Генератор управляемый напряжением как работает

Генератор шим управляемый напряжением

Генераторы широтно-импульсно модулированных сигналов (ШИМ) интегрированы практически в любое устройство импульсного преобразования мощности. В статье будут показаны два способа реализации автономных аналоговых ШИМ генераторов. При необходимости улучшить характеристики генераторов их можно модифицировать, добавив в каждый по одной микросхеме.

Устройства, состоящие из одной микросхемы, могут быть сделаны по двум схемам. В одной используется интегральный таймер ICM7555, а в другой – маломощный компаратор MAX998. Мы рассмотрим обе схемы.

Схема 1: использование маломощного таймера в качестве ШИМ генератора

Таймер ICM7555 включается согласно Рисунку 1.

Рисунок 1. ШИМ генератор и таймер на одной микросхеме.

На Рисунке 1 ширина импульса на выводе 3 модулируется управляющим напряжением VCONTROL, приложенным к выводу 5. Лабораторные измерения схемы были выполнены при напряжении питания 5 В. На Рисунках 2…5 показаны выходные ШИМ сигналы при трех различных управляющих напряжениях: 1 В, 2 В и 4 В. Конденсатор C1 заряжается напряжением источника питания VSUPPLY до уровня VCONTROL и разряжается от VCONTROL/2 до уровня земли. При отсутствии внешнего управляющего напряжения напряжение VCONTROL составляет 2/3 от VSUPPLY.

Рисунок 2. Выход ШИМ генератора при управляющем напряжении,
равном 1 В.
Рисунок 3. Выход ШИМ генератора при управляющем напряжении,
равном 2 В.

Рисунок 4. Выход ШИМ генератора при отсутствии управляющего напряжения.
Рисунок 5. Выход ШИМ генератора при управляющем напряжении,
равном 4 В.

Представленные осциллограммы иллюстрируют влияние управляющего напряжения, приложенного к выводу 5, на изменения пороговых напряжений двух внутренних компараторов. В отсутствие управляющего напряжения (Рисунок 4) пороги заряда и разряда C1 определяются внутренней структурой таймера и составляют 1/3 и 2/3 от напряжения питания. Этими порогами, равноудаленными от напряжения питания и земли, устанавливается коэффициент заполнения равный 50%. При изменении управляющего напряжения изменяется время заряда C1, за которое напряжение на конденсаторе должно достичь VCONTROL, и время разряда, в течение которого напряжение спадает до VCONTROL/2. Этот процесс приводит к модуляции ширины выходного импульса.

Время заряда определяется формулой

Время разряда можно вычислить из выражения

Схема 2: генератор ШИМ с компаратором

Читайте также: Велосипед из газетных трубочек своими руками

Компаратор MAX998 включается согласно Рисунку 6.

Рисунок 6. ШИМ генератор и компаратор.

Ширина выходного импульса модулируется под управлением напряжения, приложенного к R1. При напряжении питания 5 В были проведены лабораторные измерения, результаты которых представлены на Рисунках 7…9, демонстрирующих формы выходных сигналов ШИМ при управляющем напряжении, равном 1 В, 2 В и 4 В.

Рисунок 7. Выход ШИМ генератора при управляющем напряжении,
равном 1 В.
Рисунок 8. Выход ШИМ генератора при управляющем напряжении,
равном 2 В.
Рисунок 9. Выход ШИМ генератора при управляющем напряжении,
равном 3 В.

Приложенное к микросхеме MAX998 управляющее напряжение устанавливает пороговые напряжения, определяющие моменты начала заряда и разряда C1. Верхний порог равен

а нижнее пороговое напряжение равно VCONTROL/2.
Время заряда можно найти из формулы

Время разряда описывается выражением

Варианты ШИМ генераторов на двух микросхемах

Необходимо отметить, что управляющее напряжение в обеих схемах изменяет не только длительность импульсов, но и их частоту. Добавив в каждую из схем по одному компаратору, можно зафиксировать частоту выходных сигналов.

В Схеме 1 пилообразное напряжение с вывода 6 необходимо подать на вход второго компаратора. Это напряжение будет задавать коэффициент заполнения выходных импульсов постоянной частоты. Аналогично, в Схеме 2 на второй компаратор подается пилообразное напряжение с инвертирующего входа MAX998.

