Гост напряжение электрической сети

Допустимое отклонение напряжения по гост: допустимые значения

Несоответствие параметров электрической сети требуемым параметрам качества электроэнергии, установленных ГОСТ 32144-2013 «Электрическая энергия. Совместимость технических средств электромагнитная.

Нормы качества электрической энергии в системах электроснабжения общего назначения», негативно влияет на работу электрооборудования. В быту чаще всего это отражается на сроке службы лампочек (быстрее перегорают), а также работе бытовой техники, в частности, холодильников, телевизоров, микроволновых печей.

В этой статье мы рассмотрим допустимое и предельное отклонение напряжения в сети по ГОСТ, а также причины возникновения такой проблемы.

Нормы в соответствии с ГОСТом

Итак, руководствоваться мы будем, ГОСТ 32144-2013, согласно которому предельное отклонение (как положительное, так и отрицательное) в России не должно превышать отметку в 10% от номинального. Итого получаем такие значения:

  • для сети 230в – от 207 до 253 Вольта;
  • для сети 400в – от 360 до 440 Вольт.

Допустимое отклонение напряжения по ГОСТ: допустимые значения

Что касается допустимого отклонения напряжения у потребителей, в ГОСТе указано, что данную величину в точках общего подключения устанавливает непосредственно сетевая организация, которая в свою очередь должна удовлетворять нормы, указанные в настоящих стандартах.

Помимо этого хотелось бы отметить, что при нормальном режиме работы сети допустимое отклонение напряжения на зажимах электрических двигателей находится в диапазоне от -5 до +10%, а других аппаратов не больше, чем 5%. В то же время после возникновения аварийного режима допускается понизить нагрузку не больше, чем на 5%.

Кстати, хотелось бы дополнительно отметить, что на источнике питания в электросетях 0,4 кВ согласно нормам отклонение не должно превышать отметку в 5%, собственно, как и у самих потребителей. Итого, 5% на источнике + 5% у потребителей, имеем 10% предельно допустимого.

Немаловажно знать о причинах возникновения отклонения напряжений. Так вот основной причиной считается сезонное или суточное изменение электрической нагрузки самих потребителей. К примеру, в зимнее время все резко включают обогреватели, в результате чего параметры электросети заметно падают. О том, что делать, если низкое напряжение в сети, мы рассказывали в соответствующей статье!

Негативное влияние отклонения параметров

Чтобы вы понимали всю опасность отклонения напряжения в сети, предоставляем к прочтению следующие факты:

  1. Когда значение понижается ниже нормы, значительно снижается срок службы используемого электрооборудования и в то же время повышается вероятность возникновения аварии. Помимо этого, в технологических установках увеличивается длительность самого производственного процесса, что влечет за собой увеличение показателей себестоимости продукции.
  2. В бытовой сети, как мы уже говорили, отклонения напряжения сокращает срок службы лампочек. При повышении напряжения на 10% срок эксплуатации обычных лампочек сокращается в 4 раза. В свою очередь энергосберегающие лампы при снижении напряжения на 10% начинают мерцать, что также негативно влияет на продолжительность их работы. Об остальных причинах мерцания люминесцентных ламп вы можете узнать из нашей статьи.
  3. Что касается электрических приводов, то из-за снижения напряжения увеличивается потребляемый двигателем тока. В свою очередь это уменьшает срок службы двигателя. Если же напряжение будет даже на незначительных казалось бы 1% выше нормы, реактивная мощность, которую потребляет электродвигатель, может увеличиться до 7%.

Допустимое отклонение напряжения по ГОСТ: допустимые значения

Подведя итог, хотелось бы отметить, что существует несколько современных способов решения проблемы: снижение потерь напряжения в электрической сети, о чем мы писали в соответствующей статье, а также регулирование нагрузки на отходящих линиях и шинах подстанций.

Вот мы и рассмотрели нормы отклонения напряжение в сети по ГОСТ. Теперь вы знаете, насколько низкого или же высокого значения может достигать этот параметр в трехфазной и однофазной сети переменного тока!

Рекомендуем также прочитать:

Диапазоны отклонений напряжения в точках передачи электроэнергии. Необходимость дифференцирования

Валентина Суднова, к. т. н., старший научный сотрудник АНО «ЭлектроСертификация»

Илья Карташев, к. т. н., ведущий научный сотрудник НИУ «МЭИ»

Владимир Тульский, к. т .н., зам. заведующего кафедрой электроэнергетических систем НИУ «МЭИ»

  • Всеволод Козлов, начальник отдела
  • ООО «НИЦ Тест-Электро», г. Москва
  • Для показателей качества электрической энергии (КЭ) в новом стандарте ГОСТ 32144-2013 установлены следующие нормы: положительные и отрицательные отклонения напряжения в точках передачи электрической энергии (ТПЭ) не должны превышать 10% номинального или согласованного значения напряжения в течение 100% времени интервала в одну неделю [1].
  • Относительно конечных электроприемников (ЭП) в ГОСТ 32144-2013 сказано, что «в электрической сети потребителя должны быть обеспечены условия, при которых отклонения напряжения питания на зажимах электроприемников не превышают установленных для них допустимых значений при выполнении требований настоящего стандарта к КЭ в точке передачи электрической энергии».
  • При возможном уровне напряжения в ТПЭ от сетевой организации (СО) потребителю, равном 90% номинального напряжения электропитания (Uном), для промышленного потребителя, в чьём энергохозяйстве есть обычно по меньшей мере трансформаторы с устройствами переключения без возбуждения (ПБВ), «обеспечить условия …» ещё представляется возможным.
  • Однако для электрической сети жилого здания, ТПЭ которой являются шины 0,4 кВ ВРУ или ГРЩ, и, например, при уровне напряжения на шинах 90% Uном (δU = –10%) и ненулевых потерях напряжения в ней, без средств регулирования напряжения в сети 0,4 кВ обеспечить отклонение напряжения на выводах ЭП уровня δU = –10% для ближайших, и уж точно для наиболее удалённых, невозможно.

Средства регулирования напряжения в сети 0,4 кВ бытового потребителя – вводные вольтодобавочные трансформаторы либо устройства «выпрямитель-инвертор» (ИБП-online) встречаются чрезвычайно редко. Массовая установка такого оборудования как мероприятие по «обеспечению условий в сети потребителя…», к которому подталкивает проект ГОСТ 32144-2103, экономически нецелесообразна.

Нормы нового ГОСТА и требования других НТД

Авторы проекта ГОСТ 32144-2013 в числе фактов, обосновывающих нормы δU = ±10% в ТПЭ сетевых организаций всех уровней, считают, что «именно изменения современной экономики и реструктурированной электроэнергетики, установленные в законодательстве Российской Федерации, были учтены в стандарте, на что неоднократно обращалось внимание разработчиками. Если под традициями понимать нормы ГОСТ 13109 по отклонениям напряжения на зажимах электроприёмника, то от этого в рыночных условиях пришлось отказаться».

Можно и отказаться, чтобы снять ответственность с СО. Но тогда как быть с Постановлением Правительства Российской Федерации от 23.05.2006 № 307 «О порядке предоставления коммунальных услуг гражданам» и требованием, чтобы параметры напряжения и частоты в электрической сети в жилом помещении отвечали требованиям, установленным законодательством Российской Федерации?

  1. Также авторы проекта ГОСТ 32144-2013 утверждают, что в «абсолютном большинстве сетей распределительно-сетевого комплекса не выполняется требование ГОСТ 13109-97 по нормально допускаемым значениям отклонения напряжения».
  2. По нашей статистике, в большинстве проведенных работ (до 90%) по измерениям в рамках обязательной сертификации и периодического контроля КЭ соответствие КЭ требованиям ГОСТ 13109-97 по отклонениям напряжения было подтверждено в части предельно допускаемых значений.
  3. В [2] поднимались вопросы о взаимодействии смежных СО в свете требований ГОСТ Р 54149-2010 по диапазонам отклонений напряжения в ТПЭ, о сохранении норм отклонений напряжения на выводах ЭП, и также было установлено, что введение показателя «согласованного напряжения UС и δU = ±10%» для уровней межрегиональных и территориальных сетевых организаций, например, не обеспечивает допустимый интервал отклонения напряжения от номинального (90–110% от UН) в ТПЭ коммунальным электрическим сетям.
  4. Необходимо ещё раз обратить внимание, что требования по обеспечению δU на выводах ЭП указаны также и в действующих нормативных документах по проектированию сетей:

РД 34.20.185-94 Инструкция по проектированию городских электрических сетей: «п. 5.2.2. В электрических сетях должны быть обеспечены отклонения напряжения у приёмников электрической энергии, не превышающие ±5% номинального напряжения сети в нормальном режиме и ±10% в послеаварийном режиме».

СП 31-110-2003 Проектирование и монтаж электроустановок жилых и общественных зданий: «п. 7.23. Отклонения напряжения от номинального на зажимах силовых электроприёмников и наиболее удалённых ламп электрического освещения не должны превышать в нормальном режиме ±5%, а предельно допустимые в послеаварийном режиме при наибольших расчётных нагрузках – ±10%».

