ГЕНЕРАТОР ШИМ С КНОПОЧНЫМ КОНТРОЛЕМ
Простой генератор ШИМ (широтно-импульсная модуляция), построен на микроконтроллере ATtiny серии 25 / 45 / 85 и питается от стабилизированного напряжения 2,7 – 5,5 В. На его выходе получается прямоугольный сигнал с выбранной постоянной частотой 1,25/2,5/5/10/20/40/80 кГц и регулируемым заполнением в диапазоне 0-100% с шагом 1%. Написана управляющая программа на Ассемблере, и она идентична для каждого из этих микроконтроллеров.
Схема генератора ШИМ на ATtiny
Принцип работы схемы: после подачи питания на выходе генератора (разъем CON2) формируется прямоугольный сигнал с частотой 10 кГц, заполнением 50% и уровнем, зависящим от значения напряжения питания Vcc. Чтобы уменьшить / увеличить заполнение сигнала на 1%, кратко нажмите кнопку микрик S1 (-) / S2 (+) (длительность нажатия менее 250 мс). Нажатие и удерживание кнопки S1 / S2 в течение более длительного времени приведет к непрерывному уменьшению / увеличению значения заполнения со скоростью примерно 4% в секунду до тех пор, пока не будет достигнуто предельное значение, то есть 0% или 100%. Установка 0% / 100% заполнения вызовет непрерывную логику низкого / высокого уровня (GND / Vcc) на выходе генератора.
Чтобы изменить частоту сигнала ШИМ, нажмите одновременно кнопки S1 и S2 на короткое время (менее 1 секунды). Тогда частота будет меняться до следующего значения в таком порядке: 10/20/40/80/1,25/2,5/5 кГц по кругу. Одновременное нажатие и удерживание кнопок S1 и S2 будет непрерывно изменять значение частоты до тех пор, пока кнопки не будут отпущены. После каждого изменения частоты начальное значение заполнения сигнала всегда составляет 50% (независимо от предыдущей настройки).
Транзистор полевой T1 (MOSFET-P) защищает схему от обратного подключения полярности напряжения питания. Была специально выбрана модель Si2305, которая начинает работать при напряжении на затворе Vgs от 1,8 В – это важно, если схема будет работать от низкого напряжения. В качестве замены для T1 можете использовать следующие транзисторы: DMP1045, FDN306, Si2315, IRLML6401. При отсутствии подходящего полевого транзистора можно вообще отказаться от этой защиты – тогда нужно замкнуть площадки «D» и «S» на плате.
Кварцевый резонатор X1 нужен для работы микроконтроллера, благодаря чему получается выход с достаточно точной и стабильной частотой. Также возможно синхронизировать микроконтроллер с его внутренним RC-генератором с номинальной частотой 8 МГц. Преимущество этого решения заключается в том, что не нужно устанавливать резонатор X1 и конденсаторы C3 / C4, но большим недостатком будет неточная и нестабильная частота выходного сигнала.
Конденсаторы С1 и С2 фильтруют напряжение питания. Резистор R2 ограничивает ток, снимаемый непосредственно с вывода PB1 микроконтроллера, предотвращает его повреждение в случае короткого замыкания на выходе CON2.
При программировании не забудьте правильно установить фузы:
- Когда микроконтроллер работает с кварцевым резонатором X1: FL (низкий уровень фуза): $ FF, FH (высокий уровень): $ DF, FE (расширенный): $ FF, LB (блокирующие биты): $ FF.
- Когда микроконтроллер будет синхронизирован с внутренним RC-генератором: FL (низкий уровень): $ E2, FH (высокий уровень): $ DF, FE (расширенный): $ FF, LB (блокирующие биты): $ FF.
Генератор может питаться постоянным напряжением 2,7 – 5,5 В от блока питания или от аккумуляторов (например от одного 18650 Li элемента). Потребляемый ток составляет максимум 2,5 / 5 мА (сигнал 80 кГц / 99%, выход генератора не загружен). Собран ШИМ генератор на односторонней плате размером 40 x 40 мм.
