротивлении , т. е. , что видно на векторной диаграмме (рис. 9.16 б).

На резонансных кривые чётко просматриваются значения этих параметров при частоте резонанса (рис. 9.17).

Резонанс тока

Резонанс токов в цепи параллельным включением катушки и конденсатора (в различных ветвях) возникает при равенстве реактивных проводимостей в ветвях: или .

Данное выражение является условием резонанса током в разветвленных цепях синусоидального тока.

Полная проводимость при этом условии

Резонанс тока

Ток в неразветвленной части цепи при резонансе токов имеет минимальную величину:

Реактивные токи в ветвях при резонансе токов равны между собой

Это равенство и определяет название «резонанс токов».

Векторная диаграмма при резонансе токов (рис. 9.18). Реактивные токи находятся в противофазе, поэтому ток в неразветвленной части цепи при резонансе токов равен активному току , и совпадает по фазе с напряжением, т. е. , a . Следовательно, вся мощность цепи при резонансе токов является активной : .

Резонанс токов: применение, принцип резонса тока, расчет контура Резонанс напряжений, условие возникновения Резонанс токов – обзор понятия и методики расчета Как возникает резонанс напряжения и токов: в чем опасность явления, как его можно использовать Как возникает резонанс напряжения и токов: в чем опасность явления, как его можно использовать Резонанс напряжений, условие возникновения Резонанс напряжений, условие возникновения Условия резонанса напряжений в электроцепях и условия их возникновения Что такое резонанс токов и напряжений Условия резонанса напряжений в электроцепях и условия их возникновения

Резонанс тока

Частота при резонансе токов определяется:

Эта страница взята со страницы лекций по предмету теоретические основы электротехники (ТОЭ):

Возможно эти страницы вам будут полезны:

Схема замещения конденсатора с параллельным соединением элементов
Схема замещения реальной катушки с параллельным соединением элементов
Схема замещения реальной катушки с параллельным соединением элементов
Проводимость, расчет электрических цепей методом проводимостей

Резонанс

Если схема с конденсатором, катушкой и резистором возбуждается напряжением, постоянно меняющимся во времени с определенной частотой, то также изменяются реактивные сопротивления: индуктивное и емкостное. Амплитуда и частота выходного сигнала будет изменяться по сравнению с входным.

Частота вращения: формула

Индуктивное сопротивление прямо пропорционально частоте:

а емкостное сопротивление обратно пропорционально этому показателю:

X(C) = 1/(2π x f x C).

Важно! На более низких частотах индуктивное сопротивление незначительное, а емкостное будет высоким и сможет создавать практически разомкнутый контур. На высоких частотах картина обратная

При конкретной комбинации конденсатора и катушки схема становится резонансной, или настроенной, имеющей частоту колебаний, при которой индуктивное сопротивление идентично емкостному. И они компенсируют друг друга.

Следовательно, в цепи остается исключительно активное сопротивление, противостоящее протекающему току. Созданные условия получили наименование резонанса колебательного контура. Фазовый сдвиг между током и напряжением отсутствует.

Резонанс тока

Резонанс LC-цепи

Для расчета резонансной частоты колебательного контура учитывается следующее условие:

Следовательно, 2π x f x L = 1/(2πx f x C).

Отсюда получается формула резонансной частоты:

Расчет резонансной частоты, индуктивности и емкости можно сделать на онлайн калькуляторе, подставив конкретные значения.

Скорость, с которой рассеивается энергия от LC-схемы, должна быть такой же, как энергия, подаваемая на схему. Устойчивые, или незатухающие, колебания производятся электронными схемами генераторов.

LC-цепи используются либо для генерации сигналов на определенной частоте, либо для выделения частотного сигнала из более сложного. Они являются ключевыми компонентами многих электронных устройств, в частности радиооборудования, используемого в генераторах, фильтрах, тюнерах и частотных микшерах.

Виды резонансных явлений

Удельное сопротивление меди

Рассматриваемые эффекты по-разному проявляются в газовой среде и в твердых телах. Они способны возникать в электрической цепи с реактивными компонентами. При определенных условиях резонансное воздействие разрушит кирпичный дом или разорвет стенки прочного котла паровой машины. Правильное использование этого явления помогает улучшить помехозащищенность радиоаппаратуры, успешно решать другие практические задачи.

Механический резонанс

Для вычисления параметров механической системы можно продолжить изучение маятника. Естественное движение качелей замедляется трением функциональных компонентов, сопротивлением воздуха. Чтобы предотвратить затухание колебаний нужно приложить внешнюю силу (F). Максимальную эффективность обеспечит совпадение частот. Ниже показан алгоритм расчета механического резонанса.

Период (Т) определяется формулой T = 2π√(L/g), где g – константа ускорения свободного падения (≈9,8м/с2). Собственная частота конструкции v = 1/T. Если добавить определение второго закона Ньютона (прямую пропорциональность импульса системы от силы и времени (Δt) воздействия), частоту можно выразить как:

  • N – количество импульсов;
  • m – суммарная масса груза.

Так как энергия в замкнутом контуре сохраняется (идеальный пример без потерь), допустимо использовать следующие пропорции:

(m*v2)/2 = m*g*h = m*g*L*(1-cos α).

Из этих сочетаний простыми преобразованиями получают две формулы для расчетов:

  • N = (m/(F* Δt)) * √(2*g*L*(1-cos α));
  • t (общее время для выполнения N колебаний) = N*T = (2π*m*L)/(F* Δt)) * √(2*(1-cos α)).

Подставив определенные исходные значения, вычисляют периодичность необходимых резонансных колебаний:

  • m=100кг;
  • F = 10Н;
  • L = 200 см;
  • Δt = 1 с;
  • N = 34;
  • t = 96;
  • T = 2,8 с.

Электрический колебательный контур

Явление резонанса может наблюдаться в цепях переменного тока при совпадении частот источника питания (сигнала) и реактивных компонентов контура. В этом случае можно рассматривать электрическое сопротивление, как аналог сил трения в механической системе.

Популярные статьи Как повысить напряжение в сети частного дома

Для создания необходимых условий можно применить параллельное соединение типовых элементов (R, L и C). Если обеспечить равенство импедансов реактивных составляющих, на определенной частоте суммарное значение токов в соответствующих цепях будет больше, по сравнению с током источника питания. Графика на рисунке демонстрирует векторное представление электрических параметров. В этом режиме наблюдается равномерное распределение энергетического баланса колебательного процесса, который поддерживают конденсатор и катушка индуктивности.

Для вычислений нужно уточнить влияние каждого компонента. Емкость создает препятствие прохождению тока, определяемое формулой:

  • Xc – сопротивление;
  • f – частота;
  • С – емкость.

Индуктивная составляющая определяется следующим образом:

Полное сопротивление контура:

Z = √R2 + (2π*f*L — 1/(2π*f*C)2.

При равенстве реактивных компонентов несложно сделать вывод о том, что 2π*f*L = 1/2π*f*C. Частоту, на которой появится резонанс, вычисляют по формуле:

Fрезонанса = 1/2π * √ (L*C).