Всё об энергетике

Номинальные напряжения электрических сетей, источников и приёмников электрической энергии постоянного и переменного тока промышленной частоты определяются комплексом документов: ГОСТ 23366, ГОСТ 721, ГОСТ 21128, ГОСТ 6962 и ГОСТ 29322.

Ряд стандартных напряжений

Ряд стандартных напряжений установлен ГОСТ 23366 для постоянного и переменного тока промышленной частоты. Напряжение на выводах проектируемого оборудования должно соответствовать значениям этого ряда, за исключением некоторых случаев [3, п.2].

Ниже приведены стандартный ряд напряжений для потребителей электрической энергии [3, таб.1].

Основной ряд напряжений постоянного и переменного тока потребителей электрической представлен в таблице 1, вспомогательный ряд напряжений переменного тока — в таблице 2, а постоянного тока — в таблице 3.

Таблица 1 — Ряд напряжений постоянного и переменного тока потребителей электрической энергии

№ п/п U, В № п/п U, В
1 0,6 14 1140
2 1,2 15 3000
3 2,4 16 6000
4 6 17 10000
5 9 18 20000
6 12 19 35000
7 27 20 110000
8 40 21 220000
9 60 22 330000
10 110 23 500000
11 220 24 750000
12 380 25 1150000
13 660

Таблица 2 — Вспомогательный ряд напряжений переменного тока потребителей электрической энергии

№ п/п U, В
1 1,5
2 5
3 15
4 24
5 36
6 80
7 2000
8 3500
9 15000
10 25000
11 150000

Таблица 3 — Вспомогательный ряд напряжений постоянного тока потребителей электрической энергии

№ п/п U, В № п/п U, В № п/п U, В № п/п U, В
1 0,25 11 24 21 300 31 5000
2 0,4 12 30 22 400 32 8000
3 4,5 13 36 23 440 33 12000
4 1,5 14 48 24 600 34 25000
5 2 15 54 25 800 35 30000
6 3 16 80 26 1000 36 40000
7 4 17 100 27 1500 37 50000
8 5 18 150 28 2000 38 60000
9 15 19 200 29 2500 39 100000
10 20 20 250 30 4000 40 150000

Стандартный ряд напряжений для источников и преобразователей (например: генератор, трансформатор и т.п.) электрической энергии [3, таб.2]. Ряд напряжений для переменного тока приведен в таблице 4, для постоянного — в таблице 5.

Таблица 4 — Ряд напряжений переменного тока источников и преобразователей электрической энергии

№ п/п U, В № п/п U, В
1 6 15 10500
2 12 16 13800
3 28,5 17 15750
4 42 18 18000
5 62 19 20000
6 115 20 24000
7 120 21 27000
8 208 22 38500
9 230 23 121000
10 400 24 242000
11 690 25 347000
12 1200 26 525000
13 3150 27 787000
14 6300 28 1200000

Читайте также: Датчик движения для освещения: виды, схемы, подключение
Таблица 5 — Ряд напряжений постоянного тока источников и преобразователей электрической энергии

№ п/п U, В № п/п U, В
1 4,5 8 230
2 6 9 460
3 12 10 600
4 28,5 11 1200
5 48 12 3300
6 62 13 6600
7 115

При выборе напряжения следует отдавать предпочтение основному ряду.

Номинальное напряжение электрооборудования до 1000 В

Номинальное напряжение оборудования до 1000 В регламентировано стандартом ГОСТ 21128. Ряд номинальных напряжений приведён в таблице 6 [2, с.2].

Таблица 6 — Номинальное напряжение источников, преобразователей, систем электроснабжения, сетей и приёмников до 1000 В

Род и вид тока Номинальное напряжение, В
источников и преобразователей систем электроснабжения, сетей и приёмников
Постоянный 6; 12; 28,5; 48; 62; 115; 230; 460 6; 12; 27; 48; 60; 110; 220(230); 440
Переменный:
однофазный 6; 12; 28,5; 42; 62; 115; 230 6; 12; 27; 40; 60; 110; 220(230)
трёхфазный 42; 62; 230; 400; 690 40; 60; 220(230); 380(400); 660(690); (1000)

Примечание: В скобках указаны значения напряжения для электрических сетей согласно [6, таб.1]

Номинальное напряжение электрооборудования свыше 1000 В

Номинальное напряжение электрооборудования свыше 1000 В регламентировано ГОСТ 721. Ряд номинальных напряжений приведён в таблице 7 [1, с.3].

  • Примечание: 1. Напряжения указанные в скобках не рекомендуются для вновь проектируемых сетей и электроустановок;
  • 2. Напряжения, обозначенные «*» для трансформаторов и автотрансформаторов, присоединяемых непосредственно к шинам генераторного напряжения электростанций или к выводам генератора;
  • В РФ исторически сложились две системы напряжений (кВ):
  • 110 — 330 — 750
  • 110 — 220 — 500 — 1150

Первая система напряжений (110 — 330 — 750) преобладает в западной части РФ, а вторая (110 — 220 — 500 — 150) — в её восточной части. В сетях центральной части РФ нет явного преобладания одной системы напряжений на другой, это своего рода переходная зона.

Номинальное напряжение тяговых систем (электрифицированного транспорта)

Номинальное напряжение для электрифицированного транспорта регламентировано ГОСТ 6962 и ГОСТ 29322. В таблице 8 приведен ряд номинальных напряжений для тяговых подстанций и токоприемников электрифицированного транспорта [4, стр.3][6, таб.2].

Таблица 8 — Номинальные напряжения тяговых подстанций и токоприемников электрифицированного транспорта

Вид электрифицированного транспорта Напряжение, В
на шинах тяговой подстанции на токоприемнике электрифицированного транспорта
Железные дороги
Магистральные: переменного тока (27500) 25000
постоянного тока (3300) 3000
Промышленные: подъездные и карьерные пути переменного тока (27500) 25000
подъездные, карьерные и внутризаводские пути постоянного тока (3300)(1650)(600) 30001500600 (550)
Городской электрифицированный транспорт
метрополитен (825) 750
трамвай, троллейбус (600) 600 (550)

Примечание: В скобках указаны значения напряжения согласно [4, стр.3]

Допустимые отклонения напряжения

В реальности, при эксплуатации электрических сетей, источников, преобразователей и потребителей электрической энергии напряжения на них отличается от номинальных параметров. Это может быть связано с нарушением нормального режима работы оборудования, потерями электроэнергии при передаче и т.п. ГОСТ 29322-2014 частично регламентирует допустимые значения отклонения напряжения.

Для электрооборудования напряжением 100 ÷ 1000 В этот диапазон ограничивается значением ±10% [6, таб.1]. Иными словами для чайника рассчитанного на номинальное напряжение 230 В допускается работа при повышении напряжения вплоть до 252 В и его просадке до 198 В. Подробнее ниже, в таблице 9 [6, таб.А.1].

Таблица 9 — Наибольшее и наименьшее напряжения источников и приёмников электрической энергии напряжением 100 ÷ 1000 В включительно

Системы Номинальная частота, Гц Напряжение, В
Номинальное напряжение источников и приёмников электроэнергии Наибольшее напряжение источников и приёмников электроэнергии Наименьшее напряжение источников электроэнергии Наименьшее напряжение приёмников электроэнергии
Трехфазные трех-, четырехпроводные системы 50 230 253 207 198
230/400 253/440 207/360 198/344
400/690 440/759 360/621 344/593
1000 1100 900 860
60 120/208 132/229 108/187 103/179
240 264 216 206
230/400 253/440 207/360 198/344
277/480 305/528 249/432 238/413
480 528 432 413
347/600 382/660 312/540 298/516
600 660 540 516
Однофазные трехпроводные системы 60 120/240 132/264 108/216 103/206

Допустимые отклонения напряжения для тяговых систем (электрифицированного транспорта) приведены в таблице 10 (источник — [6, таб.2]).

Таблица 10 — Наибольшее и наименьшее напряжение тяговых систем

Вид системы Частота, Гц Напряжение, В
Номинальное Наибольшее Наименьшее
Системы постоянного тока 600* 720* 400*
750 900 (975) 500 (550)
1500 1800 (1950) 1000 (1100)
3000 3600 (3850) 2000 (2200)
Однофазные системы переменного тока 50 или 60 6250* 6900* 4750*
16 2/3 15000 17250 12000
50 или 60 25000 27500 (29000) 19000

Примечание: 1. Номинальные напряжения обозначенные «*» не рекомендуются для вновь проектируемых сетей и электроустановок;

2. В скобках указаны значения напряжения согласно [4, стр.3]

У электрооборудования напряжением 1 ÷ 35 кВ ГОСТ 29322-2014 устанавливает допустимое отклонение примерно ±10% [6, таб.3].

Допустимые отклонения напряжения для электрооборудования 35 ÷ 230 кВ регламентированы ГОСТ 29322-2014 частично, а для электрооборудования напряжением свыше 230 кВ не регламентированы вовсе. Но это, вообще говоря, предмет отдельной статьи.