Перевод: AlexAAN по заказу РадиоЛоцман

Широтно-импульсно модулированный сигнал очень часто применяется в электронике для передачи информации, регулировки мощности или формирования постоянного напряжения произвольного уровня. В этой статье описано устройство на операционном усилителе, размером 20х20мм из 15 элементов, которое генерирует ШИМ-сигнал.

Формирование ШИМ-сигнала

ШИМ-сигнал (PWM) представляет собой последовательность импульсов, частота которых неизменна, а модулируется длительность импульсов. Большинство микроконтроллеров легко справляются с этой задачей, но что делать если нет желания программировать и использовать такое мощное средство для такой простой задачи? В этом случае можно использовать дискретные элементы.

Для начала необходимо сформировать последовательность пилообразных импульсов и подать ее на вход компаратора. На второй вход компаратора подается модулирующий сигнал, например, напряжение с переменного резистора. Если напряжение генератора выше напряжения на втором входе — на выходе напряжение близко к напряжению питания. Если напряжение генератора ниже — на выходе ноль.

На рисунке Uк — напряжение команды (постоянный уровень, заданный переменным резистором), Uген — напряжение генератора, UPWM — ШИМ-сигнал.

Схема

Все эти задачи можно легко выполнить при помощи двух операционных усилителей так как показано на схеме.

Читайте также: Гипсовый камень своими руками без формы

Схема генератора ШИМ

В схеме применена микросхема LM358N, которая использует однополярное питание и содержит два канала в одном корпусе SO8.

Печатная плата

Все элементы, кроме резистора R3, предназначены для поверхностного монтажа и располагаются на плате с минимальным размером. R3 расположен на обратной стороне платы. Генераторные схемы очень капризны с точки зрения трассировки печатных плат. Если изменить топологию платы нельзя гарантировать ее работоспособность. Первая версия платы генерировала пилообразное напряжение с очень низкой амплитудой и ее было невозможно использовать.

Плата генератора ШИМ-сигнала

Сборка и работа схемы

Сама плата очень маленькая — 20х20 мм и легко изготавливается методом ЛУТ. Она лишь немного больше переменного резистора, изменяющего скважность сигнала.

Плата генератора ШИМ в сборе

Технические характеристики

  • напряжение питания, 5-15В
  • диапазон изменения скважности, от 1 до бесконечности
  • рабочая частота, 500Гц
  • потребляемый ток, не более, 2мА

Рабочая частота определяется конденсатором C1. Для снижения частоты можно увеличить его емкость и наоборот.

Список элементов

  1. ИМС LM358N в корпусе SO8 (DA1), 1 шт.
  2. Резисторы 20кОм в корпусе 0805 (R1,R2,R4-R6), 5 шт.
  3. Резисторы 10кОм в корпусе 0805 (R7,R8), 2 шт.
  4. Любой переменный резистор с шагом выводов 5мм и сопротивлением 50кОм
  5. Конденсаторы 0,1мкФ в корпусе 0805 (C1,C2,C4), 3шт.
  6. Конденсатор танталовый 47мкФ, 16В, типоразмера С, T491C476K016AT (C3), 1шт.

Видео работы

Работает плата достаточно стабильно. На видео видно, как меняется яркость светодиода. Неудобство только в том, что используется лишь половина диапазона резистора R3. То есть в первой и последней четверти положения вала напряжение остается без изменения.

Файл печатной платы в формате Sprint Layout 5.0 можно скачать по ссылке.

Широтно-импульсно модулированный сигнал очень часто применяется в электронике для передачи информации, регулировки мощности или формирования постоянного напряжения произвольного уровня. В этой статье описано устройство на операционном усилителе, размером 20х20мм из 15 элементов, которое генерирует ШИМ-сигнал.

Формирование ШИМ-сигнала

ШИМ-сигнал (PWM) представляет собой последовательность импульсов, частота которых неизменна, а модулируется длительность импульсов. Большинство микроконтроллеров легко справляются с этой задачей, но что делать если нет желания программировать и использовать такое мощное средство для такой простой задачи? В этом случае можно использовать дискретные элементы.