Условия резонанса напряжений в последовательном контуре

Сложные колебательные структуры

Если применить трансформатор для образования связи между двумя колебательными контурами, расчет усложняется. Для создания необходимых условий обеспечивают равенство реактивных составляющих.

Характерные признаки для резонанса напряжения Резонанс напряжений Резонанс токов в электротехнике (тоэ) - формулы и определения с примерами Резонанс токов и напряжений: условия возникновения и применение — ремонт и строительство Резонанс напряжений: формулировка, условие наступления, применение Резонанс напряжений. резонанс напряжений – это такой режим работы неразветвленной электрической цепи переменного тока, при котором полное напряжение (входное) и ток совпадают по Как возникает резонанс напряжения и токов: в чем опасность явления, как его можно использовать Резонанс токов.векторная диаграмма, определение, формулы, применение кратко Что такое резонанс токов и напряжений

Резонансные кривые связанных контуров

Рисунок демонстрирует изменение полосы пропускания при разных значениях коэффициента (К), определяющего передачу напряжения. При увеличении этого параметра выше критического уровня (K>Ккр) образуется двугорбая кривая. Максимальная ширина полосы пропускания обеспечивается при К = 0,7*Кмакс. Дальнейшее усиление связи формирует провал в средней части.

Нелинейные системы

Если отсутствуют симметричные реакции на сторонние воздействия, резонансные явления проявляются особым образом. В частности, наличие в цепи катушки с ферритовым сердечником существенно усложняет точный расчет. В подобных материалах магнитные свойства определяются нелинейным распределением элементарных компонентов.

Что такое резонанс?

Определение явления по ТОЭ: электрический резонанс происходит в электрической цепи при определенной резонансной частоте, когда некоторые части сопротивлений или проводимостей элементов схемы компенсируют друг друга. В некоторых схемах это происходит, когда импеданс между входом и выходом схемы почти равен нулю, и функция передачи сигнала близка к единице. При этом очень важна добротность данного контура.

Резонанс тока

Соединение двух ветвей при резонансе

  1. Составляющие реактивных ветвей тока равны между собой IPC = IPL, противофаза образовывается только при равенстве чистой активной энергии на входе;
  2. Ток в отдельных ветках, превышает весь ток определенной цепи, при этом ветви совпадают по фазе.

Иными словами, резонанс в цепи переменного тока подразумевает специальную частоту, и определяется значениями сопротивления, емкости и индуктивности. Существует два типа резонанса токов:

  1. Последовательный;
  2. Параллельный.

Для последовательного резонанса условие является простым и характеризуется минимальным сопротивлением и нулевой фазе, он используется в реактивных схемах, также его применяет разветвленная цепь. Параллельный резонанс или понятие RLC-контура происходит, когда индуктивные и емкостные данные равны по величине, но компенсируют друг друга, так как они находятся под углом 180 градусов друг от друга. Это соединение должно быть постоянно равным указанной величине. Он получил более широкое практическое применение. Резкий минимум импеданса, который ему свойствен, является полезным для многих электрических бытовых приборов. Резкость минимума зависит от величины сопротивления.

Схема RLC (или контур) является электрической схемой, которая состоит из резистора, катушки индуктивности, и конденсатора, соединенных последовательно или параллельно. Параллельный колебательный контур RLC получил свое название из-за аббревиатуры физических величин, представляющих собой соответственно сопротивление, индуктивность и емкость. Схема образует гармонический осциллятор для тока. Любое колебание индуцированного в цепи тока, затухает с течением времени, если движение направленных частиц, прекращается источником. Этот эффект резистора называется затуханием. Наличие сопротивления также уменьшает пиковую резонансную частоту. Некоторые сопротивление являются неизбежными в реальных схемах, даже если резистор не включен в схему.

Как используется

Резонансные токи используются сегодня в некоторых фильтрующих системах, радиотехнике, электричестве, радиостанциях, асинхронных двигателях, высокоточных электрических сварных установках, колебательных генераторных электрических контурах и высокочастотных приборах. Нередко, когда они применяются, чтобы снизить генераторную нагрузку.

Обратите внимание! Простейшая цепь, где наблюдаются они, это параллельного вида колебательный контур. Такие контуры используются в современном промышленном индукционном котловом оборудовании и улучшают показатели КПД

Итог

Резонансное явление напряжения – вещь достаточно интересная и заслуживает внимания. Резонанс возможен только в индуктивных ёмкостных цепях. В линиях, где активное сопротивление велико, это явление невозможно.

Подведём итог, коротко дав ответы по данной теме:

Где возможно возникновение резонанса?

Ответ: в индуктивных ёмкостных схемах.

При каких условиях?

Ответ: реактивные сопротивления должны быть равны.

Как ликвидировать резонанс?

Ответ: Поменять частоту, добавить активное сопротивление.

Надеемся, теперь вам понятно, что это за явление, условия для его появления и практическое использование.

Резонанс в электросети: причины, борьба с резонансом, природа возникновения

Инструмент

Индуктивностью называется способность тела накапливать энергию в магнитном поле. Для нее характерно отставание тока от напряжения по фазе. Характерные индуктивные элементы — дросселя, катушки, трансформаторы, электродвигатели.

Емкостью называются элементы, которые накапливают энергию с помощью электрического поля. Для емкостных элементов характерно отставание по фазе напряжения от тока. Емкостные элементы: конденсаторы, варикапы.

Приведены их основные свойства, нюансы в пределах этой статьи во внимание не берутся.

Читайте также: Правильный порядок подключения ИБП в домашних условиях

Кроме перечисленных элементов другие также имеют определенную индуктивность и емкость, например в электрических кабелях распределенные по его длине.

Емкость и индуктивность в цепи переменного тока

Если в цепях постоянного тока емкость в общем смысле представляет собой разорванный участок цепи, а индуктивность — проводник, то в переменном конденсаторы и катушки представляют собой реактивный аналог резистора.

Реактивное сопротивление катушки индуктивности определяется по формуле:

Реактивное сопротивление конденсатора:

Здесь w — угловая частота, f — частота в цепи синусоидального тока, L — индуктивность, C — емкость.

Стоит отметить, что при расчете соединенных последовательно реактивных элементов используют формулу:

Обратите внимание, что емкостная составляющая принимается со знаком минус. Если в цепи присутствует еще и активная составляющая (резистор), то складывают по формуле теоремы Пифагора (исходя из векторной диаграммы):

От чего зависит реактивное сопротивление? Реактивные характеристики зависят от величины емкости или индуктивности, а также от частоты переменного тока.

Если посмотреть на формулу реактивной составляющей, то можно заметить, что при определенных значениях емкостной или индуктивной составляющей их разность будет равна нулю, тогда в цепи останется только активное сопротивление. Но это не все особенности такой ситуации.

