Индикатор напряжения сделать сам

Индикатор напряжения на светодиодах: схема, как сделать своими руками самодельный указатель напряжения в сети

Порой возникает необходимость в подключении обычного, маломощного светодиода к переменному, сетевому напряжению 220 вольт в роли светового индикатора. Казалось бы нет ничего проще, чем взять и поставить последовательно светодиоду обычный резистор, который бы ограничивал силу тока в данной цепи. Но не все так просто. В этой статье давайте с вами рассмотрим наиболее распространенные варианты такого подключения, после чего можно будет выбрать наиболее лучшую схему с учетом имеющихся достоинств и недостатков.

Назначение элементов и принцип работы схемы

У многих читателей в доме установлены выключатели света со светодиодной подсветкой. Схема светодиодной подсветки выглядит следующим образом:

  1. Параллельно контакту выключателя включается цепочка, состоящая из гасящего резистора, светодиода и простого кремниевого диода.
  2. При разомкнутом выключателе электрический ток протекает через гасящий (токоограничивающий) резистор, включенные встречно-параллельно светодиоды и лампу накаливания.
  3. Во время одной из полуволн, когда положительное напряжение приложено к аноду LED, светоизлучающий диод светится. Тем самым не только обеспечивается подсветка выключателя, но и осуществляется светодиодная индикация напряжения.

Индикатор на светодиодах в действии

Если убрать из схемы выключатель, лампочку и провода, у нас останется цепочка, состоящая из резистора и двух диодов. Эта цепочка представляет собой простейший индикатор (указатель) переменного тока 220 В.

Остановимся подробнее на назначении элементов схемы. Выше мы указывали, что рабочий ток сигнального LED составляет около 10-15 мА. Понятно, что при непосредственном подключении светоизлучающего диода к сети 220 В через него будет протекать ток, во много раз превышающий предельно допустимое значение. Для того чтобы ограничить ток LED, последовательно с ним включают гасящий резистор. Рассчитать номинал резистора можно по формуле:

Читайте также: Как правильно пользоваться паяльником с канифолью: учимся паять

R = (U max – U led) / I led

  • U max – максимальное измеряемое напряжение;
  • U led – падение напряжения на светодиоде;
  • I led – рабочий ток светоизлучающего диода.

Выполнив простейший расчет, для сети 240 В мы получим номинал резистора R1 равный 15-18 кОм. Для сети 380 В нужно применить резистор, имеющий сопротивление 27 кОм.

Кремниевый диод выполняет функцию защиты от перенапряжения. Если он отсутствует, при отрицательной полуволне U на запертом светодиоде будет падать 220 В или 380 В. Большинство светоизлучающих диодов не рассчитано на такое обратное напряжение. Из-за этого может произойти пробой p-n перехода LED. При встречно-параллельном подключении кремниевого диода, во время отрицательной полуволны он будет открыт и U на светодиоде не превысит 0,7 В. LED будет надежно защищен от высокого обратного напряжения.

На основе рассмотренной схемы можно сделать индикатор напряжения 220/380 В. Достаточно дополнить радиоэлементы двумя щупами и поместить их в подходящий корпус. Для изготовления корпуса индикатора подойдет большой маркер или толстый фломастер. Можно разместить радиодетали на самодельной печатной плате или выполнить соединения навесным способом.

Материалы для сборки индикатора

В маркере проделывают отверстие, в которое вставляют светодиод. На одном конце корпуса закрепляют металлический щуп. Через второй конец корпуса пропускают провод, идущий ко второму щупу или изолированному зажиму «крокодил».

Несмотря на простоту конструкции, устройство позволит проверять наличие напряжения на выходе автоматического выключателя или в розетке, найти сгоревший предохранитель в распределительном щите. Заметим, что приведенная схема индикатора применяется и в промышленных изделиях.


Подключение светодиода на 220 В с использованием диодного моста — 4 вариант

Как видно на графической картинке, в данном случае для подключения на 220 мы используем резисторы и диодный мост.

В данном случае ток через 2 резистора и светодиод ток будет протекать как при положительной, так и при отрицательной полуволне синусоиды за счет использования выпрямительного моста на диодах VD1-VD4.

UVD.РАСЧ = UVD.ОБР/0,7 = 2,6/0,7 = 3,7 В IVD.РАСЧ = UVD.АМПЛ.МАКС/0,7 = 13/0,7 = 19 мА

Принимаются диоды VD1-VD4 типа Д9В, имеющие следующие основные параметры:

UVD.ДОП = 30 В IVD.ДОП = 20 мА I0.МАКС = 250 мкА

Недостатки схемы подключения по 4 варианту

Если все рассчитать по приведенным выше формулам, то можно провести аналогию со 2 вариантом подключения. Минусом будет большая мощность на резисторах: PR.МАКС = 2,4 Вт.