Историческая справка

Номинальные напряжения электрических сетей, источников и приёмников электрической энергии постоянного и переменного тока промышленной частоты до 1992 определялись комплексом документов ГОСТ 23366, ГОСТ 721, ГОСТ 21128, ГОСТ 6962.

ГОСТ 23366 устанавливал ряд стандартных напряжений для электроустановок, ГОСТ 21128 регламентировал номинальное напряжение в электроустановках до 1000 В, для электроустановок свыше 1000 В — ГОСТ 721, а ГОСТ 6962 — номинальные напряжения для городского электрифицированного транспорта и железных дорог.

В 1992 был издан ГОСТ 29322-92 «Стандартные напряжения» который по замыслу разработчиков должен был использоваться в комплексе с ГОСТ 721, ГОСТ 21128, ГОСТ 23366 и ГОСТ 6962 [5, с.1].

По своей сути ГОСТ 29322, являясь документом подготовленным методом прямого применения международного стандарта МЭК 38-83 [5, c.6], предназначался для искоренения исторически и территориально сложившихся номинальных напряжений и их приведения к «европейскому» стандарту.

В конечном итоге ГОСТ 29332 должен был заменить комплекс документов ГОСТ 721/21128/23366/6962.

Второе издание ГОСТ 29332 выпало на 2014 год. В этот раз ГОСТ 29332-2014 был составлен «методом перевода» стандарта IEC 60038:2009 и уже не опирался на ГОСТ 721/21128/23366/6962, хотя последние не утратили свою юридическую силу.

Список использованных источников

  1. ГОСТ 721-77 Системы электроснабжения, сети, источники, преобразователи и приёмники электрической энергии. Номинальные напряжения свыше 1000 В — Введ. 01.07.78. — Москва : Стандартинформ, 2007. — 8 с.

Отклонения напряжения

  • Раздел №14-1. Качество электрической энергии
  • Общие положения
  • Повышению качества электроэнергии уделяют большое внимание, так как качество электроэнергии может существенно влиять на расход электроэнергии, надежность систем электроснабжения (СЭС), технологический процесс производства.
  • Электроэнергия, как особый вид продукции, обладает определёнными показателями, позволяющими судить о её пригодности в различных производственных процессах.
  • Совокупности показателей свойств электроэнергии, численно характеризующих напряжение в СЭС по частоте, действующему значению, форме кривой, симметрии и импульсным помехам, и определяющих воздействие на элементы сети, называют качеством электрической энергии.

Перечень показателей качества электрической энергии (ПКЭ), их нормативные значения, критерии оценки и методы измерений установлены ГОСТ 13109-97 «Электрическая энергия. Совместимость технических средств электромагнитная. Нормы качества электрической энергии в системах электроснабжения общего назначения».

ГОСТ является межгосударственным стандартом, действующим в рамках СНГ. В международной практике ПКЭ оцениваются с позиций электромагнитной совместимости (ЭМС) технических средств.

Под ЭМС понимают способность электрооборудования, аппаратов и приборов нормально функционировать в данной электромагнитной среде, не подвергаясь воздействию электромагнитных помех и не внося таковых в среду.

  1. Выделяют следующие вопросы при решении задачи повышения качества электроэнергии:
  2. -экономические вопросы включают в себя методы расчета убытков от некачественной электроэнергии в системах промышленного электроснабжения;
  3. -математические аспекты представляют собой обоснование тех или иных методов расчёта показателей качества электроэнергии;
  • -технические аспекты включают в себя разработку технических средств и мероприятий, улучшающих качество электроэнергии, а также организацию системы контроля и управления качеством.
  • Номенклатура ПКЭ, установленная ГОСТ 13109-97, включает следующие показатели:
  • -установившееся отклонение напряжения дU у , %;
  • -размах изменения напряжения дUt , %;

-доза фликера Pt , отн. ед.;

  1. -коэффициент искажения синусоидальности кривой напряжения KU , %;
  2. -коэффициент ν-ой гармонической составляющей напряжения KU (ν) , %;
  3. -коэффициент несимметрии напряжения по обратной последовательности
  4. K 2U , %;
  5. — коэффициент несимметрии напряжения по нулевой последовательности
  6. K0U , %;
  7. -отклонение частоты ∆f , Гц;
  8. -длительность провала напряжения ∆tп , с;

-коэффициент временного перенапряжения kпер.U , отн. ед.;

-импульсное напряжение U имп. , кВ.

ПКЭ разделяют на нормируемые и ненормируемые. К нормируемым относятся: дU у , дUt , Pt , KU , KU (ν) , K 2U , K0U , ∆f , ∆tп . К не нормируемым ПКЭ отно-

сятся kпер.U , U . Провалы напряжения нормируются только по длительности,

Читайте также: Импульсный блок питания своими руками: принцип работы, схемы

по глубине не нормируются.

На нормируемые ПКЭ установлены нормально и предельно допустимые значения. Для дозы фликера, размахов изменения напряжения и длительности провалов напряжения установлены только предельно допустимые значения.

Для KU и нормально и предельные значения установлены в зависимо-

сти от номинального напряжения сети: 0,38; 6-20; 35; 110-330 кВ.

Кроме того, ГОСТ 13109-97 установлена номенклатура вспомогательных параметров электрической энергии, которые используются при определении значений некоторых ПКЭ. Вспомогательные параметры не нормируются. К ним относятся:

  • — для оценки колебаний напряжения − частота повторений изменений напряжения FδUt и интервал между изменениями напряжения ∆ti ;
  • -для оценки провалов напряжения − глубина провала напряжения δU п и
  • частость появления провалов напряжения Fп ;
  • -для оценки импульсов напряжения − длительность импульса по уровню 0,5 его амплитуды ∆tимп. 0,5 ;
  • -для оценки перенапряжений − длительность временного перенапряжения. Такие ПКЭ, как дU у , дUt , Pt , KU , KU (ν) , K 2U , K0U , ∆f , применяют для ха-
  • рактеристики стационарных процессов в СЭС, а такие, как провалы напряжения, временные перенапряжения, импульсы, − для характеристик кратковременных процессов, возникающих в сети в результате коммутаций, атмосферных перенапряжений.
  • В соответствии с ГОСТ 13109-97 показателями качества у приёмников электроэнергии приняты следующие:
  • -при питании от электрических сетей однофазного тока: отклонение частоты; отклонение напряжения; размах колебании частоты; размах изменения напряжения; коэффициент несинусоидальности напряжения.
  • -при питании от электрических сетей трёхфазного тока: отклонение частоты; отклонение напряжения; размах колебании частоты; размах изменения напряжения; коэффициент несинусоидальности напряжения; коэффициент несимметрии напряжении; коэффициент неуравновешенности напряжений.
  • -при питании от электрических сетей постоянного тока: отклонение напряжения; размах изменения напряжения; коэффициент пульсации напряжения.
  1. Значения показателей качества электроэнергии должны находиться в допустимых пределах с интегральной вероятностью 0,95 за установленный период времени.
  2. Для анализа качества электроэнергии в системах электроснабжения промышленных предприятий предусматривают их контроль со следующей периодичностью измерений:
  3. 1.При контроле отклонений напряжения:
  4. а) для предприятий с пятидневной рабочей неделей и узлов энергосис-
  5. тем − не менее одних рабочих и одних нерабочих суток; б) для предприятий с непрерывным производством − не менее одних
  6. суток;
  7. в) во всех остальных случаях − не менее двух рабочих и одних нерабочих суток.
  8. 2. При контроле коэффициента несинусоидальности напряжения, размаха изменения напряжения, размаха колебаний частоты:
  9. а) в электрических сетях с электродуговыми и сталеплавильными печами − в течение 30 мин в период наибольших нагрузок (период расплавки металла);
  10. б) в электрических сетях с установками электродуговой и контактной сварки − в течение 30 мин;
  11. в) в электрических сетях с обжимными прокатными станами − в течение 10-12 циклов прокатки;
  12. г) в электрических сетях жилых и общественных здании − в течение 1 ч в период возникновения наибольших колебаний напряжения;
  13. д) во всех остальных случаях − в течение одних суток.
  14. 3.При контроле коэффициента несимметрии напряжений:
  15. а) в сетях с однофазными электропечами, работающими в «спокойном»
  16. режиме (печи сопротивления, электрошлакового переплава и др.) − в течение 1 ч в период наибольших нагрузок;

б) в сетях с однофазными нагрузками, работающими в резкопеременном режиме (электродуговые сталеплавильные печи, тяговые нагрузки, электродуговая и контактная электросварка и т.д.) − в течение 1 ч в период наибольших нагрузок;

в) во всех остальных случаях − в течение одних суток.

4.При контроле коэффициента неуравновешенности напряжений − в течение одних суток.

5.При контроле коэффициента пульсации выпрямленного напряжения − в течение 30 мин.

6.Контроль за отклонением частоты должен быть постоянным.

Качество электроэнергии можно улучшить средствами питающей сети или применением соответствующего дополнительного оборудования на основе имеющегося опыта проектных и эксплуатационных организаций.