АЧХ частотно-избирательной цепи Соединение двух ветвей при резонансе Последовательный колебательный контур Понятие резонанса Затухающие колебания в резонансном контуре, возбуждаемые сигналом ступенчатой формы Параллельный резонансный контур и его АЧХ

Резонансная частота

При подаче на два КК (параллельного и последовательного) переменного напряжения с изменяющейся частотой их реактивные сопротивления C и L будут меняться. Изменения происходят следующим образом:

  • с увеличением f – ёмкостное сопротивление уменьшается, а индуктивное увеличивается;
  • с уменьшением f – ёмкостное сопротивление увеличивается, а индуктивное уменьшается.

Частота, при которой реактивные сопротивления обоих элементов контура равны, называется резонансной.

Читайте также: Система TN-C-S: что это такое, особенности, как её выполнять

Важно! При fрез сопротивление параллельного КК будет максимальным, а последовательного КК – минимальным. Резонансная частота формула, которой имеет вид:

Резонансная частота формула, которой имеет вид:

  • L – индуктивность, Гн;
  • C – ёмкость, Ф.

Подставляя известные значения ёмкости и индуктивности в формулу резонансной частоты колебательного контура любой конфигурации, можно рассчитать этот параметр.

Советуем изучить Термосопротивление

Для определения периода колебаний КК и частоты резонанса можно воспользоваться онлайн калькулятором на соответствующем портале в сети. Профессиональная программа имеет несложный интерфейс.

Пример интерфейса онлайн калькулятора LC-контура

Резонанс напряжений

Если последовательно с генератором соединить конденсатор и катушку индуктивности, то, при условии равенства их реактивных сопротивлений, возникнет резонанс напряжений. При этом активная часть Z должно быть как можно меньшей.

Стоит отметить, что индуктивность и емкость обладает только реактивными качествами лишь в идеализированных примерах. В реальных же цепях и элементах всегда присутствует активное сопротивление проводников, хоть оно и крайне мало.

При резонансе происходит обмен энергией между дросселем и конденсатором. В идеальных примерах при первоначальном подключении источника энергии (генератора) энергия накапливается в конденсаторе (или дросселе) и после его отключения происходят незатухающие колебания за счет этого обмена.

Напряжения на индуктивности и емкости примерно одинаковы, согласно закону Ома:

Где X — это Xc емкостное или XL индуктивное сопротивление соответственно.

Читайте также: Принцип работы двухконтурного газового котла отопления и особенности его подключения

Цепь, состоящую из индуктивности и емкости, называют колебательным контуром. Его частота вычисляется по формуле:

Период колебаний определяется по формуле Томпсона:

Так как реактивное сопротивление зависит от частоты, то сопротивление индуктивности с ростом частоты увеличивается, а у ёмкости падает. Когда сопротивления равны, то общее сопротивление сильно снижается, что отражено на графике:

Основными характеристиками контура являются добротность (Q) и частота. Если рассмотреть контур в качестве четырехполюсника, то его коэффициент передачи после несложных вычислений сводится к добротности:

А напряжение на выводах цепи увеличивается пропорционально коэффициенту передачи (добротности) контура.

При резонансе напряжений, чем выше добротность, тем больше напряжение на элементах контура будет превышать напряжение подключенного генератора. Напряжение может повышаться в десятки и сотни раз. Это отображено на графике:

Потери мощности в контуре обусловлены только наличием активного сопротивления. Энергия из источника питания берется только для поддержания колебаний.

Коэффициент мощности будет равен:

Эта формула показывает, что потери происходят за счет активной мощности:

Виды и возникновение резонанса

Всего выделяют два различных типа таких явлений: резонанс напряжений и токов.

Первые обычно проявляются в контурах, использующих последовательное соединение реактивных элементов. Резонанс токов, в свою очередь, характерен для систем с параллельным соединением ёмкостного и индуктивного элемента. Подобных цепей (LC-контуров) в каждой электрической сети огромное множество, поэтому и переходные процессы для каждой отдельной сети при аварийных и плановых отключениях носят индивидуальный и весьма сложный смешанный характер.

Феррорезонанс возникает при наличии в сети индуктивности, характеризующуюся нелинейной вольт-амперной характеристикой.

Данной особенностью обладают катушки индуктивности, сердечник которых выполнен из ферромагнитного материала. В частности, это относится к широко распространённым сейчас трансформаторам напряжения серии НКФ. Такой негативный эффект обусловлен малой величиной индуктивного и омического сопротивления относительно реакторов и силовых трансформаторов.

Резонанс токов

Резонанс токов наблюдается в цепях, где индуктивность и емкость соединены параллельно.

Явление заключается в протекании токов большой величины между конденсатором и катушкой, при нулевом токе в неразветвленной части цепи. Это объясняется тем, что при достижении резонансной частоты общее сопротивление Z возрастает. Или простым языком звучит так – в точке резонанса достигается максимальное общее значение сопротивления Z, после чего одно из сопротивлений увеличивается, а другое снижается в зависимости от того растет или снижается частота. Это наглядно отображено на графике:

В общем, всё аналогично предыдущему явлению, условия возникновения резонанса токов следующие:

  1. Частота питания аналогична резонансной у контура.
  2. Проводимости у индуктивности и ёмкости по переменному току равны BL=Bc, B=1/X.

Что такое резонанс в электрической цепи

В повседневной жизни слово «Резонанс» ассоциируется, прежде всего, с реакцией общественности на какое-либо значимое событие. В действительности, это явление окружает людей повсюду.

Резонанс в электрической цепи.

Например, работа акустических систем домашнего кинотеатра не производила бы такого эффекта, в том числе по громкости, если бы в корпусах колонок не использовался бы эффект акустического резонанса. Корпуса практически всех музыкальных инструментов изготавливаются таким образом, чтобы максимально увеличить громкость звучания колеблющегося тела. Человеческий голосовой аппарат, также представляет собой резонаторную систему, которая оказывает значительное влияние на тембр и громкость звука.

Акустический резонанс.

Читайте также: Калькулятор / Расчёт нагревательного провода ПНСВ

Аналогичным образом осуществляется «отклик» и в различных электрических системах. Отличие заключается только в том, что в резонанс входят не звуковые колебания, а электромагнитные поля.

Важно! Следует отметить, что явление резонанса возможно только в цепи переменного тока.

Применение на практике

Рассмотрим, какая польза и вред резонанса токов и напряжений. Наибольшую пользу явления резонанса принесли в радиопередающей аппаратуре. Простыми словами, а схеме приемника установлены катушка и конденсатор, подключенные к антенне. С помощью изменения индуктивности (например, перемещая сердечник) или величины емкости (например, воздушным переменным конденсатором) вы настраиваете резонансную частоту. В результате чего напряжение на катушке повышается и приемник ловит определенную радиоволну.

Вред эти явления могут на нести в электротехнике, например, на кабельных линиях. Кабель представляет собой распределенную по длине индуктивность и емкость, если на длинную линию подать напряжение в режиме холостого хода (когда на противоположном от источника питания конце кабеля нагрузка не подключена). Поэтому есть опасность того, что произойдет пробой изоляции, во избежание этого подключается нагрузочный балласт. Также аналогичная ситуация может привести к выходу из строя электронных компонентов, измерительных приборов и другого электрооборудования – это опасные последствия возникновения этого явления.