Улучшение схемы контроллера
Конечно всегда есть пути дальнейшего улучшения схемы:
- Хорошо бы дать между выходом ШИМ и микроконтроллером некоторый буфер на транзисторе или простой усилитель, работающий в классе AB. В этом случае он защитит микроконтроллер от повреждений и дополнительно раскачает сигнал.
- Дополнительные шаги контроля частоты также были бы полезны. Если собираетесь внедрить проект, предлагаем более крупный микроконтроллер с аппаратным ШИМ для SMPS, чтобы было 2/4 канала и регулирование времени простоя.
Можно также расширить диапазон регулирования заполнения до 0..100%. Это может быть полезно при тестировании работы исполнительных блоков управления ШИМ. Например, при 100% заполнении – измерение падения напряжения на дорожках и открытом ключе.
Сравнение с ШИМ на NE555
Прямоугольный сигнал конечно может быть получен с использованием популярнейшей микросхемы NE555, плюс два выпрямительных диода, несколько резисторов и конденсаторов. Это естественно гораздо более дешевое решение. И не нужно ничего программировать.
Но разница в том, что генератор 555 является аналоговым, и вы никогда не знаете точно, какое именно значение скважности установили в данный момент времени. Он также не позволяет точно установить уровень скважности с разрешением 1%.
Аналоговые и цифровые схемы – это два разных мира. У каждого из них есть свои плюсы и минусы, но факты таковы, что цифровой контроль сегодня есть практически везде и за ним будущее схемотехники.
В случае AtTiny программирование может быть выполнено по i2s, последовательно с пульта дистанционного управления или с использованием энкодера. Единственное, что нужно добавить, это дополнительный код. С таймером 555 таких возможностей не будет. Прилагаемый архив содержит схему в Eagle, плату в DipTrace, исходный текст программы и документацию в PDF.
Генератор шим управляемый напряжением
Генераторы широтно-импульсно модулированных сигналов (ШИМ) интегрированы практически в любое устройство импульсного преобразования мощности. В статье будут показаны два способа реализации автономных аналоговых ШИМ генераторов. При необходимости улучшить характеристики генераторов их можно модифицировать, добавив в каждый по одной микросхеме.
Устройства, состоящие из одной микросхемы, могут быть сделаны по двум схемам. В одной используется интегральный таймер ICM7555, а в другой – маломощный компаратор MAX998. Мы рассмотрим обе схемы.
Схема 1: использование маломощного таймера в качестве ШИМ генератора
Таймер ICM7555 включается согласно Рисунку 1.
Рисунок 1. | ШИМ генератор и таймер на одной микросхеме. |
На Рисунке 1 ширина импульса на выводе 3 модулируется управляющим напряжением VCONTROL, приложенным к выводу 5. Лабораторные измерения схемы были выполнены при напряжении питания 5 В. На Рисунках 2…5 показаны выходные ШИМ сигналы при трех различных управляющих напряжениях: 1 В, 2 В и 4 В. Конденсатор C1 заряжается напряжением источника питания VSUPPLY до уровня VCONTROL и разряжается от VCONTROL/2 до уровня земли. При отсутствии внешнего управляющего напряжения напряжение VCONTROL составляет 2/3 от VSUPPLY.
Рисунок 2. | Выход ШИМ генератора при управляющем напряжении, равном 1 В. |
Рисунок 3. | Выход ШИМ генератора при управляющем напряжении, равном 2 В. |
Рисунок 4. | Выход ШИМ генератора при отсутствии управляющего напряжения. |
Рисунок 5. | Выход ШИМ генератора при управляющем напряжении, равном 4 В. |
Представленные осциллограммы иллюстрируют влияние управляющего напряжения, приложенного к выводу 5, на изменения пороговых напряжений двух внутренних компараторов. В отсутствие управляющего напряжения (Рисунок 4) пороги заряда и разряда C1 определяются внутренней структурой таймера и составляют 1/3 и 2/3 от напряжения питания. Этими порогами, равноудаленными от напряжения питания и земли, устанавливается коэффициент заполнения равный 50%. При изменении управляющего напряжения изменяется время заряда C1, за которое напряжение на конденсаторе должно достичь VCONTROL, и время разряда, в течение которого напряжение спадает до VCONTROL/2. Этот процесс приводит к модуляции ширины выходного импульса.