Часть решений, в основном обусловленных техническими требованиями, является общей и должна приниматься на основе имеющихся указаний. В других случаях учитывают специфику конкретных условий (наличие крупных ударных нагрузок может считаться особенностью предприятий).

Одним из важнейших показателей качества электроэнергии является действующее значение напряжения − фазного или линейного в зависимости от схемы включения потребителей. Отклонения напряжения вызывают наибольший ущерб. Основными причинами отклонений напряжения в СЭС промышленных предприятий являются изменения режимов работы электроприёмников, изменения режимов питающей энергосистемы.

В пределах одной ступени трансформации значение напряжения сети изменяется в относительно небольших пределах, поэтому с целью упрощения расчётов и достижения большей наглядности на практике пользуются понятием отклонения напряжения.

Под отклонением напряжения ( δU у ) понимают разность между фактиче-

ским (действительным) значением напряжения (U у ) и его номинальным значе-

нием (U ном. ) для данной сети:

δU у =U у −U ном. . (1)
Если δU у выражается в процентах от U ном. , а U у и U ном. − в вольтах (кило-
вольтах), то:
δU у = U у −U ном. 100 . (2)
U ном.

Вычисляют значения усреднённого напряжения U у как результат N наблю-

дений основной частоты U (1)i или основной частоты и прямой последовательно-

сти U1(1)i за интервал времени 1 мин:
N
∑U i2
U у = i=1 . (3)
N

Число наблюдений за 1 мин должно быть не менее 18.

В России согласно ГОСТ 13109-97 в условиях нормальной работы приёмников электроэнергии отклонение напряжения от номинального значения допускаются в следующих пределах:

  • производственных помещениях и общественных зданиях, где требуется значительное зрительное напряжение, а также в прожекторных установках наружного освещения;
  • в) на зажимах остальных приёмников электроэнергии, в том числе приёмников электроэнергии животноводческих комплексов и птицефабрик, допускают отклонения напряжения в пределах 5 % номинального;
  • г) в электрических сетях сельскохозяйственных районов, кроме животноводческих комплексов и птицефабрик, и в сетях, питающихся от шин тяговых подстанций электрифицированного транспорта, при наличии специальных тех-

Требования к отклонениям напряжения в договорах электроснабжения

Требования к установившемуся отклонению напряжения в точке присоединения потребителя определяют расчетом и указывают в виде диапазонов отклонений напряжения отдельно для режимов наибольшей и наименьшей нагрузок потребителя.

В случае когда сети 6–20 и 0,4 кВ являются внутренними сетями потребителя, такой расчет должен выполнить потребитель.

Рекомендуется следующая процедура установления требований к отклонению напряжения в договоре электроснабжения (договоре на услуги по передаче электроэнергии) или в технических условиях на присоединение.

В предварительных технических условиях или проекте договора энергоснабжающая организация сообщает потребителю диапазоны отклонений напряжения, которые она может поддерживать в точке присоединения потребителя в режимах наибольшей и наименьшей нагрузок сети и часы суток, соответствующие этим режимам.

Если потребителя не устраивают данные условия, он должен представить расчет диапазонов отклонений напряжения в режимах наибольшей и наименьшей собственных нагрузок и указать часы суток, соответствующие этим режимам.

При этом сеть потребителя должна удовлетворять требованиям по допустимым потерям напряжения.

При отсутствии у потребителя расчета диапазонов отклонений напряжения, соответствующих параметрам и режимам работы его сети, и его несогласии с условиями, предложенными энергоснабжающей организацией, потребитель в своих требованиях может ориентироваться на типовые условия, приведенные ниже.

При присоединении потребителя к шинам 0,4 кВ РТ 6–20/0,4 кВ диапазоны отклонений напряжения устанавливают следующими:

  • для режима наибольшей нагрузки потребителя – от +0 % до +5 %;
  • для режима наименьшей нагрузки потребителя – от 5 ⋅ (kмин – 1)% до +5 %, где kмин – отношение наименьшей и наибольшей суточных нагрузок потребителя.

При присоединении потребителя к линии 0,4 кВ энергоснабжающей организации устанавливают диапазон от –5% до +5 % для любых режимов.

При присоединении потребителя к шинам 6–20 кВ подстанции 35–500/6–20 кВ, принадлежащей энергоснабжающей организации, диапазоны отклонений напряжения устанавливают следующими:

  • для режима наибольшей нагрузки потребителя – от +4 % до +7 %;
  • для режима наименьшей нагрузки потребителя – от 0 % до +3 %.

При присоединении потребителя к сети 6–20 кВ через свой РТ 6–20/0,4 кВ и учете электроэнергии на стороне 6–20 кВ РТ диапазоны отклонений напряжения устанавливают меньшими указанных выше на величину потерь напряжения от шин 6–20 кВ подстанции 35–220/6–20 кВ до РТ потребителя.

Величины указанных потерь напряжения принимают по данным энергоснабжающей организации. Если учет электроэнергии производится на стороне 0,4 кВ РТ, диапазоны отклонений напряжения устанавливают аналогично случаю присоединения потребителя к шинам РТ.

При этом потребитель обязан установить на трансформаторе рабочее ответвление, указанное энергоснабжающей организацией.

При присоединении потребителя к сети напряжением 35 кВ и выше диапазон отклонений напряжения устанавливают от 0 до +10 % для всех режимов.

При отсутствии РПН на трансформаторе потребителя диапазоны отклонений напряжения определяют по согласованию с энергоснабжающей организацией.

Отсутствие РПН на трансформаторе потребителя не является основанием для предъявления энергоснабжающей организацией более жестких требований по сравнению со случаем наличия РПН.

Если энергоснабжающая организация не в состоянии выдерживать требуемые диапазоны отклонений напряжения, оговаривают мероприятия, которые должны быть проведены, сроки и сторону, ответственную за их проведение.

Требования по предельно допустимым значениям установившегося отклонения напряжения отражают записью:

«В соответствии с ГОСТ 13109–97 отклонения напряжения в течение не более 1 ч 12 мин каждых суток могут выходить за границы установленных в договоре диапазонов в обе стороны, но не более чем на 5 % номинального напряжения. При этом они не должны превышать наибольшего допустимого напряжения для электрооборудования напряжением свыше 1000 В».

Наибольшие допустимые напряжения для электрооборудования напряжением свыше 1000 В устанавливают в соответствии с ГОСТ 721–77 «Системы электроснабжения, сети, источники, преобразователи и приемники электрической энергии. Номинальные напряжения свыше 1000 В» (прил. 8).

При наличии у энергоснабжающей организации информации о значениях импульсных напряжений, коэффициентов временного перенапряжения и частоты появления провалов напряжения ее рекомендуется включать в технические условия на присоединение и в договор электроснабжения в качестве справочных данных.

Требования ГОСТ 13109-97 к качеству электроэнергии, влияние отклонений от нормы, ответственность

ГОСТ 13109-97 «Нормы качества электрической энергии в системах электроснабжения общего назначения».

Параметр Норм. знач. Предельн. знач.
Установившееся отклонение напряжения ±5% ±10%

Причина:суточные, сезонные, технологические изменения нагрузки.

Влияние:

  • недонапряжение — ухудшение пуска, увеличение токов электродвигателей, нарушение изоляции; перегрузка регулируемых выпрямителей, преобразователей и стабилизаторов;
  • перенапряжение — перерасход электроэнергии; повышение реактивной мощности двигателей, выпрямителей с фазовым регулированием, пробой регулируемых выпрямителей, преобразователей и стабилизаторов.

Читайте также: Как влияет заниженный ампераж на литий-ионную батарею ноутбука?

Ответственность: энергоснабжающая организация.

Параметр Предельн.знач. в помещении с лампами накаливания, где требуется значительное зрительное напряжение
Размах изменения напряжения, при FdU=0,1/мин 10% 0,75%
FdU=1,0/мин 3,8% 2,6%
FdU=10/мин 1,9% 1,4%
FdU=100/мин 1,0% 0,71%
FdU=1000/мин 0,4% 0,28%
Доза фликера кратковременная 1,38 1,0
Доза фликера длительная 1,38 1,0

Причина:электроприемники с быстропеременными режимами работы.

Влияние: увеличение потерь в сети; утомление зрения, снижение производительности, травматизм; снижение срока службы электронной аппаратуры; выход из строя конденсаторных батарей; неустойчивая работа систем возбуждения синхронных генераторов и двигателей; вибрации аппаратуры; возможны отпадания контакторов.

Ответственность: потребитель с переменной нагрузкой.

Параметр Норм. знач. Предельн. знач.
Коэффициент искажения синусоидальности кривой напряжения в сети 0,3кВ 8% 12%
Коэффициент n-й гармонической составляющей в трехфазной сети 0,38кВ, при n=2 2% 3%
n=3* 2,5% 3,75%
n=4 1% 1,5%
n=5 6% 9%
n=6 0,5% 0,75%
n=7 5% 7,5%
n=8 0,5% 0,75%
n=9* 0,75% 1,025%
* в однофазной сети — в 2 раза больше

Причина: силовое оборудование с тиристорным управлением, люминисцентные лампы, сварочные установки, преобразователи частоты, импульсные преобразователи напряжения.