Последствия и борьба с резонансными явлениями

На силовых трансформаторах с рабочим напряжением 220 кВ в результате резонанса напряжение может скачкообразно увеличиться до 300 кВ, а ток мгновенно поднимается до такой силы, при которой обмотки разрушаются в результате теплового воздействия (электродинамический удар).

Чтобы подобных явлений не возникало, в программах переключений обычно планируют специальные операции, исключающие протекание процессов резонанса, а в систему шин нередко специально устанавливают элементы, сопротивление которых призвано бороться с явлением резонанса.

Резонанс напряжений — справочник студента

В радиотехнике широкое применение имеют электрические цепи, составленные из катушки индуктивности и конденсатора. Такие цепи в радиотехнике называются колебательными контурами. Источник переменного тока к колебательному контуру может быть присоединен двумя способами: последовательно (рисунок 1а) и параллельно (рисунок 1б).

Резонанс напряжений - Справочник студента

Рисунок 1. Схемотическое обозначение колебательного контура. а) последовательный колебательный контур; б) параллельный колебательный контур.

Рассмотрим поведение колебательного контура в цепи переменного тока при последовательном соединении контура и источника тока (рис 1а).

Мы знаем, что такая цепь оказывает переменному току реактивное сопротивление, равное:

Резонанс напряжений - Справочник студента

  • где RL- активное сопротивление катушки индуктивности в ом;
  • ωL,-индуктивное сопротивление катушки индуктивности в ом;
  • 1/ωC-емкостное сопротивление конденсатора в ом.

Активное сопротивление катушки RL практически очень мало изменяется при изменении частоты (если пренебречь поверхностным эффектом).

Индуктивное и емкостное сопротивления в очень сильной степени зависят от частоты, а именно: индуктивное сопротивление ωL увеличивается прямо пропорционально частоте тока, а емкостное сопротивление 1/ωC уменьшается при повышении частоты тока, т. е. оно связано с частотой тока обратно пропорциональной зависимостью.

  1. Отсюда непосредственно следует, что реактивное сопротивление последовательного колебательного контура также зависит от частоты, и колебательный контур будет оказывать токам разных частот неодинаковое сопротивление.
  2. Если мы будем измерять реактивное сопротивление колебательного контура при различных частотах, то обнаружим, что в области низких частот сопротивление последовательного контура очень велико; при увеличении частоты оно уменьшается до некоторого предела, а затем начинает снова возрастать.
  3. Объясняется это тем, что в области низких частот ток испытывает большое сопротивление со стороны конденсатора, при увеличении же частоты начинает действовать индуктивное сопротивление, компенсирующее действие емкостного сопротивления.

При некоторой частоте индуктивное сопротивление становится равным емкостному, т. е.

Резонанс напряжений - Справочник студента

Они будут взаимно компенсировать друг друга и общее реактивное сопротивление контура станет равным нулю:

Резонанс напряжений - Справочник студента

При этом реактивное сопротивление последовательного колебательного контура будет равно только его активному сопротивлению, так как

Резонанс напряжений - Справочник студента

При дальнейшем повышении частоты ток будет испытывать все большее и большее сопротивление со стороны индуктивности катушки, при одновременном уменьшении компенсирующего действия емкостного сопротивления. Поэтому реактивное сопротивление контура начнет снова возрастать.

На рисунке 2а приведена кривая, показывающая изменение реактивного сопротивления последовательного колебательного контура при изменении частоты тока.

Резонанс напряжений - Справочник студента

Рисунок 2. Резонанс напряжений. а) зависимость изменения полного сопротивления от частоты; б) зависимость реактивного сопротивления от активного сопротивления контура; в) кривые резонанаса.

Частота тока, при которой сопротивление колебательного контура делается наименьшим, называется частотой резонанса или резонансной частотой колебательного контура.

При резонансной частоте имеет место равенство:

Резонанс напряжений - Справочник студента

пользуясь которым, нетрудно определить частоту резонанса:

Резонанс напряжений - Справочник студента

Единицами в этих формулах служат герцы, генри и фарады.

Из формулы (1) видно, что чем меньше величины емкости и самоиндукции колебательного контура, тем больше будет его резонансная частота.

Величина активного сопротивления RL не влияет на резонансную частоту, однако от нее зависит характер изменения Z.

На рисунке 2б приведен ряд графиков изменения реактивного сопротивления колебательного контура при одних и тех же величинах L и С, но при разных RL.

Из этого рисунка видно, что чем больше активное сопротивление последовательного колебательного контура, тем тупее становится кривая изменения реактивного сопротивления.

Теперь рассмотрим, как будет изменяться сила тока в колебательном контуре, если мы будем изменять частоту тока. При этом мы будем считать, что напряжение, развиваемое источником переменного тока, остается все время одним и тем же.

Так как источник тока включен последовательно с L и С контура, то сила тока, протекающего через катушку и конденсатор, будет тем больше, чем меньше реактивное сопротивление колебательного контура в целом, так как

Резонанс напряжений - Справочник студента

Отсюда непосредственно следует, что при резонансе сила тока в колебательном контуре будет наибольшей. Величина тока при резонансе будет зависеть от напряжения источника переменного тока и от активного сопротивления контура:

Резонанс напряжений - Справочник студента

На рисунке 2г изображен ряд графиков изменения силы тока в последовательном колебательном контуре при изменении частоты тока так называемых кривых резонанса. Из этого рисунка видно, что чем больше активное сопротивление контура, тем тупее кривая резонанса.

При резонансе сила тока может достигать огромных значений при сравнительно малой внешней ЭДС. Поэтому падения напряжения на индуктивном и емкостном сопротивлениях контура, т. е. на катушке и на конденсаторе, могут достигать очень больших величии и далеко превосходить величину внешнего напряжения.

Последнее утверждение на первый взгляд может показаться несколько странным, однако нужно помнить, что фазы напряжений на емкостном и индуктивном сопротивлениях сдвинуты друг относительно друга на 180°, т. е.

мгновенные значения напряжений на катушке и конденсаторе направлены всегда в противоположные стороны.

Вследствие этого большие напряжения, существующие при резонансе внутри контура на его катушке и конденсаторе, ничем не обнаруживают себя вне контура, взаимно компенсируя друг друга.

Разобранный нами случай последовательного резонанса называется резонансом напряжений, так как в этом случае в момент резонанса имеет место резкое увеличение напряжения на L и С колебательного контура.

ПОНРАВИЛАСЬ СТАТЬЯ? ПОДЕЛИСЬ С ДРУЗЬЯМИ В СОЦИАЛЬНЫХ СЕТЯХ!

Резонанс напряжений: формулировка, условие наступления, применение

Резонансные явления наблюдаются в колебательных системах, когда частота собственных колебаний элементов системы совпадает с частотой внешних (вынужденных) колебательных процессов.