Время заряда определяется формулой
Время разряда можно вычислить из выражения
Схема 2: генератор ШИМ с компаратором
Читайте также: Варочная панель газовая глубина 45 см
Компаратор MAX998 включается согласно Рисунку 6.
Рисунок 6. | ШИМ генератор и компаратор. |
Ширина выходного импульса модулируется под управлением напряжения, приложенного к R1. При напряжении питания 5 В были проведены лабораторные измерения, результаты которых представлены на Рисунках 7…9, демонстрирующих формы выходных сигналов ШИМ при управляющем напряжении, равном 1 В, 2 В и 4 В.
Рисунок 7. | Выход ШИМ генератора при управляющем напряжении, равном 1 В. |
Рисунок 8. | Выход ШИМ генератора при управляющем напряжении, равном 2 В. |
Рисунок 9. | Выход ШИМ генератора при управляющем напряжении, равном 3 В. |
Приложенное к микросхеме MAX998 управляющее напряжение устанавливает пороговые напряжения, определяющие моменты начала заряда и разряда C1. Верхний порог равен
а нижнее пороговое напряжение равно VCONTROL/2.
Время заряда можно найти из формулы
Время разряда описывается выражением
Варианты ШИМ генераторов на двух микросхемах
Необходимо отметить, что управляющее напряжение в обеих схемах изменяет не только длительность импульсов, но и их частоту. Добавив в каждую из схем по одному компаратору, можно зафиксировать частоту выходных сигналов.
В Схеме 1 пилообразное напряжение с вывода 6 необходимо подать на вход второго компаратора. Это напряжение будет задавать коэффициент заполнения выходных импульсов постоянной частоты. Аналогично, в Схеме 2 на второй компаратор подается пилообразное напряжение с инвертирующего входа MAX998.
Перевод: AlexAAN по заказу РадиоЛоцман
Широтно-импульсно модулированный сигнал очень часто применяется в электронике для передачи информации, регулировки мощности или формирования постоянного напряжения произвольного уровня. В этой статье описано устройство на операционном усилителе, размером 20х20мм из 15 элементов, которое генерирует ШИМ-сигнал.
Формирование ШИМ-сигнала
ШИМ-сигнал (PWM) представляет собой последовательность импульсов, частота которых неизменна, а модулируется длительность импульсов. Большинство микроконтроллеров легко справляются с этой задачей, но что делать если нет желания программировать и использовать такое мощное средство для такой простой задачи? В этом случае можно использовать дискретные элементы.
Для начала необходимо сформировать последовательность пилообразных импульсов и подать ее на вход компаратора. На второй вход компаратора подается модулирующий сигнал, например, напряжение с переменного резистора. Если напряжение генератора выше напряжения на втором входе — на выходе напряжение близко к напряжению питания. Если напряжение генератора ниже — на выходе ноль.
На рисунке Uк — напряжение команды (постоянный уровень, заданный переменным резистором), Uген — напряжение генератора, UPWM — ШИМ-сигнал.
Схема
Все эти задачи можно легко выполнить при помощи двух операционных усилителей так как показано на схеме.
Читайте также: Деревянная лопата для печи
Схема генератора ШИМ
В схеме применена микросхема LM358N, которая использует однополярное питание и содержит два канала в одном корпусе SO8.
Печатная плата
Все элементы, кроме резистора R3, предназначены для поверхностного монтажа и располагаются на плате с минимальным размером. R3 расположен на обратной стороне платы. Генераторные схемы очень капризны с точки зрения трассировки печатных плат. Если изменить топологию платы нельзя гарантировать ее работоспособность. Первая версия платы генерировала пилообразное напряжение с очень низкой амплитудой и ее было невозможно использовать.