Влияние: Рост потерь в электрических машинах, вибрации; нарушение работы автоматики защиты; увеличение погрешностей измерительной аппаратуры; отключение чувствительных ЭПУ.

Ответственность: потребитель с нелинейной нагрузкой.

Параметр Норм. знач. Предельн. знач.
Коэффициент несимметрии напряжений по обратной последовательности 2% 4%
Коэффициент несимметрии напряжений по нулевой последовательности 2% 4%

Причина: использование однофазных или несимметричных электроприемников.

Влияние: дополнительный нагрев электродвигателей; увеличение суммарных потерь; перегрев проводников нейтрали, возможен пожар; увеличение сопротивлений заземлителей; увеличение пульсаций выпрямленных напряжений; нарушение управления тиристорных преобразователей; некачественная компенсация реактивной мощности конденсаторными установками.

Ответственность: потребитель с несимметричной нагрузкой.

Параметр Норм. знач. Предельн. знач.
Отклонение частоты ±0,2Гц ±0,4Гц

Причина:снижение генерируемых мощностей в сети, перегрузка генераторов.

Влияние снижения частоты: снижение производительности электроприводов, снижение срока службы электрических машин, увеличение пульсаций, искажения телевизионного изображения.

Ответственность: энергоснабжающая организация.

  • Причина: электромагнитные переходные процессы при коротких замыканиях, ударах молнии, коммутации электрооборудования, обрыв нулевого провода.
  • Влияние: отключение оборудования при провалах, выход из строя при ухудшающихся условиях работы; пробои и выход из строя оборудования, возможно поражение током персонала на защищенных установках.
  • Ответственность: энергоснабжающая организация.

Сравнительный анализ стандартов качества электрической энергии ГОСТ 13109–97 и ГОСТ 32144–2013

Киселёв Б. Ю. Сравнительный анализ стандартов качества электрической энергии ГОСТ 13109–97 и ГОСТ 32144–2013 // Молодой ученый. — 2016. — №20. — С. 155-157. — URL https://moluch.ru/archive/124/34114/ (дата обращения: 28.11.2019).

В статье затронуты проблемы стандартизации качества электрической энергии в России на данном этапе развития. Рассмотрены стандарты качества электрической энергии: утративший силу ГОСТ 13109–97 и относительно новый и ныне действующий ГОСТ 32144–2013. Проведён сравнительный анализ этих двух стандартов и описаны некоторые существенные отличия нового стандарта от старого.

Ключевые слова: качество электрической энергии, стандарт, показатели качества электрической энергии

«Энергетическая стратегия России на период до 2030 года», ставит одной из актуальных задач обеспечение надёжности, безопасности и управляемости электроэнергетических систем, с обязательным условием высокого качества электрической энергии. Это в свою очередь, способствует увеличению актуальности вопросов, связанных со стандартизацией и нормативно правовым обеспечением вопросов качества электрической энергии.

  • Плохое качество электроэнергии приводит к ущербу, стоимость которого насчитывает миллиарды рублей в год. Среди отрицательных последствий низкого качества электроэнергии можно отметить следующие [1,2]:
  • – увеличение потерь электрической энергии
  • – сокращение срока службы изоляции электрооборудования,
  • – нарушение нормальной работы релейной защиты и автоматики,
  • – сбои в работе микропроцессорного оборудования,
  • – снижение устойчивости и надёжности систем электроснабжения,
  • – рост эксплуатационных издержек.

Начиная с 1967 года и до 2014 года основным нормативным документом, устанавливающим в России нормы на показатели качества электрической энергии и требования к контролю, методам и средствам измерений, осуществлял стандарт ГОСТ 13109 «Электрическая энергия. Совместимость технических средств электромагнитная. Нормы качества электрической энергии в системах электроснабжения общего назначения» [3].

Далее с 1 января 2013 года в действие вступил новый ГОСТ P 54149–2010, «Электрическая энергия. Совместимость технических средств электромагнитная. Нормы качества электрической энергии в системах электроснабжения общего назначения».

Однако, из-за трудностей с выполнением новых требований и из-за отсутствия соответствующей приборной базы, данный стандарт был отменён.

Было принято решение о продлении действия на территории Российской Федерации ГОСТ 13109–97 до 1 июля 2014 года [4].

С 1 июля 2014 года прекратил свое действие ГОСТ 13109–97 и введен приказом Федерального агентства по техническому регулированию и метрологии от 22 июля 2013 года № 400-ст межгосударственный стандарт ГОСТ 32144–2013 «Электрическая энергия. Совместимость технических средств электромагнитная. Нормы качества электрической энергии в системах электроснабжения общего назначения» (EN 50160:2010, NEQ) [5], Этот стандарт разработан на основе применения ГОСТ Р 54149―2010.

Сравним действующий ГОСТ 32144–2013 по нормированию показателей качества электроэнергии и фундаментальный для нашей страны ГОСТ 13109–97, выделим их основные отличия.

Первое отличие на которое необходимо обратить внимание. В ГОСТ 32144–2013 изменён интервал времени, соответствующий расчетному интервалу времени на одну неделю.

В то время как в ГОСТ 13109–97 для определения соответствия значений измеряемых показателей КЭ за исключением длительности провала напряжения, импульсного напряжения, коэффициента временного перенапряжения, нормам настоящего стандарта устанавливается минимальный интервал времени измерений, равный 24 ч, соответствующий расчетному периоду.

В ГОСТ 32144–2013 изменения характеристик электрической энергии разделены на две категории — продолжительные изменения характеристик напряжения и случайные события. Продолжительные изменения представляют собой длительные отклонения характеристик напряжения от номинальных значений и обусловлены изменениями нагрузки или влиянием нелинейных нагрузок.

Применительно к ним в стандарте установлены показатели и нормы КЭ. Случайные события представляют собой внезапные и значительные изменения формы напряжения, приводящие к отклонению его параметров от номинальных и вызываются непредсказуемыми событиями, к которым относятся прерывания и провалы напряжения, перенапряжения, импульсные напряжения.

Для случайных событий приведены справочные данные.

В отличие от ГОСТ 13109–97 в ГОСТ Р 32144–2013 процедура проведения контроля производится на основе ГОСТ Р 51317.4.30–2008 и ГОСТ Р 51317.4.7–2008, что принципиально важно, т. к. при использовании в совокупности этих стандартов создается единая система требований к ведению контроля КЭ.

В ГОСТ Р 32144–2013 введены интергармонические составляющие напряжения, хотя ни каких ограничений по их отклонению пока нет, они находятся на стадии разработки.

ГОСТ 13109–97 — нормы установившегося отклонения напряжения отнесены к выводам электроприемников, которые присоединены, как правило, к сетям потребителей, на которые не распространяется сфера ответственности сетевой компании.

ГОСТ 32144–2013 обязывает потребителя на своей стороне обеспечить условия, при которых отклонения напряжения питания на выводах ЭП не превышают установленных для них допустимых значений, если выполняются требования настоящего стандарта к КЭ в точке передачи электрической энергии.

На потребителей также возлагается ответственность за обеспечение требуемого КЭ.

Это согласуется с требованиями, чтобы поставщики электроэнергии несли ответственность за обеспечение КЭ, поставляемой потребителям, а изготовители электроустановок и электротехнического оборудования и потребители, приобретающие его, несли ответственность за то, чтобы указанное оборудование и установки при вводе в эксплуатацию не создавали недопустимых кондуктивных электромагнитных помех в сетях питания.

В новом стандарте есть отличия по времени интеграции показателей качества электроэнергии. Время интеграции показателей качества электрической энергии согласно с ГОСТ 51317.4.30–2008 составляет:

  1. 1) медленные отклонения напряжения — время интеграции 10 мин, вместо 1 мин в ГОСТ 13109–97.
  2. 2) несимметрия напряжения время интеграции 10 мин, вместо 3 с.
  3. 3) гармонические составляющие напряжения — время интеграции 10 мин вместо 3 с.

Для медленных отклонений напряжения убраны режимы наименьших и наибольших нагрузок и нормально допустимые значения. В стандарте указываются только предельно допустимые значения, определяемые границами ±10 % от номинального напряжения.

Гармонические составляющие напряжения должны проводится в соответствии с ГОСТ 51317.4.7–2008.

Вместо коэффициента искажения синусоидальности кривой напряжения, в ГОСТ 32144–2013 несинусоидальность напряжения характеризуется суммарным коэффициентом гармонических составляющих.

В соответствии с ГОСТ Р 51317.4.

30–2008 непосредственно в сам ГОСТ Р 54149–2010 введено понятие маркирования данных для следующих категорий событий: отклонение частоты; „медленные изменения напряжения; „ фликер; несимметрия напряжений; „ гармонические составляющие напряжения. При этом маркированные данные не должны учитываться при подготовке протоколов измерений. Маркирование данных позволяет не фиксировать одно и то же событие КЭ в нескольких категориях одновременно.