Для начала необходимо сформировать последовательность пилообразных импульсов и подать ее на вход компаратора. На второй вход компаратора подается модулирующий сигнал, например, напряжение с переменного резистора. Если напряжение генератора выше напряжения на втором входе — на выходе напряжение близко к напряжению питания. Если напряжение генератора ниже — на выходе ноль.

Читайте также: Древесина для отделки бани

На рисунке Uк — напряжение команды (постоянный уровень, заданный переменным резистором), Uген — напряжение генератора, UPWM — ШИМ-сигнал.

Схема

Все эти задачи можно легко выполнить при помощи двух операционных усилителей так как показано на схеме.

Схема генератора ШИМ

В схеме применена микросхема LM358N, которая использует однополярное питание и содержит два канала в одном корпусе SO8.

Печатная плата

Все элементы, кроме резистора R3, предназначены для поверхностного монтажа и располагаются на плате с минимальным размером. R3 расположен на обратной стороне платы. Генераторные схемы очень капризны с точки зрения трассировки печатных плат. Если изменить топологию платы нельзя гарантировать ее работоспособность. Первая версия платы генерировала пилообразное напряжение с очень низкой амплитудой и ее было невозможно использовать.

Плата генератора ШИМ-сигнала

Сборка и работа схемы

Сама плата очень маленькая — 20х20 мм и легко изготавливается методом ЛУТ. Она лишь немного больше переменного резистора, изменяющего скважность сигнала.

Плата генератора ШИМ в сборе

Технические характеристики

  • напряжение питания, 5-15В
  • диапазон изменения скважности, от 1 до бесконечности
  • рабочая частота, 500Гц
  • потребляемый ток, не более, 2мА

Рабочая частота определяется конденсатором C1. Для снижения частоты можно увеличить его емкость и наоборот.

Список элементов

  1. ИМС LM358N в корпусе SO8 (DA1), 1 шт.
  2. Резисторы 20кОм в корпусе 0805 (R1,R2,R4-R6), 5 шт.
  3. Резисторы 10кОм в корпусе 0805 (R7,R8), 2 шт.
  4. Любой переменный резистор с шагом выводов 5мм и сопротивлением 50кОм
  5. Конденсаторы 0,1мкФ в корпусе 0805 (C1,C2,C4), 3шт.
  6. Конденсатор танталовый 47мкФ, 16В, типоразмера С, T491C476K016AT (C3), 1шт.

Видео работы

Работает плата достаточно стабильно. На видео видно, как меняется яркость светодиода. Неудобство только в том, что используется лишь половина диапазона резистора R3. То есть в первой и последней четверти положения вала напряжение остается без изменения.

Файл печатной платы в формате Sprint Layout 5.0 можно скачать по ссылке.

Понравилась статья? Поделись с друзьями!

Конструкции генераторов. Примеры схем

Конструкции генераторов. Примеры схем

Устройство без генератора либо вообще ни на что не способно, либо предназначено для подключения к другому (которое скорее всего содержит генератор). Не будет преувеличением сказать, что генераторы являются таким же необходимым устройством в электронике, как регулируемый источник питания постоянного тока.

В зависимости от конкретного применения генератор может использоваться просто как источник регулярных импульсов («часы» в цифровой системе). От него может потребоваться стабильность и точность (например, опорный интервал времени в частотомере), регулируемость (гетеродин передатчика или приемника) или способность генерировать колебания в
точности заданной формы (как например, генератор горизонтальной развертки осциллографа).

Релаксационный генератор

Очень простой генератор можно получить несложными манипуляциями. Зарядим конденсатор через резистор (или источник тока), а затем, когда напряжение достигнет некоторого порогового значения, быстро его разрядим и начнем цикл сначала. Это можно сделать с помощью внешней цепи, обеспечивающей изменения полярности тока заряда при достижении некоторого порогового напряжения. Следовательно, будут генерироваться колебания треугольной формы, а не пилообразные. Генераторы, построенные на этом принципе, известны под названием «релаксационные генераторы». Они просты и недороги и при умелом проектировании могут обеспечивать удовлетворительную стабильность по частоте.