Читайте также: USB Type-С: что это такое и чем отличается от других кабелей

Однако при такой схеме мы получим заметное увеличение яркости светодиода: LED1: ILED1.СР = (5,9-8,7) мА вместо (2,8-4,2) мА

В принципе, это самые распространенные схемы, которые нам показывают как подключить светодиоды к 220 В с применением обычного диода и резисторов. Для простоты понимания были приведены расчеты. Не для всех, может быть понятные, но кому надо, тот найдет, прочитает и разберется. Ну а если нет, то достаточно будет простой графической части.

Индикатор переменного напряжения 220 В

Рассмотрим первый, наиболее простой вариант индикатора сети на светодиоде. Его применяют в отвертках для нахождения фазы 220 В. Для реализации нам понадобится:

  • светодиод;
  • резистор;
  • диод.

Светодиод (HL) вы можете выбрать абсолютно любой. Характеристики диода (VD) должны быть ориентировочно такими: прямое напряжение, при прямом токе 10-100 мА – 1-1,1 В. Обратное напряжение 30-75 В. Резистор (R) должен иметь сопротивление не меньше 100 кОм, но и не больше 150 кОм, иначе просядет яркость свечения индикатора. Такое устройство можно самостоятельно выполнить в навесной форме, даже без использования печатной платы.

Схема примитивного индикатора тока будет выглядеть аналогичным образом, только необходимо использовать емкостное сопротивление.

Индикаторы-пробники для поиска фазы и ноля

Прибор, предназначенный для поиска ноля и фазы, называется индикатором. Широкое применение получили световые индикаторы для определения фазы на неоновых лампочках. Низкая цена, высокая надежность, долгий срок службы. В последнее время появились индикаторы и на светодиодах. Они дороже и дополнительно требуют элементов питания.

На неоновой лампочке

Представляет собой диэлектрический корпус, внутри которого находятся резистор и неоновая лампочка. Касаясь по очереди к проводам электропроводки отверточным концом индикатора, Вы по свечению неоновой лампочки находите фазу. Если лампочка засветилась от прикосновения, значит, это фазный провод. Если не светится, значит, это нулевой провод.

Промышленный индикатор на неоновой лампочке

Корпуса индикаторов бывают разных форм, цветов, но начинка у всех одинаковая. Для исключения случайного замыкания, советую на стержень отвертки надеть трубку из изоляционного материала. Не следует индикатором откручивать или затягивать винты с большим усилием. Корпус индикатора сделан из мягкой пластмассы, стержень отвертки запрессован неглубоко и при большой нагрузке корпус ломается.

Проверка постоянного напряжения

Нередко возникает необходимость прозвонить низковольтную цепь бытовых приборов, либо проверить целостность соединения, например, провод от наушников.

Работа с постоянным током

В качестве ограничителя тока можно использовать маломощную лампу накаливания либо резистор на 50-100 Ом. В зависимости от полярности подключения загорается соответствующий диод. Этот вариант подходит для цепей до 12В. Для более высокого напряжения потребуется увеличить сопротивления ограничивающего резистора.

Индикатор переменного и постоянного напряжения до 600 В

Следующий вариант представляет собой немного более сложную систему, из-за наличия в схеме кроме уже известных нам элементов, двух транзисторов и емкости. Но универсальность этого индикатора вас приятно удивит. Ему доступна безопасная проверка наличия напряжения от 5 до 600 В, как постоянного, так и переменного.

Основным элементом схемы индикатора напряжения выступает полевой транзистор (VT2). Пороговое значение напряжения, которое позволит сработать индикатору фиксируется разностью потенциалов затвор-исток, а максимально возможное напряжение определяет падение на сток-истоке. Он выполняет функции стабилизатора тока. Через биполярный транзистор (VT1) осуществляется обратная связь для поддержания заданного значения.

Принцип работы светодиодного индикатора заключается в следующем. При подаче на вход разности потенциалов, в контуре возникнет ток, значение которого определяется сопротивлением (R2) и напряжением перехода база-эмиттер биполярного транзистора (VT1). Для того чтобы слабенький светодиод загорелся, достаточно тока стабилизации 100 мкА. Для этого сопротивление (R2) должно быть 500-600 Ом, если напряжение база-эмиттер примерно 0,5 В. Конденсатор (С) необходим неполярный, емкостью 0,1 мкФ, служит он защитой светодиода от скачков тока.