В общем можно сказать, что произошло некоторое ужесточение требований к ПКЭ это в свою очередь привело к тому, что средства измерения показателей качества электрической энергии, что существовали до введение данного ГОСТ не удовлетворят новым требованиям. Это в свою очередь способствует росту необходимости создавать новые средства измерения показателей качества электрической энергии, которые будут соответствовать новым стандартам.

  1. Вопросы моделирования устройств обеспечения качества электрической энергии / А. Г. Лютаревич, В. Н. Горюнов, С. Ю. Долингер, К. В. Хацевский // Омский научный вестник.Сер. Приборы, машины и технологии. — 2013. — № 1 (117). — С. 168–173.
  2. Горюнов, В. Н. Расчет потерь мощности от влияния высших гармоник / В. Н. Горюнов, Д. С. Осипов, А. Г. Лютаревич // Научные проблемы транспорта Сибири и Дальнего Востока. — 2009. — № 2. — C. 268–273.
  3. ГОСТ 13109–97. Электрическая энергия. Совместимость технических средств электромагнитная. Нормы качества электрической энергии в системах электроснабжения общего назначения. — Введ. 1999.01.01. — М.: Изд-во стандартов, 1998. — 32 с.
  4. О продлении действия на территории Российской Федерации ГОСТ 13109–97: приказ Федерального агентства по техническому регулированию и метрологии (Росстандарт) [от 25 октября 2012 года № 565-ст]. — URL: http://docs.cntd.ru/document/902377181 (дата обращения: 02.10.2016).
  5. ГОСТ 32144–2013. Электрическая энергия. Совместимость технических средств электромагнитная. Нормы качества электрической энергии в системах электроснабжения общего назначения. — Введ. 2014.07.01. — М.: Стандартинформ, 2013. — 10 с.

Основные термины (генерируются автоматически): электрическая энергия, ГОСТ Р, ГОСТ, стандарт, система электроснабжения, норма качества, время интеграции, общее назначение, медленное отклонение напряжения, NEQ.

ГОСТ 29322-2014. Напряжения стандартные

ГОСТ 29322-2014. Страница 1
ГОСТ 29322-2014. Страница 2
ГОСТ 29322-2014. Страница 3
ГОСТ 29322-2014. Страница 4
ГОСТ 29322-2014. Страница 5
ГОСТ 29322-2014. Страница 6
ГОСТ 29322-2014. Страница 7
ГОСТ 29322-2014. Страница 8
ГОСТ 29322-2014. Страница 9
ГОСТ 29322-2014. Страница 10
ГОСТ 29322-2014. Страница 11
ГОСТ 29322-2014. Страница 12
ГОСТ 29322-2014. Страница 13
ГОСТ 29322-2014. Страница 14
ГОСТ 29322-2014. Страница 15

Как Это Работает?

Уровень напряжения питающей электрической сети является определяющим параметром качества услуг электроснабжения. Бытовая и цифровая техника бесперебойно работает при условии строгого соответствия параметров напряжения заданным стандартам.
Каким должен быть уровень напряжения и какие отклонения допускаются от стандартной величины?

Нормы напряжения в электрической сети

На бывшем советском пространстве был принят стандарт напряжения бытовой электрической сети, равный 220 В. В 1992 году в России было принято решение о переводе электросетей на общеевропейские стандарты. Согласно этим стандартам, напряжение бытовой сети должно соответствовать величине 230 В с частотой 50 Гц. Изначально завершить переход на эти нормы планировалось к 2003 году.

Действующий российский ГОСТ 29322-2014 как раз и предусматривает использование напряжения 230 В. Но по факту во многих сетях по-прежнему остались 220 В, и ничего страшного в этом нет — такое значение находится в пределах допусков (о них чуть позже).

В европейских, азиатских странах, части африканских государств и Австралии приняты стандарты напряжения 220-230 В, реже встречается норма 240 В (в Афганистане, Кувейте, Нигерии и др.). Поэтому техника, которая поставляется в эти страны, рассчитана на работу именно с этими величинами.

В странах Северной и Южной Америки, а также ряде островных государств приняты нормативы напряжения 110 В, 115 В, 120 В и 127 В, в Японии в бытовых розетках напряжение соответствует уровню 100 В.

В постсоветском пространстве, в том числе РФ, Беларуси, Украине, Армении и прибалтийских странах официально действует стандарт 230 В, остальных бывших союзных республиках — 220 В.

Допустимые отклонения напряжения от стандарта

Опять-таки начнем с теории. Если внимательно прочитать все тот же ГОСТ 29322-2014, мы увидим, что вполне официально допускаются отклонения по напряжению до 10%. Это значит, что реальное напряжение может находиться в пределах 207-253 В. Формально именно так, но фактически поставщики электроэнергии стараются обеспечивать дельту не больше 5%. Что логично, поскольку в этом случае риск выхода из строя домашней техники минимален.

Отдельные кратковременные скачки могут происходить во время пусконаладочных работ или просто при включении/отключении линии. Насколько это опасно?

Как отклонения напряжения влияют на работу техники

Не вся техника одинаково реагирует на перепады и несоответствие напряжения номинальным параметрам. Условно приборы можно разделить на 3 группы:

  1. Преимущественно аналоговые. К этой группе относятся электронагревательные приборы, кухонная техника, микроволновки с механическим управлением, водонагреватели и т. д. На перепады и изменения напряжения они реагируют практически безболезненно. Зачастую в техпаспорте указан номинал 230 В, поэтому приборы способны выдерживать повышение даже до 253 В. При понижении напряжения до 198 В они продолжают работать, но со снижением эффективности.
  2. Цифровые и преимущественно цифровые. Это компьютеры, блоки питания, видео- и аудиотехника, а также любая техника, имеющая в основе электронные микросхемы и преобразователи. Такую технику называют «нежной» — она очень чувствительна к резким перепадам и изменениям напряжения в сети питания. Допустимый предел повышения составляет не более 240 В. Поэтому рекомендуется подключать их через стабилизаторы и ИБП для предотвращения поломок.
  3. С наличием компрессора или электрического двигателя. Это холодильники, стиральные машины, центрифуги, мясорубки, посудомойки и прочие. Для этой техники более опасно пониженное напряжение, чем повышенное. В результате падения напряжения в обмотках возрастает нагрузочный ток, что приводит к перегреву и преждевременному пробою изоляции. Поэтому насосы, охладители и моторы выходят из строя гораздо раньше указанного в паспорте эксплуатационного срока.

Ключевым параметром являются указанные в паспорте прибора допустимые нормы отклонения и рекомендации производителя по эксплуатации. Наиболее травматичными для бытовой и цифровой техники являются даже не конкретные цифры отклонений, а наличие резких скачков напряжения — чем чаще они происходят, тем более вероятен выход приборов из строя.

Как определить отклонения напряжения в сети

Заподозрить скачки напряжения можно по изменениям в работе электроприборов, например, усилению и затуханию яркости ламп накаливания, неравномерной работе компрессора холодильника, аварийному выключению сетевого фильтра. Снижение напряжения можно заметить по усилению гула холодильника, увеличению времени нагрева чайника и бойлера, тусклому свету осветительных приборов.

Если появились сомнения в соответствии напряжения бытовой сети общепринятым стандартам, это можно проверить при помощи мультиметра (вольтметра). При замере в розетке на шкале или дисплее будет отражена фактическая величина напряжения в данный момент.

Если отклонения от нормы фиксируются разово и в течение непродолжительного времени, а их диапазон не превышает допустимые, то причин для беспокойства нет. Если отклонения значительные и фиксируются на протяжении длительного периода, следует принимать меры.

Что делать, если напряжение в сети не соответствует нормам

При обнаружении несоответствия напряжения в бытовой сети допустимым нормам, можно говорить о ненадлежащем качестве предоставления коммунальной услуги, а именно электроснабжения. О выявленном несоответствии необходимо уведомить аварийную диспетчерскую службу поставщика услуги. Сделать это можно письменно или по телефону.

По заявке назначается проверка уровня напряжения специалистом компании. Обычно проверка производится в течение ближайших 2 часов с момента поступления заявки. Дальнейшее урегулирование вопросов происходит в соответствии с Законом «О защите прав потребителя».

Вот еще несколько полезных материалов для тех. кто неравнодушен к электрике.

Была ли статья интересна?

Какой должна быть мощность хорошего триммера для травы?

Какой должна быть температура процессора в ПК, чтобы он работал стабильно

Сетевое напряжение

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 8 февраля 2014 года; проверки требуют 80 правок.

Запрос «220 вольт» перенаправляется сюда; о российской сети магазинов электрического инструмента см. 220 Вольт (компания); об альбоме российской певицы Мары см. 220V.

Сетевое напряжение — среднеквадратичное (действующее) значение напряжения в электрической сети переменного тока, доступной конечным потребителям.

Среднее значение и частотаПравить

Основные параметры сети переменного тока — напряжение и частота — различаются в разных регионах мира. В большинстве европейских стран низкое сетевое напряжение в трёхфазных сетях составляет 230/400 В при частоте 50 Гц, а в промышленных сетях — 400/690 В. В Северной, Центральной и частично Южной Америке низкое сетевое напряжение в сетях с раздёлённой фазой составляет 115 В при частоте 60 Гц.