Данное утверждение справедливо и для цепей с циркулирующим переменным током. В таких электрических цепях при наличии определённых условий возникает резонанс напряжений, что влияет на параметры тока.

Явление резонанса в электротехнике может быть полезным или вредным, в зависимости от ситуации, в которой происходит процесс.

Описание явления

Если в некой электрической цепи (см. рис. 1) имеются ёмкостные и индуктивные элементы, которые обладают собственными резонансными частотами, то при совпадении этих частот амплитуда колебаний резко возрастёт. То есть происходит резкий всплеск напряжений на этих элементах. Это может вызвать разрушение элементов электрической цепи.

Резонанс напряжений - Справочник студента

Рис. 1. Резонанс в электрической цепи

Давайте рассмотрим на этом примере, какие явления будут происходить при подключении генератора переменного тока к контактам схемы. Заметим, что катушки и конденсаторы обладают свойствами, которые можно сравнить с аналогом реактивного резистора. В частности, дроссель в электрической цепи создаёт индуктивное сопротивление. Конденсатор является причиной ёмкостного сопротивления.

Индуктивный элемент вызывает сдвиг фаз, характеризующийся отставанием тока от напряжения на ¼ периода. Под действием конденсатора ток, наоборот, на ¼ периода опережает напряжение.

Другими словами, действие индуктивности противоположно действию на сдвиг фаз ёмкостного сопротивления. То есть катушки индуктивности и ёмкостные элементы по-разному воздействуют на генератор и по-своему корректируют фазовые соотношения между электрическим током и напряжением.

Формула

Общее реактивное сопротивление рассматриваемых нами элементов равно сумме сопротивлений каждого из них. С учётом противоположности действий можно записать: Xобщ = XL — Xc , где XL = ωL — индуктивное реактивное сопротивление, выражение Xc = 1/ωC — это ёмкостное реактивное сопротивление.

На рисунке 2 изображены графики зависимости полного сопротивления цепи и связанной с ним силы тока, от реактивного сопротивления индуктивного элемента. Обратите внимание на то, как падает полное сопротивление при уменьшении реактивной сопротивляемости RL (график б) и как при этом возрастает ток (график в).

Резонанс напряжений - Справочник студента

Рис. 2. Графики зависимости параметров тока от падения реактивного сопротивления

Электрические цепи, состоящие из последовательно соединённых конденсаторов, пассивный резисторов и катушек индуктивности называют последовательными резонансными (колебательными) контурами (см. рис. 2). Существуют также параллельные контуры, в которых R, L, C элементы подключены параллельно (рис. 3).

Читайте также: Общая характеристика состояний организма и психики — справочник студента

Резонанс напряжений - Справочник студентаРис. 3. Последовательный колебательный контур Резонанс напряжений - Справочник студентаРис. 4. Параллельный колебательный контур

В режиме резонанса мощность источника питания будет рассеиваться только на активных сопротивлениях (в том числе на активном сопротивлении катушки).

Для резонансных контуров характерны потери только активной мощности, которая израсходуется на поддержание колебательного процесса. Реактивная мощность на L C — элементах при этом не расходуется.

Ток в резонансном режиме принимает максимальное значение:

Резонанс напряжений - Справочник студента

Величину Q принято называть термином «Добротность контура». Данный параметр показывает, во сколько раз напряжение, возникшее на контактах реактивных элементов, превышает входное напряжение U электрической сети. Для описания соотношения выходного и входного напряжений часто применяют коэффициент K. При резонансе:

K = Uвых / Uвх = UC0 / U = Q

Формулировка

На основании вышеописанных явлений, сформулируем определение резонансного напряжения: «Если общее падение напряжения на ёмкостно-индуктивных элементах равно нулю, а амплитуда тока – максимальна, то такое особое состояние системы называется резонансом напряжений».

Для лучшего понимания явления, немного перефразируем определение: резонансом напряжений является состояние, когда напряжение на CL — цепочке больше чем на входе электрической цепи.

Описанное явление довольно распространено в электротехнике. Иногда с ним борются, а иногда специально создают условия для образования резонанса.

Основными характеристиками всякого резонансного контура являются параметры добротности и частоты [ 1 ].

В случае, если XL = Xc – справедливо равенство: ωL = 1/ωC , отсюда получаем:

Если ω = ω0 – возникает резонанс напряжений. Частоты совпадают в том случае, когда индуктивное сопротивление сравняется с ёмкостным сопротивлением конденсатора. В таких случаях в цепи будет действовать только активное сопротивление R. Наличие реактивных элементов в схеме приводит к увеличению полного сопротивления цепи (Z):

где R – общее активное сопротивление.

Учитывая, что по закону Ома U = I/Z, можно утверждать, что общее напряжение в цепи зависит, в том числе, и от слагаемых индуктивного и ёмкостного сопротивлений.

Если бы в рассматриваемой схеме (рис. 1) отсутствовало активное сопротивление R, то значение полного сопротивления Z стремилось бы к 0. Следовательно, напряжение на реактивных элементах при этом возрастает до критического уровня.

Поскольку XL и Xc зависят от частоты входного напряжения, то для возникновения резонанса следует подобрать соответствующую частоту сети, или изменять параметры катушки, либо конденсатора до тех пор, пока резонансные частоты не совпадут. Любое нарушение условий резонанса немедленно приводит к выходу системы из резонансного режима с последующим падением напряжения.

Условия наступления

Резонансные явления наступают только при наличии следующих условий:

  1. Наличие минимального активного сопротивления на участке электрической цепи.
  2. Равенство реактивных сопротивлений, возникших на цепочке LC.
  3. Совпадение входной частоты источника питания с резонансной частотой колебательного контура.

При резонансе в контуре напряжения на его элементах могут повышаться на порядок и больше.

Примеры применения на практике

Классическим примером применения резонанса колебательных контуров является настройка радиоприёмника на частоту соответствующей радиостанции. В качестве рабочего элемента настроечного узла используется конденсатор с регулируемой ёмкостью. Вращение ручки настройки изменяет ёмкость конденсатора, а значит и резонансную частоту контура.

В момент совпадения резонансной частоты с рабочей частотой какой-либо радиостанции возникает резонанс напряжений, в результате которого резко возрастает амплитуда колебаний принятой радиоприёмником частоты. Специальные фильтры отделяют эти колебания от несущих радиочастот, а усилители усиливают полученные сигналы. В динамике появляются звуки, генерируемые передатчиком радиостанции.

Колебательные контуры, построенные на принципе последовательного соединения LC-элементов, применяются в цепях питания высокоомных нагрузок, потребляющих токи повышенного напряжения. Такие же устройства применяют в полосовых фильтрах.

Последовательный резонанс применяют при пониженных напряжениях сети. В этом случае используют реактивную энергию обмоток трансформатора, соединённых последовательно.