Плата генератора ШИМ-сигнала
Сборка и работа схемы
Сама плата очень маленькая — 20х20 мм и легко изготавливается методом ЛУТ. Она лишь немного больше переменного резистора, изменяющего скважность сигнала.
Плата генератора ШИМ в сборе
Технические характеристики
- напряжение питания, 5-15В
- диапазон изменения скважности, от 1 до бесконечности
- рабочая частота, 500Гц
- потребляемый ток, не более, 2мА
Рабочая частота определяется конденсатором C1. Для снижения частоты можно увеличить его емкость и наоборот.
Список элементов
- ИМС LM358N в корпусе SO8 (DA1), 1 шт.
- Резисторы 20кОм в корпусе 0805 (R1,R2,R4-R6), 5 шт.
- Резисторы 10кОм в корпусе 0805 (R7,R8), 2 шт.
- Любой переменный резистор с шагом выводов 5мм и сопротивлением 50кОм
- Конденсаторы 0,1мкФ в корпусе 0805 (C1,C2,C4), 3шт.
- Конденсатор танталовый 47мкФ, 16В, типоразмера С, T491C476K016AT (C3), 1шт.
Видео работы
Работает плата достаточно стабильно. На видео видно, как меняется яркость светодиода. Неудобство только в том, что используется лишь половина диапазона резистора R3. То есть в первой и последней четверти положения вала напряжение остается без изменения.
Файл печатной платы в формате Sprint Layout 5.0 можно скачать по ссылке.
Широтно-импульсно модулированный сигнал очень часто применяется в электронике для передачи информации, регулировки мощности или формирования постоянного напряжения произвольного уровня. В этой статье описано устройство на операционном усилителе, размером 20х20мм из 15 элементов, которое генерирует ШИМ-сигнал.
Формирование ШИМ-сигнала
ШИМ-сигнал (PWM) представляет собой последовательность импульсов, частота которых неизменна, а модулируется длительность импульсов. Большинство микроконтроллеров легко справляются с этой задачей, но что делать если нет желания программировать и использовать такое мощное средство для такой простой задачи? В этом случае можно использовать дискретные элементы.
Для начала необходимо сформировать последовательность пилообразных импульсов и подать ее на вход компаратора. На второй вход компаратора подается модулирующий сигнал, например, напряжение с переменного резистора. Если напряжение генератора выше напряжения на втором входе — на выходе напряжение близко к напряжению питания. Если напряжение генератора ниже — на выходе ноль.
Читайте также: Генератор москвич 412 схема подключения
На рисунке Uк — напряжение команды (постоянный уровень, заданный переменным резистором), Uген — напряжение генератора, UPWM — ШИМ-сигнал.
Схема
Все эти задачи можно легко выполнить при помощи двух операционных усилителей так как показано на схеме.
Схема генератора ШИМ
В схеме применена микросхема LM358N, которая использует однополярное питание и содержит два канала в одном корпусе SO8.
Печатная плата
Все элементы, кроме резистора R3, предназначены для поверхностного монтажа и располагаются на плате с минимальным размером. R3 расположен на обратной стороне платы. Генераторные схемы очень капризны с точки зрения трассировки печатных плат. Если изменить топологию платы нельзя гарантировать ее работоспособность. Первая версия платы генерировала пилообразное напряжение с очень низкой амплитудой и ее было невозможно использовать.
Плата генератора ШИМ-сигнала
Сборка и работа схемы
Сама плата очень маленькая — 20х20 мм и легко изготавливается методом ЛУТ. Она лишь немного больше переменного резистора, изменяющего скважность сигнала.
Плата генератора ШИМ в сборе
Технические характеристики
- напряжение питания, 5-15В
- диапазон изменения скважности, от 1 до бесконечности
- рабочая частота, 500Гц
- потребляемый ток, не более, 2мА
Рабочая частота определяется конденсатором C1. Для снижения частоты можно увеличить его емкость и наоборот.
Список элементов
- ИМС LM358N в корпусе SO8 (DA1), 1 шт.