Более высокое сетевое напряжение (от 1000 В до 10 кВ) уменьшает потери при передаче электроэнергии и позволяет использовать электроприборы с большей мощностью, однако, в то же время, усложняет обеспечение надёжной изоляции и конструкцию соединительных и коммутационных устройств, увеличивает тяжесть последствий от поражения током неподготовленных пользователей от незащищённых сетей.

Для использования электроприборов, предназначенных для одного сетевого напряжения, в районах, где используется другое, нужны соответствующие преобразователи (например, трансформаторы). Для некоторых электроприборов (главным образом, специализированных, не относящихся к бытовой технике) кроме напряжения играет роль и частота питающей сети.

Современное высокотехнологичное электрооборудование, как правило, содержащее в своём составе импульсные преобразователи напряжения, может иметь переключатели на различные значения сетевого напряжения либо не имеет переключателей, но допускает широкий диапазон входных напряжений: от 100 до 240 В при номинальной частоте от 50 до 60 Гц, что позволяет использовать данные электроприборы без преобразователей практически в любой стране мира.

Параметры сетевого напряжения в РоссииПравить

Производители электроэнергии генерируют переменный ток промышленной частоты (в России — 50 Гц). В подавляющем большинстве случаев по линиям электропередачи передаётся трёхфазный ток, повышенный до высокого и сверхвысокого электрического напряжения с помощью трансформаторных подстанций, которые находятся рядом с электростанциями.

Согласно межгосударственному стандарту ГОСТ 29322-2014 (IEC 60038:2009) «Напряжения стандартные», сетевое напряжение должно составлять 230 В ± 10 % при частоте 50±0,2 Гц (межфазное напряжение 400 В, напряжением фаза-нейтраль 230 В, четырёхпроводная схема включения «звезда»).

К жилым домам (на сельские улицы) подводятся четырёхпроводные (три фазовых провода и один нейтральный (нулевой) провод) линии электропередачи (воздушные или кабельные ЛЭП) с межфазным напряжением 400 Вольт. Входные автоматы и счётчики потребления электроэнергии, обычно, трёхфазные. К однофазной розетке подводится фазовый провод, нулевой провод и, возможно, провод защитного заземления или зануления, электрическое напряжение между «фазой» и «нулём» составляет 230 Вольт.

Номинальные напряжения бытовых сетей (низкого напряжения)Править

До 1926 года техническим регулированием электрических сетей общего назначения занимался Электротехнический отдел ИРТО, который только выпускал правила по безопасной эксплуатации. При обследовании сетей РСФСР перед созданием плана ГОЭЛРО было установлено, что на тот момент использовались практически все возможные напряжения электрических токов всех видов. Начиная с 1926 года, стандартизация электрических сетей перешла к Комитету по стандартизации при Совете Труда и Обороны (Госстандарт), который выпускал стандарты на используемые номинальные напряжения сетей и аппаратуры. Начиная с 1992 года Межгосударственный совет по стандартизации, метрологии и сертификации выпускает стандарты для электрический сетей стран входящих в ЕЭС/ОЭС.

Переменный ток 50 Гц с разделённой фазой или постоянный ток, двух- и трёхпроводные линии Трёхфазный переменный ток, 50 Гц
110/220 В 220/440 В 3×120 В [р 1] ( треугольник ) 127/220 В 220/380 В 230/400 В [р 2]
Временные правила ИРТО , 1891 [2] широко используется запрещен [р 3] разрешён запрещен [р 3] запрещен [р 3] запрещен [р 3]
Дополнение к временным правилам ИРТО от 1898 [3] широко используется разрешён широко используется разрешён разрешён
ГОЭЛРО , I-я очередь (1920) [4] предпочтителен [р 4]
ОСТ 569 (1928) [5] предпочтителен предпочтителен разрешён предпочтителен [р 5]
ОСТ 5155 (1932) разрешён разрешён разрешён [р 6] [р 7] ) разрешён
ГОСТ 721-41 [6] [7] разрешён разрешён допускается сохранение существующих установок разрешён предпочтителен [р 8]
ГОСТ 5651-51 [8] [р 9] разрешён разрешён — [р 10] разрешён [р 10] разрешён
ГОСТ 721-62 разрешён разрешён допускается сохранение существующих установок разрешён предпочтителен
ГОСТ 5651-64 [9] [р 9] разрешён разрешён разрешён
ГОСТ 721-74 разрешён разрешён допускается сохранение существующих установок разрешён предпочтителен
ГОСТ 21128-75 разрешён разрешён для ранее разработанного оборудования [р 11] предпочтителен
ГОСТ 23366-78 разрешён разрешён для ранее разработанного оборудования предпочтителен
ГОСТ 21128-83 разрешён разрешён для ранее разработанного оборудования предпочтителен разрешён
ГОСТ 5651-89 [р 9] разрешён разрешён
ГОСТ 29322-92 (МЭК 38-83) разрешён до 2003 года предпочтителен
ГОСТ 29322-2014 (IEC 60038:2009) в тексте стандарта указано: «Однако… до сих пор продолжают применять» предпочтителен

В миреПравить

Карта сетевого напряжения и частоты переменного тока в мире

Розетки и штепселиПравить

В разных регионах используются розетки и штепсели разных типов.

Качество электрической энергииПравить

Качество электрической энергии — её электрическое напряжение и частота — должны строго соблюдаться.

такжеПравить

ПримечанияПравить

  1. «Акционерное общество электрического освещения 1886 года» использовало этот номинал (напряжение на зажимах трансформатора 133 В), что и было отражено в ОСТ 569. В результате гармонизации с рекомендациями МЭК в шкале стандартных напряжений ГОСТ 721 он был заменён на номинал 3×127 В, но допускалось сохранение существующих установок 3×120 В. Фактически, сети тех крупных городов, которые его использовали, уже переходили на «звезду» с номиналами 127/220 В и 220/380 В.
  2. Номинал трёхфазного переменного тока 230/400 В, начиная c ОСТ 569, 1928 года, являлся предпочтительным для источников тока (генераторов и трансформаторов).
  3. ↑ 1 2 3 4 Использование тока высокого напряжения выше ±225 В или выше ∼110 В было запрещено в бытовых сетях, не требующих квалифицированного персонала.
  4. Первоначально в I-й очереди плана ГОЭЛРО было намечено строительство сетей 120/210 В, исходя из того, что в сетях некоторых крупных городов использовалось 3×120 В (треугольник), однако при реализации строили сети 127/220 В.
  5. В 1928—1931 годах реализовано в Витебске, Вязьме, Бобруйске, Златоусте, Камышине, Красноярске, Читае и др. (Гейлер Л. Б. 110 или 220 V в распределительных сетях населённых мест // Электричество. — 1933. — № 9. — С. 39.). Впоследствии все крупные новые электросети СССР создавались на 220/380 В.
  6. В 1932—1940 годах реализовано Ленэнерго, при переходе старых сетей 3×120 В на 127/220 В (Айзенберг Б. Л., Мануйлов Р. Е. Заземление нейтрали городской кабельной сети низкого напряжения // Электричество. — 1940. — № 11. — С. 54.).
  7. В 1936—1947 годах реализовано Мосэнерго, при переходе избранных районов старых сетей 3×120 В на 127/220 В (Плюснин К. Л. Низковольтная замкнутая сетка в Московской кабельной электросети // Электричество. — 1937. — № 22. — С. 7.; Куликовский А. А.>. Система городских распределительных сетей низкого напряжения с искусственными нейтральными точками // Электричество. — 1947. — № 9. — С. 45.
  8. В других стандартах, связанных с промышленным применением (например, ГОСТ 185-41), номинал 127/220 В остался недоступен для новых изделий.
  9. ↑ 1 2 3 Стандарты ГОСТ 5651, в частности, определяли номиналы напряжения питания радиоприёмников.
  10. В 1950 году начался перевода низковольтной сети со 127 на 220/127 В и применение напряжения 380/220 В для электроснабжения новых жилых районов Москвы (Зуев Э.Н. Московских окон негасимый свет.
  11. В 1970—1979 годы Киев, Ленинград и Харьков в основном перешли на 220/380 В, хотя отдельные дома, в которых переход не завершился, встречались и позднее.
  1. ГОСТ 29322-2014 (IEC 60038:2009) «Напряжения стандартные».
  2. Грищенко А. И., Зиноватный П. С. Энергетическое право России. (Правовое регулирование электроэнергетики в 1885—1918 гг.). — М.: «Юрист», 2008. — С. 118.
  3. Грищенко А. И., Зиноватный П. С. Энергетическое право России. (Правовое регулирование электроэнергетики в 1885—1918 гг.). — М.: «Юрист», 2008. — С. 13.
  4. План электрификации РСФСР. — 2-е изд. — М.: Госполитиздат, 1955. — С. 213,355,356,361. — 660 с.
  5. Производство пара, паровые машины, пароме турбины, двигатели внутреннего сгорания, газовые турбины, ветряные двигатели, водяные двигатели, насосы и компрессоры, теплосиловое хозяйство, электротехника, освещение // Hütte Справочник для инженеров, техников и студентов. — М.—Л.: ОНТИ, 1936. — Т. 3. — С. 950.
  6. Проект общесоюзного стандарта «Номинальные напряжения стационарных установок сильного тока» (взамен ОСТ 4760 и ОСТ 5155) // Электричество. — 1939. — № 1. — С. 30.
  7. Основные напряжения ГОСТ 721-41.
  8. Левитин Е. Государственный общесоюзный стандарт на радиовещательные приемники // Радио. — 1951. — № 9. — С. 11—13.
  9. Левитин Е. А., Левитин Л. Е. Радиовещательные приемники. — Издание второе, переработанное и дополненное. — М.: Энергия, 1967. — С. 349.