Раньше для создания релаксационных генераторов применялись устройства с отрицательным сопротивлением, такие, как однопереходные транзисторы или неоновые лампы. Теперь предпочитают ОУ или специальные интегральные схемы таймеров. На рисунке показан классический релаксационный RС-генератор.

Конструкции генераторов. Примеры схем

Работает он просто. Допустим, что при начальном включении питания выходной сигнал ОУ выходит на положительное насыщение (каким образом это произойдет — неважно). Конденсатор начинает заряжаться до напряжения U + с постоянной времени, равной RC. Когда напряжение на конденсаторе достигнет половины напряжения источника питания, ОУ переключается в состояние отрицательного насыщения (он включен как триггер Шмитта). Конденсатор начинает разряжаться до U- с той же самой постоянной времени. Этот цикл повторяется бесконечно, с периодом 2,2 RС. Цикл не зависит от напряжения источника питания.

Применяя для заряда конденсатора источники тока, можно получить колебания хорошей треугольной формы. Пример удачной схемы (datasheet СА3160):

Конструкции генераторов. генератор, управляемый напряжением

Иногда необходим генератор с очень низким уровнем шума (так называемый «низкий внеполосный шум»). В этом отношении хороша простая схема, показанная на рисунке:

Конструкции генераторов. генератор с низким уровнем шума

В схеме используется пара КМОП-инверторов (в виде цифровых логических схем). Соединение инверторов между собой образует некоторую разновидность RC релаксационного генератора с выходным сигналом в виде прямоугольного колебания. Измерения, проведенные для этой схемы, работающей на частоте 100 кГц, показали, что плотность мощности шума в ближайшей боковой полосе ниже, по крайней мере, на 85 дБ уровня основного колебания. Иногда встречается аналогичная схема, в которой заменяют местами элементы R2 и С. Хотя это и превосходный генератор, но он уже имеет крайне зашумленный выходной сигнал.

Представленная на рисунке ниже схема имеет даже более низкий уровень шума.

Конструкции генераторов. малошумящий генератор

Кроме того, имеется возможность модулировать выходную частоту с помощью внешнего тока, прикладываемого к базе транзистора Т1. В этой схеме транзистор Т1 функционирует как интегратор. На коллекторе Т1 вырабатывается сигнал асимметричной треугольной формы. Сами же инверторы работают в качестве неинвертирующего компаратора. Изменяют полярность возбуждения на базе каждые полпериода. Эта схема имеет плотность шума — 90 дБД/Гц, измеренную на частоте 100Гц смещения от несущего колебания 150 кГц, и —100 дБД/Гц, измеренную при смещении 300 Гц. Эти схемы превосходны в отношении уровня бокового шума. Но генерируемая частота имеет большую чувствительность к колебаниям напряжения источника питания.

Генератор частот

Генератор частот — это прибор, который может выдавать колебания электрического сигнала различной формы, частоты, амплитуды, продолжительности и так далее. Он используется для разработки радиоэлектронной аппаратуры, а также для ремонта в виде генератора тестовых сигналов. Для профессионального электронщика считается незаменимым устройством на рабочем столе.

Описание генератора частоты

Ко мне прямиком из Китая приехал генератор частот. Как вы видите, он представляет из себя довольно таки солидный прибор.

генератор частот

На лицевой панели генератора частот мы видим множество различных кнопок и крутилок. Эта крутилка предназначена для того, чтобы уменьшать или увеличивать амплитуду сигнала.

амплитуда на генераторе частоты

Эти кнопки предназначены для изменения формы сигналов.

виды сигналов генератора частоты

Здесь можно увидеть такие сигналы, как

прямоугольный сигнал

треугольный сигнал

синусоидальный сигнал

Далее с помощью кнопок можно выбрать нужный диапазон, а также подключить какой-либо внешний сигнал.

виды сигналов генератора частоты

Под внешним счетчиком здесь имеется ввиду какой-либо периодический сигнал с какого-нибудь генератора частоты либо схемы. Подавая такой сигнал на разъем нашего генератора частоты, мы с легкостью можем определить частоту неизвестного сигнала вплоть до 10 Мегагерц. То есть в данном случае генератор функций выполняет роль частотомера.

Далее идут разъемы.