- Резисторы 20кОм в корпусе 0805 (R1,R2,R4-R6), 5 шт.
- Резисторы 10кОм в корпусе 0805 (R7,R8), 2 шт.
- Любой переменный резистор с шагом выводов 5мм и сопротивлением 50кОм
- Конденсаторы 0,1мкФ в корпусе 0805 (C1,C2,C4), 3шт.
- Конденсатор танталовый 47мкФ, 16В, типоразмера С, T491C476K016AT (C3), 1шт.
Видео работы
Работает плата достаточно стабильно. На видео видно, как меняется яркость светодиода. Неудобство только в том, что используется лишь половина диапазона резистора R3. То есть в первой и последней четверти положения вала напряжение остается без изменения.
Файл печатной платы в формате Sprint Layout 5.0 можно скачать по ссылке.
Понравилась статья? Поделись с друзьями!
ШИМ-регуляторы оборотов маломощных коллекторных электродвигателей
ШИМ-сигнал (PWM) представляет собой последовательность импульсов, частота которых неизменна, а модулируется длительность импульсов. Большинство микроконтроллеров легко справляются с этой задачей, но что делать если нет желания программировать и использовать такое мощное средство для такой простой задачи? В этом случае можно использовать дискретные элементы.
Для начала необходимо сформировать последовательность пилообразных импульсов и подать ее на вход компаратора. На второй вход компаратора подается модулирующий сигнал, например, напряжение с переменного резистора. Если напряжение генератора выше напряжения на втором входе — на выходе напряжение близко к напряжению питания. Если напряжение генератора ниже — на выходе ноль.
На рисунке Uк — напряжение команды (постоянный уровень, заданный переменным резистором), Uген — напряжение генератора, UPWM — ШИМ-сигнал.
Читайте также: Если сорвана пломба на счетчике, как доказать свою правоту и избежать крупного штрафа
Генератор ШИМ сигнала на микроконтроллере с регулируемой скважностью
Это простой ШИМ-генератор работающий от стабилизированного источника питания с напряжением 4,75…5,25 В. На его выходе генерируется прямоугольный сигнал с постоянной частотой 1 Гц, но с регулируемым коэффициентом заполнения в диапазоне 0…100% с шагом 1%, в зависимости от установленных перемычек J1-J7.
Устройство найдет применение в мастерской каждого радиолюбителя, например, при тестировании различных прототипов цифровых схем.
Основой генератора является популярный микроконтроллер ATmega48. Вместо него можно использовать модели ATmega88 или ATmega168, которые отличаются только большим объемом памяти.
Управляющая программа написана на ассемблере и идентична для каждого из упомянутых микроконтроллеров (занимает 2440 байт флэш-памяти). После включения источника питания или сброса микроконтроллера с помощью кнопки S1 управляющая программа конфигурирует вывод PB0 (№ 14) в качестве выхода с низким логическим уровнем (LOW), а все остальные выводы — как входы с высоким логическим уровнем (включены внутренние подтягивающие резисторы).
Паяльная станция 2 в 1 с ЖК-дисплеем
Мощность: 800 Вт, температура: 100…480 градусов, поток возду…
Затем микроконтроллер считывает состояние перемычек J1-J7, которые подключены к контактам PD0…PD6. Если все перемычки открыты (OFF), программа переходит к выполнению цикла, генерирующего сигнал с заполнением 0% (режим 0) и на выходе генератора все еще остается низкое логическое состояние (LOW).
Однако если при помощи перемычек установлено некоторое двоичное значение X = 1…99 (J1 — самый младший бит), то программа переходит к соответствующему циклу (режим X), который выполняется без прерывания.
В каждом таком цикле есть две инструкции, которые переключают состояние выхода PB0 на противоположное. Время между переключениями различается (за исключением 50% заполнения), но их сумма всегда равна 1 секунде. Благодаря этому на выходе генератора получается прямоугольный сигнал с различным заполнением, но всегда с частотой 1 Гц.