ГОСТ 29322-2014 Напряжения стандартные

Цели, основные принципы и порядок проведения работ по межгосударственной стандартизации установлены ГОСТ 1.0—92 «Межгосударственная система стандартизации. Основные положения» и ГОСТ 1.2—2009 «Межгосударственная система стандартизации. Стандарты межгосударственные, правила и рекомендации по межгосударственной стандартизации. Правила разработки, принятия, применения, обновления и отмены»

Сведения о стандарте

1 ПОДГОТОВЛЕН Открытым акционерным обществом «Всероссийский научноисследовательский институт сертификации» (ОАО «ВНИИС»)

2 ВНЕСЕН Федеральным агентством по техническому регулированию и метрологии

3 ПРИНЯТ Межгосударственным советом по стандартизации, метрологии и сертификации (протокол от 30 сентября 2014 г. Ыэ 70-П)

За принятие стандарта проголосовали:

Краткое наименование страны по МК (ИС0 3166) 004-97

Код страны по МК (ИС0 3166) 004-97

Сокращенное наименование национального органа по стандартизации

Минэкономики Республики Армения

Госстандарт Республики Беларусь

Госстандарт Республики Казахстан

4 Приказом Федерального агентства по техническому регулированию и метрологии от 25 ноября 2014 г. № 1745-ст межгосударственный стандарт ГОСТ 29322—2014 введен в действие в качестве национального стандарта Российской Федерации с 1 октября 2015 г.

5 Настоящий стандарт модифицирован по отношению к международному стандарту IEC 60038:2009 IEC standard voltages (Напряжения стандартные). При этом дополнительные и измененные положения, учитывающие потребности национальной экономики указанных выше государств, выделены в тексте курсивом, а также вертикальной линией, расположенной на полях этого текста.

Международный стандарт разработан Международной электротехнической комиссией (IEC).

Наименование настоящего стандарта изменено относительно наименования международного стандарта в связи с особенностями построения межгосударственной системы стандартизации.

Перевод с английского языка (ел).

Степень соответствия — модифицированная (MOD)

6 ВЗАМЕН ГОСТ 29322—92

Информация об изменениях к настоящему стандарту публикуется в ежегодном информационном указателе «Национальные стандарты». а текст изменении и поправок — е ежемесячном информационном указателе «Национальные стандарты». В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ежемесячном информационном указателе «Национальные стандарты». Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования — на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет

© Стандарт и кформ. 2015

В Российской Федерации настоящий стандарт не может быть полностью или частично воспроизведен, тиражирован и распространен в качестве официального издания без разрешения Федерального агентства по техническому регулированию и метрологии

Введение

Настоящий стандарт устанавливает номинальные напряжения для электрических систем, сетей, цепей и оборудования переменного и постоянного тока, которые применяют в странах — членах Международной электротехнической комиссии.

Настоящий стандарт по построению, последовательности изложения требований, нумерации разделов и подразделов полностью соответствует стандарту IEC 60038:2009. По сравнению со стандартом IEC 60038:2009 настоящий стандарт дополнен обновленными ссылками на международные стандарты и определениями терминов.

Наименьшее используемое напряжение в Таблице А.1 Приложения А настоящего стандарта определено для максимального падения напряжения между вводом в электроустановку пользователя и электрооборудованием, которое равно 4 %. Такое максимальное падение напряжения в электрических цепях электроустановки было указано в ранее действовавшем стандарте [7]- 8 Таблице G.52.1 действующего в настоящее время стандарта [6] для электроустановок, подключаемых к электрическим сетям общего пользования, установлены иные значения максимального падения напряжения:

для электрических светильников — 3 %: для других электроприемников — 5 %.

Требования в настоящем стандарте набраны прямым шрифтом, примечания набраны мелким прямым шрифтом. Обновленные ссылки, а также дополнительные и измененные положения выделены в тексте курсивом.

Дата введения — 2015—10—01

1 Область применения

Настоящий стандарт распространяется:

• на электрические системы переменного тока номинальным напряжением более 100 В и стандартной частотой 50 Гц или 60 Гц, используемые для передачи, распределения и потребления электроэнергии, и электрооборудование, применяемое в таких системах:

• на тяговые системы переменного и постоянного тока:

• на электрооборудование переменного тока с номинальным напряжением менее 120 6 и частотой (как правило, но не только) 50 или 60 Гц, электрооборудование постоянного тока с номинальным напряжением менее 750 8. К такому оборудованию относятся батареи (из элементов или аккумуляторов), другие источники питания переменного или постоянного тока, электрическое оборудование (включая промышленное и коммуникационное) и бытовые электроприборы.

Настоящий стандарт не распространяется на напряжения, используемые для получения и передачи сигналов или при измерениях. Стандарт не распространяется на стандартные напряжения компонентов или частей, применяемых в электрических устройствах или электрооборудовании.

Настоящий стандарт устанавливает значения стандартного напряжения, которые предназначены для применения в качестве:

• предпочтительных значений для номинального напряжения электрических систем питания:

• эталонных значений для электрооборудования и проектируемых электрических систем.

1 Две главные причины привели к значениям, установленным в настоящем стандарте:

— значения номинального напряжения (или иаивысшего напряжения для электрооборудования), установленные в настоящем стандарте, главным образом основаны на историческом развитии электрических систем питания во всем мире, так как эти значения оказалось наиболее распространенными и получили всемирное признание:

-диапазоны напряжений, указанные в настоящем стандарте, были признаны самыми подходящими в качестве основы для разработки и испытания электрического оборудования и систем.

2 Однако определение надлежащих значений для испытаний, условий испытаний и критериев приемки является задачей систем стандартов и стандартов на изделия.

2 Термины и определения

8 настоящем стандарте применены следующие термины с соответствующими определениями. Для напряжений переменного тока ниже указаны действующие значения.

номинальное напряжение системы (nominal system voltage): Соответствующее приближенное значение напряжения, применяемое для обозначения или идентификации системы.

[[1] раздел 601-01. статья 21]_

2.5 напряжение литания (supply voltage): Напряжение между фазами или напряжение между фазой и нейтралью на зажимах питания.

2.4 зажимы литания (supply terminals): Точка в передающей или распределительной электрической сети, обозначенная как таковая и определенная договором, в которой участники договора обмениваются электрической энергией.

Примечание — Эквивалентное определение: напряжение между линиями или напряжение между линией и нейтралью на зажимах гмтания.

2.6 диапазон напряжения питания (supply voltage range): Диапазон напряжения на зажимах питания.

2.7 используемое напряжение (utilization voltage): Напряжение между фазами или напряжение между фазой и нейтралью в штепсельных розетках или в точках фиксированных электроустановок, к которым должны быть присоединены электролриемники.

Примечание — Эквивалентное определение: напряжение между линиями или напряжение между линией и нейтралью в штепсельных розетках или в точках фиксированных электроустановок, к которым должны быть присоединены электролриемники.

2.8 диапазон используемого напряжения (utilization voltage range): Диапазон напряжения в штепсельных розетках или в точках фиксированных электроустановок, к которым должны быть присоединены электролриемники.

Примечание — В некоторых стандартах на электрооборудование (например, в IEC 60335-1 [2] и IEC 60071 [3]). термин «диапазон напряжения» имеет другое значение.

2.9 наибольшее напряжение для электрооборудования (highest voltage for equipment): Наибольшее напряжение, для которого электрооборудование охарактеризовано относительно:

b) других характеристик, которые могут быть связаны с этим наибольшим напряжением в соответствующих рекомендациях для электрооборудования.

Примечание — Электрооборудование можно использовать только в электрических системах, имеющих наибольшее напряжение, которое меньшее или равно его наибольшему напряжению для электрооборудования.

3 Стандартные напряжения

3.1 Системы и электрооборудование переменного тока с номинальным напряжением от 100 до 1000 В включительно

Номинальное напряжение системы переменного тока в диапазоне от 100 до 1000 В следует выбирать из значении, приведенных в Таблице 1.

Таблица 1 — Системы и электрооборудование переменного тока с номинальным напряжением от 100 до 1000 В включительно

Номинальное напряженно трехфазных чотырехпроводиых или трехлроводиых систем. В

Номинальное напряжение однофазных трехпроводных систем. В