Конденсаторы и различные катушки индуктивности (рис. 5) входят в конструкцию практически всех аналоговых устройств. Они используются для настройки фильтров или для управления токами в отдельных узлах.

Резонанс напряжений - Справочник студента

Катушки индуктивности

Важно знать, что резонансные контуры не увеличивают количество электрической энергии в цепях. Они лишь могут повышать напряжения, иногда до опасных значений. Постоянный ток не причиной резонансных явлений.

Наряду с полезными свойствами резонансных явлений, в практической электротехнике часто возникают ситуации, когда резонанс напряжений приносит вред. В основном это связано с нежелательным повышением параметров тока на участках цепей. Примером могут служить опасное резонансные явления в кабельных линиях без нагрузки, что может привести к пробоям изоляции. Чтобы этого не случилось, на концевых участках таких линий устанавливают балластные нагрузочные элементы.

Резонанс напряжений или последовательное включение R, L, C элементов

В цепях переменного тока при последовательном соединении активного элемента r, емкостного С и индуктивного L может возникнуть такое явление как резонанс напряжений. Это явление можно использовать с пользой (например, в радиотехнике), но также оно может и нанести серьезный вред (в электрических установках большой мощности резонанс напряжений может вызвать серьезные последствия).

  • Принципиальная схема и векторная диаграмма при резонансе напряжений показаны ниже:
  • Резонанс напряжений - Справочник студента
  • При последовательном включении всех трех элементов данной электрической цепи будет справедливо следующее:
  • Резонанс напряжений - Справочник студента
  • Также нужно помнить, что резонанс возможен только при φ = 0, что при последовательном соединении равносильно вот такому соотношению х = ωL – 1/(ωC) = 0, то есть должно выполняться условие ωL = 1/(ωC) или ω2LC = 1. Резонанса напряжений можно достичь тремя способами:
  • Подобрать индуктивность катушки;
  • Подобрать емкость конденсатора;
  • Подобрать угловую частоту ω0;

Причем все эти значения частоты, емкости и индуктивности можно определить используя формулы:

Резонанс напряжений - Справочник студента

Частота ω0 носит название резонансной частоты. Если в цепи не изменяется ни напряжение, ни активное сопротивление r, то при резонансе напряжения ток в этой цепи будет максимален, и равен U/r. Это значит, что ток будет полностью не зависим от реактивного сопротивления цепи.

В случае же, когда реактивные сопротивления XC = XL будут превосходить по своему значению активное сопротивление r, то на зажимах катушки и конденсатора начнет появляться напряжение, значительно превосходящее напряжение на зажимах цепи.

Условие, при котором напряжение на зажимах цепи будет меньше напряжения реактивных элементов будет иметь вид:

  1. Резонанс напряжений - Справочник студента
  2. Величина , имеющая размерность сопротивления и для удобства расчетов обозначена нами как ρ, называется волновым сопротивлением контура.
  3. Кратность превышения напряжения на зажимах емкостного и индуктивного элемента по отношению к сети можно определить из выражения:
  4. Резонанс напряжений - Справочник студента

Величина Q определяет резонансные свойства контура и носит названия добротность контура. Также еще резонансные свойства могут характеризовать величиной 1/Q – затухание контура.

Мгновенная мощность для индуктивности и емкости будет равна pL = ULIsin2ωt и pС = -UСIsin2ωt. При резонансе напряжения, когда UL = UС, эти мощности будут равны в любой момент времени и противоположны по знаку.

А это означает, что в данной цепи будет происходит обмен энергией между магнитным полем катушки и электрическим полем конденсатора, при этом обмена энергией между энергией полей и энергией источника электрической энергии (источника питания) и не происходит.

Это вызвано тем, что pL + pС = dWм/dt + dWэ/dt и Wм + Wэ = const, то есть суммарная энергия полей в цепи постоянна. При работе такой системы энергия от конденсатора будет переходить в катушку в течении четверти периода, когда ток на катушке возрастает, а напряжение на конденсатора снижается.

В течении следующей четверти периода картина противоположна – ток катушки будет снижаться, а напряжения конденсатора расти, то есть энергия от индуктивности будет переходить емкости. При этом источник электрической энергии, питающий данную цепь, будет покрывать только расход энергии, связанный с наличием в цепи активного сопротивления r.

Читайте также: Вербальная коммуникация — справочник студента

Резонанс напряжений в колебательном контуре

Имеются два случая резонанса в колебательных контурах: резонанс напряжений и резонанс токов.
Резонанс напряжений, или последовательный резонанс, наблюдается в случае, когда генератор переменной эдс нагружен

Рис.1 — Схема и резонансные кривые для резонанса напряжений

на соединенные последовательно L и С контура (рис.1 а), т.е. включен внутри контура.

В такой цепи имеется активное сопротивление г и общее реактивное сопротивление х, равное

Разность хL, и xC берется потому, что индуктивное и емкостное сопротивления оказывают противоположные влияния на ток. Первое вызывает отставание по фазе тока от напряжения, а второе, наоборот, создает отставание напряжения от тока.

Для собственных колебаний xL и хс равны друг другу. Если частота генератора равна частоте контура, то для тока, создаваемого генератором, xL и хC также одинаковы.

Тогда общее реактивное сопротивление х станет равным нулю и полное сопротивление цепи для генератора равно только одному активному сопротивлению, которое в контурах имеет сравнительно небольшую величину.

Благодаря этому ток значительно возрастает и устраняется сдвиг фаз между напряжением генератора и током.

Резонанс напряжений выражается в том, что полное сопротивление контура становится наименьшим и равным активному сопротивлению, а ток становится максимальным.
Условием резонанса напряжений является равенство частот генератора и контура f = fo, или равенство индуктивного и емкостного сопротивлений для тока генератора: xL = хC.

Когда частота генератора больше частоты контура, индуктивное сопротивление преобладает над емкостным и контур представляет для генератора сопротивление индуктивного характера.

Если частота генератора меньше частоты контура, то емкостное сопротивление больше индуктивного и контур для генератора является сопротивлением емкостного характера. В любом из этих случаев при отклонении от резонанса полное сопротивление контура возрастает по сравнению а его величиной при резонансе.

На (рис.1 б) показаны графики изменения полного сопротивления контура z и тока I при изменении частоты генератора f.

Для расчета сопротивления контура и тока при резонансе напряжений служат простые формулы:

Таким образом, напряжение генератора U равно падению напряжения на активном сопротивлении (г).
Большой ток в контуре при резонансе создает на индуктивном и емкостном сопротивлениях напряжения, значительно превышающие напряжение генератора. Они равны:

Резонанс напряжений - Справочник студента

Так как хL = хC = р, то эти напряжения равны, но они противоположны по фазе и взаимно компенсируют друг друга. Действительно, напряжение на катушке опережает ток на 90°, а напряжение на конденсаторе отстает от тока на 90°. Ясно, что между этими напряжениями сдвиг фаз равен 180°.