Если перемычками установлено двоичное значение X > 99, программа переходит к выполнению цикла, генерирующего 100% сигнал (режим 100), при этом на выходе генератора постоянно высокое логическое состояние (HIGH).
Для правильной работы генератора необходимо использовать кварцевый резонатор Q1 с номинальной частотой 4 МГц, поскольку циклы в управляющей программе написаны именно для этой частоты микроконтроллера.
Резистор R2 и конденсатор C1 образуют низкочастотный фильтр, который подавляет дребезг контактов, возникающий в момент нажатия кнопки S1. Транзисторы VT1 (BC547) и VT2 (BC557) работают в качестве выходного буфера с током до 100 мА.
Все возможные для установки комбинации перемычек J1-J7 и соответствующий им коэффициент заполнения сигнала, приведены в следующей таблице.
Читайте также: Установка домофона своими руками: схемы подключения и рекомендации по монтажу
После пайки всех элементов убедитесь, что нет коротких замыканий. Подайте питание и запрограммируйте микроконтроллер, используя любой ISP программатор через разъем CON3. Контакты разъема CON3 расположены стандартным образом, рекомендованным Atmel.
При программировании необходимо установить соответствующие fuse и lock биты:
- FL (Fuse Low): $F7
- FH (Fuse High): $DF
- FE (Fuse Extended): $F9 ($FF для ATmega48)
- LB (Lock Bits): $FF
При таких настройках:
- используется внешний кварцевый резонатор (биты CKSEL3-0 = 0111);
- делитель частоты на 8 отключен, что вызывает тактирование микроконтроллера на полной частоте резонатора (CKDIV8 = 1);
- увеличено время запуска до 65 мс после включения напряжения питания (SUT1-0 = 11);
- отключена генерация тактовой частоты микроконтроллера на выводе PB0 (CKOUT = 1);
- включена возможность сброса PC6 (RSTDISBL=1) и программирования через последовательный интерфейс (SPIEN=0).
После программирования микроконтроллера отключите программатор от платы. Затем перемычками J1-J7 установите комбинацию, которая соответствует выбранному коэффициенту заполнения, и нажмите кнопку S1. На выходе генератора должен появиться прямоугольный сигнал с частотой 1 Гц и выбранной скважностью.
(2,6 KiB, скачано: 456)
Печатная плата
Все элементы, кроме резистора R3, предназначены для поверхностного монтажа и располагаются на плате с минимальным размером. R3 расположен на обратной стороне платы. Генераторные схемы очень капризны с точки зрения трассировки печатных плат. Если изменить топологию платы нельзя гарантировать ее работоспособность. Первая версия платы генерировала пилообразное напряжение с очень низкой амплитудой и ее было невозможно использовать.
Плата генератора ШИМ-сигнала
ШИМ-регуляторы оборотов маломощных коллекторных электродвигателей
Регулировать частоту вращения маломощного коллекторного электродвигателя (ЭД) можно, включая последовательно с ним резистор. Однако такой вариант дает низкий КПД, не дает возможности делать плавную регулировку (переменные резисторы в несколько десятков Ом не распространены). Главное, что эта мера иногда приводит к остановке вращения вала: ЭД «зависает» при малом напряжении питания в некотором положении ротора. Регуляторы, приведенные в этой статье, свободны от этих недостатков. Устройство можно применять и для регулировки яркости свечения ламп накаливания.
На рис.1 показана схема одного из регуляторов. На однопереходном транзисторе VT1 выполнен генератор пилообразного напряжения (частота повторения 150 Гц), а операционный усилитель (ОУ) DA1 выполняет функцию компаратора, формирующего ШИМ-последовательность на базе ключевого транзистора VT2. Регулируют частоту вращения потенциометром R5, который изменяет ширину импульсов. В связи с тем, что их амплитуда всегда равна напряжению питания, ЭД никогда не «зависает», к тому же он может вращаться намного медленнее, чем в номинальном режиме.