Читайте также: Особенности зарядки Ni─MH аккумуляторов, требования к зарядному устройству и основные параметры

Резистор (R1) выбираем величиной 1 МОм, он исполняет роль нагрузки для биполярного транзистора (VT1). Функции диода (VD) в случае индикации постоянного напряжения – это проверка полюсов и защита. А для проверки переменного напряжения он играет роль выпрямителя, срезая отрицательную полуволну. Его обратное напряжение должно быть не меньше 600 В. Что касается светодиода (HL), то выбирайте сверхъяркий, для того, чтобы его свечение при минимальных токах было заметно.

Идеальный индикатор для трейдера

Встает вопрос, если EMA уже работает на пределе возможностей и показывает наиболее актуальные изменения цены, то почему трейдеры не используют EMA постоянно? Дело в том, что для EMA вообще не важно, насколько продолжителен изучаемый тренд. Любой более-менее значительный ценовой всплеск кардинально изменяет направление прогноза, что может сильно вводить в заблуждение и привести к потерям.

Выходит, что трейдерам не обязательно иметь индикаторы с малым запаздыванием – нам нужен некоторый баланс между малым временем реакции и фильтрацией ложных выбросов. Самая известная из подобных разработок – это адаптивная скользящая средняя – AMA. Вариаций ее тоже достаточно много.

Индикатор для микросхем – логический пробник

Научившись создавать простейший пробник электрика своими руками, на основе LED также можно сделать простой логический пробник, который поможет отыскать неисправности в цифровых устройствах.

Логические пробники появились на заре вычислительной техники. При помощи них специалисты анализировали логические уровни на входах и выходах цифровых микросхем. Высокому уровню (напряжению) на выходе логического элемента присваивается значение логической «единицы», а низкому уровню – логического «нуля». Сопоставляя уровни на входе и выходе цифровой микросхемы, можно судить о ее исправности.

Схема лед драйвера на 220 вольт

Более надежный способ, позволяющий запитать светодиоды от сети, – применение специального преобразователя или драйвера, понижающего напряжение до безопасного уровня. Основное назначение драйвера под светодиод 220 вольт – ограничить ток через него в рамках допустимого значения (согласно паспорту). В его состав входят формирователь напряжения, выпрямительный мостик и микросхема токового стабилизатора.

Вариант драйвера без стабилизатора тока

При желании собрать устройство питания светодиодов от 220 В своими руками потребуется знать следующее:

  • при использовании выходного стабилизатора амплитуда пульсаций существенно снижается;
  • в этом случае на самой микросхеме теряется часть мощности, что сказывается на яркости свечения излучающих приборов;
  • при использовании вместо фирменного стабилизатора фильтрующего электролита большой емкости пульсации не полностью сглаживаются, но остаются в допустимых пределах.

При самостоятельном изготовлении драйвера схему можно упростить, поставив на место выходной микросхемы электролит.

Как изготовить эвуковой пробник электрика своими руками?

У некоторых запасливых любителей в «арсенале» можно найти множество полезных вещей, в том числе и наушник (капсюль) для телефона ТК-67-НТ.

Подойдет и другое аналогичное устройство, снабженное металлической мембраной, внутри которого расположена пара последовательно соединенных катушек.

На базе такой детали может быть собран несложный звуковой пробник.

В первую очередь нужно разобрать телефонный капсюль и отсоединить катушки друг от друга. Это нужно для того, чтобы освободить их выводы. Элементы размещаются в наушнике под звуковой мембраной, около катушек. После сборки электрической цепи мы получим вполне рабочий определитель со звуковой индикацией, который возможно применять, к примеру, в целях проверки дорожек печатных схем на взаимное перемыкание.

Схема пробника со звуковой и световой индикацией

База такого пробника – электрогенератор с индуктивной противоположной взаимосвязью, основными деталями которого является телефон и транзистор малой мощности (лучше всего германиевый). Если такого транзистора у вас нет, то можно воспользоваться другим, обладающим проводимостью N-P-N, однако в этом случае полярность включения источника электропитания следует поменять. Если включить генератор не получается, выводы одной (любой) катушки нужно поменять между собой местами.

Увеличить громкость звука можно, выбрав частоту электрогенератора таким образом, чтобы она была максимально приближена к резонансной частоте наушника. Для этого мембрану и сердечник нужно расположить на соответствующем расстоянии, изменяя интервал между ними до получения нужного результата. Теперь вы знаете, как сделать индикатор напряжения на базе телефонного наушника.