разъемы генератора частоты

VCF – Voltage Controlled Frequency. По нашему ГУН. Расшифровывается как Генератор Управляемый Напряжением. Само название говорит нам о том, что мы можем менять частоту сигнала с генератора частоты, подавая на этот разъем какое-либо напряжение. В зависимости от того, какая будет амплитуда подаваемого напряжения, такая и будет частота на выходе генератора частоты.

TTL OUT. ТТЛ – Транзисторно-Транзисторная-Логика. OUT – выход. Этот выход предназначен для тактирования логических микросхем, построенных на так называемой транзисторно-транзисторной логике. То есть это логические элементы, которые в своем составе имеют только биполярные транзисторы и резисторы. Такие микросхемы делают в основном на питание +5 В.

Логический ноль – это уровень напряжения от 0 и до +0,5 В. Уровень логической единички от 2,4 и до +5 В. Поэтому, с этого выхода мы получаем прямоугольный периодический сигнал с чередующимися нулями и единицами: 0101010101… Частоту такого сигнала выставляем с помощью крутилки и кнопок выбора диапазона.

OUTPUT. Выход с генератора. Именно с этого разъема мы и получаем необходимый нам сигнал с генератора функций.

Также небольшой интерес могут представлять из себя кнопки

аттенюатор

Написано “attention”, что значит “внимание”. На самом деле там должно быть написано “attenuator”. Аттенюатор – слово не наше, означает как “ослабить, смягчить”. Видать, китайцы сэкономили на переводчике с китайского на английский ). Итак, что за кнопочки -20dB и -40dB? dB – это децибелы. А пока вот вам ссылочка на онлайн-калькулятор. Я за вас уже все посчитал. -20dB это значит, что мы можем ослабить выдаваемый генератором сигнал в 10 раз. -40dB – в 100 раз. А если нажмем сразу на 2 кнопочки разом, то у нас в сумме получится -60dB. Следовательно, мы можем ослабить сигнал в 1000 раз.

Как работает генератор частот

Для того, чтобы наблюдать форму сигнала, которую выдает генератор частот, мы будем использовать цифровой осциллограф.

цифровой осциллограф OWON

Итак, мы хотим получить синусоидальный сигнал с частотой в 2 МГц и амплитудой в 5 Вольт. Для этого я выставляю на своем генераторе частоты 2 МГц, синус, размах сигнала 10 Вольт. Размах = 2 амплитуды сигнала.

как выставить частоту на генераторе частоты

и получаю вот такую осциллограмму. Как вы видите, генератор частот прекрасно справился со своей задачей.

осциллограмма переменного напряжения

осциллограмма треугольного сигнала

осциллограмма высокочастотного прямоугольного сигнала

Как изменить форму сигнала

Для того, чтобы получить некоторые нестандартные сигналы, типа пилы или прямоугольных сигналов с различной скважностью, нам придется задействовать

вот эту кнопочку и крутилку

Генератор частот

Пару слов о скважности. Это параметр применяется к прямоугольной форме сигналов.

формула скважности

T — период импульса, с

t — длительность импульса, с

меандр

Величина D (Duty), обратная величине S, называется коэффициентом заполнения

коэффициент заполнения формула

Иллюстрация сигналов с различным коэффициентом заполнения

На экране осциллографа это может выглядеть вот так

скважность прямоугольного сигнала

Можем также из треугольного сигнала получить пилообразный сигнал

осциллограмма пилообразного сигнала

Иногда требуется добавить постоянную составляющую в сигнал. Для этого используем вот эту кнопочку и крутилку.

добавление постоянной составляющей

Смысл этой операции заключается в том, что к переменному току мы добавляем постоянный ток. Если объяснить графически, то это будет выглядеть вот так.

постоянная составляющая

Как вы видите, эта функция без проблем работает в этом генераторе частоты

синусоида с постоянной составляющей

А также мы без проблем можем замерить этим генератором частот какую-либо частоту, например, с другого генератора. Выставили 15 КГц, он нам тоже показал 15 КГц. Все работает как надо!

частотомер

Где купить генератор частот

Очень большой выбор генераторов частот можно найти на Алиэкспрессе, н ачиная от простых дешевых

генератор частот JDS

и заканчивая профессиональными

генератор частот RIGOL

Похожие статьи по теме «генератор частот»