Вторая схема (рис.2) аналогична предыдущей, но в качестве задающего генератора используется ОУ DA1. Этот ОУ работает как генератор напряжения треугольной формы с частотой повторения 500 Гц. Потенциометром R7 устанавливают частоту вращения.
Читайте также: Как разобрать кухонные вытяжки разных моделей с целью самостоятельного ремонта или очистки
Интересная схема регулятора, выполненного на интегральном таймере NE555, показана на рис.3. Задающий генератор работает на частоте 500 Гц. Длительность импульсов, а значит, и частоту вращения ЭД можно регулировать в пределах от 2 до 98% периода повторения. Выход генератора через усилитель тока на транзисторе VT1 управляет ЭД М1. Недостатком вышеприведенных схем является отсутствие цепей стабилизации частоты вращения при изменении нагрузки на валу ЭД. Решить эту проблему поможет схема, показанная на рис.4.
Как и большинство подобных устройств, данный регулятор содержит задающий генератор напряжения треугольной формы с частотой повторения 2 кГц на DA1.1.DA1.2, компаратор DA1.3, электронный ключ VT1 и регулятор скважности импульсов (частоты вращения ЭД) R6. Особенность схемы — наличие положительной обратной связи через элементы R12,R11,VD1,C2, DA1.4, стабилизирующей частоту вращения вала М1 при изменении нагрузки. При налаживании с конкретным ЭД резистором R12 подбирают такую глубину ПОС, при которой еще не происходят автоколебания частоты вращения при изменении нагрузки на валу двигателя.
Детали. В приведенных выше схемах можно использовать следующие замены деталей: транзистор КТ117А можно заменить КТ117Б-Г или 2N2646; КТ817Б — КТ815, КТ805; микросхему К140УД7 — К140УД6, КР544УД1 ,ТL071, TL081; таймер NE555 — С555, КР1006ВИ1; микросхему TL074 — TL064, TL084, LM324. Для подключения более мощной нагрузки ключевой транзистор КТ817 можно заменить мощным полевым транзистором, например, IRF3905 или ему подобный. Такой транзистор может коммутировать токи до 50 А.
Радіоаматор №4, 2008г.
Список радиоэлементов
Обозначение | Тип | Номинал | Количество | Примечание | Магазин | Мой блокнот |
Рис. 1 | ||||||
DA1 | ОУ | К140КД7 | 1 | Поиск в магазине Отрон | В блокнот | |
VT1 | Транзистор | КТ117А | 1 | Поиск в магазине Отрон | В блокнот | |
VT2 | Биполярный транзистор | КТ817Б | 1 | Поиск в магазине Отрон | В блокнот | |
VD1 | Выпрямительный диод | 1N4001 | 1 | Поиск в магазине Отрон | В блокнот | |
С1 | Конденсатор | 22 нФ | 1 | Поиск в магазине Отрон | В блокнот | |
R1 | Резистор | 330 кОм | 1 | Поиск в магазине Отрон | В блокнот | |
R2 | Резистор | 470 Ом | 1 | Поиск в магазине Отрон | В блокнот | |
R3 | Резистор | 68 Ом | 1 | Поиск в магазине Отрон | В блокнот | |
R4 | Резистор | 100 кОм | 1 | подбор | Поиск в магазине Отрон | В блокнот |
R5 | Переменный резистор | 47 кОм | 1 | Поиск в магазине Отрон | В блокнот | |
R6 | Резистор | 150 кОм | 1 | подбор | Поиск в магазине Отрон | В блокнот |
R7 | Резистор | 510 Ом | 1 | Поиск в магазине Отрон | В блокнот | |
M1 | Электродвигатель | 1 | Поиск в магазине Отрон | В блокнот | ||