Кривая резонанса для тока, приведенная на (рис.1 6), при небольшом Изменении частоты показывает также изменение напряжения UL и Uс (только в ином масштабе). Это следует из того, что при изменении частоты вблизи резонанса ток меняется сильно, а сопротивления xL и хC — сравнительно мало.

Например, если fpeз — 1000 кгц и частота изменяется на 20 кгц, т.е. на 2%, то сопротивления xL и хС изменяются каждое также только на 2%. В результате напряжения UL = IxL и Uc = IxС изменяются почти точно пропорционально току.

При резонансе напряжение на катушке или на конденсаторе в Q раз больше, чем напряжение генератора, равное U — Ir. Напряжение на L или С равно UL = Uc = р. Поэтому

Резонанс напряжений - Справочник студента

Чем выше добротность контура Q, тем больше увеличение напряжения при резонансе.

Повышение напряжения на катушке и на конденсаторе характерно для резонанса напряжений, само название которого подчеркивает увеличение напряжения в момент резонанса.

Большие напряжения на катушке и конденсаторе получаются за счет постепенного накопления энергии в контуре в процессе возникновения в нем колебаний.

Эдс генератора возбуждает в контуре колебания, амплитуда которых нарастает до тех пор, пока энергия, даваемая генератором, не станет равна потерям энергии в активном сопротивлении контура.

После этого в контуре происходят мощные колебания, характеризующиеся большой величиной тока и большими напряжениями, а генератор расходует небольшую мощность только для компенсации потерь энергии.

Подобно этому можно, раскачивая тяжелый маятник легкими движениями руки с частотой, равной его собственной частоте, постепенно довести амплитуду колебаний маятника до значительной величины, во много раз превышающей амплитуду колебаний руки, играющей роль генератора.

Резонанс напряжений применяется в радиотехнике для получения максимального тока и напряжения в контуре.

Например, антенный контур радиопередатчика настраивают на резонанс напряжений для того, чтобы ток в антенне был максимальным. Тогда дальность действия передатчика будет наибольшей.

Входной контур приемника также настраивают на резонанс напряжений для того, чтобы получить усиление напряжения сигналов той радиостанции, на частоту которой настроен контур.

Напряжения сигналов других радиостанций, частоты которых отличаются от резонансной частоты приемного контура, усиливаются незначительно.

При резонансе напряжений в величину активного сопротивления контура входит внутреннее сопротивление генератора. Если оно велико, то качество контура может стать низким и резонансные свойства его будут выражены слабо. Поэтому для резонанса напряжений генератор, питающий контур, должен иметь малое внутреннее сопротивление.

Резонанс напряжений, условие возникновения — Ремонт220

Явление резонанса электрических напряжений наблюдается в цепи последовательного колебательного контура, состоящего из емкости (конденсатора), индуктивности и резистора (сопротивления).

Для обеспечения энергетической подпитки колебательного контура в последовательную цепь включается также источник электродвижущей силы Е. Источник вырабатывает переменное напряжение с частотой W. При резонансе ток, циркулирующий в последовательной цепи, должен совпадать по фазе с э.д.с. Е.

Это обеспечивается, если общее сопротивление схемы Z = R+J(WL – 1/WС) будет лишь активным, т.е. Z=R. Равенство:

является математическим условием резонанса в колебательном контуре. При этом величина тока в цепи составит I = E/R. Если преобразовать равенство (1), то получим:

  • WL = 1/WС.
  • В этом выражении W – является резонансной частотой контура.
  • Важно то, что в процессе резонанса напряжение на индуктивности равно напряжению на конденсаторе и составляет:
  • UL = U = WL * I = WLE/R

Общая сумма энергий в индуктивности и емкости (магнитного и электрического полей) постоянна. Это объясняется тем, что между этими полями происходит колебательный обмен энергиями. Суммарное ее количество в любой момент неизменно. При этом обмена энергией между ее источником Е и цепью не происходит. Вместо этого имеет место непрерывное преобразование одного вида энергии в другой.

Для колебательных контуров применятся термин добротность, которая показывает, как соотносятся напряжение на реактивном элемента (емкость или индуктивность) и входное напряжение контура. Добротность вычисляется по формуле:

Резонанс напряжений - Справочник студента

Для идеальной последовательной цепи с нулевым активным сопротивлением возникновение резонанса сопровождается незатухающими колебаниями. На практике затухание колебаний компенсируется подпиткой контура от генератора колебаний с частотой резонанса.

Применение резонанса напряжений

Явление колебательного резонанса широко используется в радиоэлектронике. В частности, входная цепь любого радиоприемника представляет собой регулируемый колебательный контур. Его резонансная частота, изменяемая с помощью регулировки емкости конденсатора, совпадает с частотой сигнала радиостанции, которую необходимо принять.

Резонанс напряжений - Справочник студента

В электроэнергетике возникновение резонанса напряжений вследствие сопутствующих ему перенапряжений чревато нежелательными последствиями.

Например, в случае подключения к генератору или промежуточному трансформатору длинной кабельной линии (являющейся колебательным контуром с распределенной емкостью и индуктивностью), не соединенной на приемном конце с нагрузкой (это называется режимом холостого хода), весь контур может оказаться в резонансом состоянии.

Читайте также: Движение тела с переменной массой. уравнение мещерского. формула циолковского — справочник студента

В такой ситуации напряжения, возникающие на некоторых участках цепи, могут оказаться выше расчетных. Это может грозить пробоем изоляции кабеля и выходом его из строя. Такая ситуация предотвращается применением вспомогательной нагрузки.

Резонанс напряжений - Справочник студента

Механизм возникновения электрического тока

Схема удивительного генератора СВЧ полей на разряднике Вина уникальное, в своём роде устройство

83046 Нагревание проводников электрическим током

Резонанс в электрической цепи

При определенном сочетании частоты сигнала и реактивного сопротивления образуется резонанс в электрической цепи. Радиолюбители применяют его для настройки на определенную передающую станцию.

Конструкторы линий электропередач делают специальные расчеты, чтобы предотвратить броски напряжения и аварийные ситуации.

Представленные ниже сведения помогут успешно решать практические задачи на основе особенностей этого явления.

При резонансе в цепи переменного тока резко увеличивается амплитуда сигнала

Причины резонанса

Классический пример с приказом командира идти марширующим солдатам «не в ногу» перед мостом наглядно демонстрирует суть этого явления.

Если не использовать такую предосторожность, колебания могут увеличиться до критичного значения, вплоть до разрушения конструкции. Для получения максимальной амплитуды раскачивают в определенном ритме качели.

Приведенные примеры демонстрируют существенное увеличение результата при совпадении частот внешнего воздействия и непосредственно самой системы.

Электрический резонанс по своим принципам не отличается от механических аналогов. Он образуется при совпадении частот внешнего сигнала и контура. Функции накопителей энергии выполняют реактивные индукционные и емкостные элементы. Потери (постепенное уменьшение амплитуды) обеспечивает электрическое сопротивление цепи, что аналогично коэффициенту трения.