Рис. 2 | ||||||
DA1, DA2 | ОУ | К140КД7 | 2 | Поиск в магазине Отрон | В блокнот | |
VT1 | Биполярный транзистор | КТ817Б | 1 | Поиск в магазине Отрон | В блокнот | |
VD1 | Выпрямительный диод | 1N4001 | 1 | Поиск в магазине Отрон | В блокнот | |
С1 | Конденсатор | 100 нФ | 1 | Поиск в магазине Отрон | В блокнот | |
С2 | Электролитический конденсатор | 100 мкФ | 1 | Поиск в магазине Отрон | В блокнот | |
R1-R3 | Резистор | 20 кОм | 3 | Поиск в магазине Отрон | В блокнот | |
R4, R5 | Резистор | 10 кОм | 2 | Поиск в магазине Отрон | В блокнот | |
R6 | Резистор | 20 кОм | 1 | подбор | Поиск в магазине Отрон | В блокнот |
R7 | Переменный резистор | 47 кОм | 1 | Поиск в магазине Отрон | В блокнот | |
R8 | Резистор | 150 кОм | 1 | Поиск в магазине Отрон | В блокнот | |
R9 | Резистор | 1 МОм | 1 | Поиск в магазине Отрон | В блокнот | |
R10 | Резистор | 510 Ом | 1 | Поиск в магазине Отрон | В блокнот | |
M1 | Электродвигатель | 1 | Поиск в магазине Отрон | В блокнот | ||
Рис. 3 | ||||||
DA1 | Программируемый таймер и осциллятор | NE555 | 1 | Поиск в магазине Отрон | В блокнот | |
VT1 | Биполярный транзистор | КТ817Б | 1 | Поиск в магазине Отрон | В блокнот | |
VD1, VD2 | Диод | Д9Б | 2 | Поиск в магазине Отрон | В блокнот | |
VD3 | Выпрямительный диод | 1N4001 | 1 | Поиск в магазине Отрон | В блокнот | |
С1 | Конденсатор | 0.22 мкФ | 1 | Поиск в магазине Отрон | В блокнот | |
С2 | Конденсатор | 0.1 мкФ | 1 | Поиск в магазине Отрон | В блокнот | |
R1, R3 | Резистор | 1 кОм | 2 | Поиск в магазине Отрон | В блокнот | |
R2 | Переменный резистор | 10 кОм | 1 | Поиск в магазине Отрон | В блокнот | |
R4 | Резистор | 510 Ом | 1 | Поиск в магазине Отрон | В блокнот | |
M1 | Электродвигатель | 1 | Поиск в магазине Отрон | В блокнот | ||
Рис. 4 | ||||||
DA1 | Операционный усилитель | TL074 | 1 | Поиск в магазине Отрон | В блокнот | |
VT1 | Биполярный транзистор | КТ817Б | 1 | Поиск в магазине Отрон | В блокнот | |
VD1 | Диод | Д9Б | 1 | Поиск в магазине Отрон | В блокнот | |
VD3 | Выпрямительный диод | 1N4001 | 1 | Поиск в магазине Отрон | В блокнот | |
С1 | Конденсатор | 22 нФ | 1 | Поиск в магазине Отрон | В блокнот | |
С2 | Электролитический конденсатор | 10 мкФ | 1 | Поиск в магазине Отрон | В блокнот | |
С3 | Электролитический конденсатор | 100 мкФ | 1 | Поиск в магазине Отрон | В блокнот | |
R1, R3, R7, R9 | Резистор | 10 кОм | 4 | Поиск в магазине Отрон | В блокнот | |
R2 | Резистор | 13 кОм | 1 | Поиск в магазине Отрон | В блокнот | |
R4 | Резистор | 22 кОм | 1 | Поиск в магазине Отрон | В блокнот | |
R5 | Резистор | 20 кОм | 1 | Поиск в магазине Отрон | В блокнот | |
R6 | Переменный резистор | 10 кОм | 1 | Поиск в магазине Отрон | В блокнот | |
R8, R11 | Резистор | 100 кОм | 2 | Поиск в магазине Отрон | В блокнот | |
R10 | Резистор | 330 Ом | 1 | Поиск в магазине Отрон | В блокнот | |
R12 | Переменный резистор | 47 кОм | 1 | Поиск в магазине Отрон | В блокнот | |
M1 | Электродвигатель | 1 | Поиск в магазине Отрон | В блокнот | ||
Добавить все |