Принцип резонанса токов

Для создания необходимых условий электро резонанса необходимо создать параллельный контур с тремя типовыми компонентами:

  • сопротивлением (R);
  • емкостью (C);
  • индуктивностью (L).

Схему подключают к источнику питания с напряжением (U)

На определенной частоте суммарные стоки через реактивные элементы (IL, Ic) становятся значительно больше, чем ток источника (I). Это явление называют резонансом тока.

Характеристики резонанса

Внутреннее сопротивление – формула

Это явление образуется при одинаковых реактивных составляющих цепи. Такое распределение позволяет обеспечить равномерную циркуляцию магнитной и электрической составляющих энергии (через индуктивность и конденсатор, соответственно). Такой контур называют «колебательным» по аналогии с механическим маятником.

При достижении определенной резонансной частоты (w) в параллельном (последовательном) контуре импеданс максимален (минимален). Соответствующим образом при изменении электрического сопротивления уменьшается (увеличивается) ток.

Резонанс токов и напряжений

Как рассчитать потребление электрической энергии

Параллельный контур используют, чтобы создать резонанс тока. Для выполнения отмеченных выше условий выбирают равные значения реактивных проводимостей (BL и Bc). По мере увеличения частоты общее сопротивление контура возрастает, что сопровождается уменьшением силы тока.

График изменения тока и проводимости, формулы для расчетов

В последовательном резонансном контуре устанавливают аналогичные функциональные компоненты. Эта схема при достижении резонансной частоты уменьшает сопротивление, что сопровождается существенным увеличением напряжения на реактивных составляющих, по сравнению с электродвижущей силой источника питания.

Резонанс напряжений в цепи переменного тока: график, электрическая схема и формула расчета

RLC-цепь

Для уточнения процессов надо изучить особенности компонентов типовой RLC цепи. Если к источнику переменного тока подсоединить конденсатор, напряжение на его обмотках будет изменяться по аналогии с исходным сигналом. Для расчетов пользуются понятием емкостного сопротивления Xc, которое определяется формулой:

где:

  • f – частота;
  • С – емкость.

По мере роста частоты увеличивается емкостное сопротивление, и уменьшается ток:

Этот элемент выполняет определенные ограничительные функции. Однако он не рассеивает энергию c преобразованием в тепло как обычное электрическое сопротивление R.

К сведению. Для упрощения здесь рассмотрена идеальная емкость. В действительности каждый электронный компонент создает активное сопротивление току, что в определенной ситуации сопровождается нагревом.

Для расчета влияния индуктивной составляющей применяют формулы:

  • XL = 2π * f * L;
  • I = U/XL;
  • I = U/2π * f * L.

При подключении катушки к источнику питания образуется магнитное поле, которое препятствует прохождению тока. Формулы демонстрируют прямую зависимость сопротивления от частоты и значения индуктивности (L).

Электрический резонанс

  • Для полноценного изучения (применения) явления надо учитывать полное сопротивление цепи (Z). Вместе с потерями его можно выразить следующей формулой при последовательном подключении функциональных элементов:
  • Z = √ R2 + (2π * f * L – 1/2π * f * C)2.
  • По закону Ома:
  • I = U/Z = U/ √ R2 + (2π * f * L – 1/2π * f * C)2.
  • Если соблюдается равенство реактивных составляющих, сопротивление уменьшается с одновременным увеличением силы тока. При соблюдении такого условия несложно вычислить резонансную частоту (Fрез):
  • 2π * f * L = 1/2π * f * C;
  • Fрез = 1/2π * √ L*C.

Резонанс напряжений, достигающих максимальной амплитуды

Получить наибольшую амплитуду в последовательном контуре можно с помощью изменения следующих параметров:

  • индуктивности;
  • емкости;
  • частоты.
  1. Значения отдельных компонентов устанавливают с применением рассмотренных выше формул. Так, величину емкости можно вычислить следующим образом:
  2. C = 1/ f2 * L.
  3. Если реактивные компоненты значительно больше активного сопротивления, на клеммах конденсатора или катушки можно получить повышение напряжения, по сравнению с источником.

Резонанс токов через реактивные элементы

В параллельном контуре оперируют с понятиями реактивных проводимостей (BL и Bc). Как и в предыдущем примере, для создания резонансного режима необходимо обеспечить равенство этих параметров. Дополнительным условием является совпадение частот (источника и контура). Ток при резонансе будет проходить только через активное сопротивление R.

Двойственность RLC-контуров

Из представленных сведений можно сделать два вывода с учетом выбранного варианта соединения функциональных компонентов цепи:

  • Последовательный (резонанс напряжений) – минимальное значение импеданса на Fрез, которое в идеальных условиях равно R;
  • Параллельный (резонанс токов) – на Fрез импеданс увеличивается до максимального значения.

Собственная частота резонансного контура

  • Этот параметр вычисляют по формуле:
  • w = 1/√ L*C.
  • Если частота контура совпадает с частотой внешнего сигнала, амплитуда колебаний значительно увеличивается.

Применение резонансного явления

Резонанс в электрических цепях используют для фильтрации сигналов. Выбирают соответствующую схему обработки для ограничения необходимого диапазона либо расширения полосы пропускания.

С помощью последовательного контура можно повысить напряжение питания, если снабжающая организация не обеспечивает стабильность параметров сети. Такие неприятности встречаются при подключении потребителей на дачных участках и в коттеджных поселках, в сравнительно небольших населенных пунктах.

Недостаток ликвидируют конденсаторами, которые добавляют в электрическую цепь. Подобные решения помогают восстановить работоспособность дрели, станка, другого мощного оборудования. Обмотки соответствующего привода выполняют функции индуктивного компонента колебательного контура.

Параллельное подключение конденсаторов компенсирует потери, созданные реактивной мощностью. Этот вариант обеспечивает циркуляцию энергии между накопителем и подключенной обмоткой.

Без такого дополнения часть энергии будет бесполезно потребляться сетью питания. Следует подчеркнуть, что счетчик в любом случае фиксирует потребление.

Данная модернизация поможет сэкономить на оплате коммунальных услуг.

Резонансные явления способны чрезмерно увеличить силу тока или напряжение. Необходим точный расчет электрических цепей, чтобы предотвратить перегрев и повреждение проводов, короткие замыкания и другие аварийные ситуации.

Использование резонанса напряжений для передачи радиосигнала

Применение последовательного колебательного контура удобно изучать на конкретном примере. При конструировании передающих устройств, например, уменьшение импеданса на определенной частоте позволяет сделать настройку на определенный сигнал. Такую задачу решают с помощью колебательного контура.

Распределение спектра на экране измерительного прибора после обработки фильтром

Точно спроектированный фильтр будет «убирать» паразитные составляющие без дополнительных средств контроля и автоматизации. Такое решение, кроме простоты и минимальной стоимости, обеспечивает экономное потребление энергии генератором сигнала.

Как показано на практических примерах, резонанс может выполнять полезные и вредные функции. Точный расчет поможет создать качественную электрическую цепь с заданными техническими параметрами.