Наглядно изготовление и использование простейшего пробника напряжения на видео:

Индикатор напряжения на светодиодах своими руками: схемы с описанием

Индикатор фазы на светодиоде своими руками

Светодиоды давно применяется в любой технике из-за своего малого потребления, компактности и высокой надежности в качестве визуального отображения работы системы. Индикатор напряжения на светодиодах это полезное устройство, необходимое любителям и профессионалам для работы с электричеством. Принцип используется в подсветках настенных выключателей и выключателей в сетевых фильтрах, указателях напряжения, тестерных отвертках. Подобное устройство можно сделать своими руками из-за его относительной примитивности.

На 12 вольт

Схема индикатора на светодиодах для определения напряжения заряда автомобиля содержит 16 деталей.

Схема на 12 вольт

Схема пробника на 12 вольт.

В приборе установлены три делителя напряжения: на резисторах, стабилитронах и транзисторах. Их выходы подключены к трехцветному светодиоду.

Вариант для автомобиля

Схема для автомобиля

Простая схема для индикации напряжения бортовой сети автомобиля и заряда аккумулятора. Стабилитрон ограничивает ток аккумулятора до 5В для питания микросхемой логики.

Переменные резисторы позволяют выставить уровень напряжения для срабатывания светодиодов. Настройку лучше проводить от сетевого стабилизированного источника питания.

Детектора наличия опасного для жизни напряжения, изготовление

Выполнен прибор на трех транзисторах, без платы навесным монтажом.

Читайте также: Как правильно обжать интернет кабель дома самостоятельно?

Бесконтактный детектор высокого напряжения своими руками

Обратите внимание, что в схеме используются транзисторы разной структуры. Требований к ним особых нет, подойдут практически любые. В качестве элементов сигнализации используются светодиод и зуммер. Роль антенны играет кусок провода, длиной 5 см.

Бесконтактный детектор высокого напряжения своими руками

Питается детектор от двух мизинчиковых элементов.

Бесконтактный детектор высокого напряжения своими руками

Корпусом служит прозрачная пластиковая трубка.

Бесконтактный детектор высокого напряжения своими руками

После сборки, если все элементы схемы исправны, детектор начинает работать сразу и в настройке не нуждается.

Нюансы в работе индикатора напряжения

Собранный своими руками светодиодный индикатор, так же как и промышленные приборы данного типа, может применяться для проверки наличия напряжения. Измерительным прибором он не является, а лишь указывает на наличие или отсутствие напряжения. Приобретя некоторый опыт работы с указателем, можно по яркости свечения светоизлучающего диода определить величину напряжения между двумя проводниками. Однако для точных измерений нужно применять стрелочные или цифровые вольтметры.

В отличие от указателей с газоразрядными лампами светодиодный индикатор нельзя применять для поиска «фазы», прикасаясь к одному из щупов пальцем. Прибор имеет малое внутреннее сопротивление, и такой способ поиска фазного проводника грозит поражением электрическим током.

Индикатор напряжения на светодиодах своими руками

Индикатор фазы на светодиоде своими руками

Проверка напряжения в цепи – процедура, необходимая при выполнении различного рода работ, связанных с электричеством. Некоторые любители-электрики, а иногда и профессионалы пользуются для этого самодельной «контролькой» – патроном с лампочкой, к которому подсоединены провода.

Хотя такой метод запрещен «Правилами безопасной эксплуатации электроустановок потребителей», он достаточно эффективен при грамотном использовании. Но все же в этих целях лучше пользоваться светодиодными определителями – пробниками. Их можно купить в магазине, а можно изготовить самостоятельно.

Как сделать светодиодный индикатор напряжения своими руками: схемы и инструкция

Световыми индикаторами называют указатели, работающие на основе источника света. Светодиодные приборы работают за счет светового излучения из p-n-перехода при прохождении через него тока.

Как сделать светодиодный индикатор напряжения своими руками: схемы и инструкция

В быту используются переносные приборы для индикации, в том числе мультиметры. Основное предназначение – определение наличия/отсутствия тока и разности значений напряжения. Вольтаж зависит от типа прибора, по конструкции индикаторы бывают одно- и двухполюсные. При первом варианте токоведущая часть одна, при втором – две.

В магазинах продаются простые тестеры в виде авторучек и отверток. Конструкция размещается в корпусе из диэлектрика со смотровым окошком. Основные элементы: светодиод и резистор. Снизу располагается щуп, сверху металлический контакт для касания рукой.

Эти приборы позволяют:

Читайте также: Каким огнетушителем можно пользоваться при загорании аппаратуры?

  • определить ноль и фазу;
  • вольтаж на предохранительном оборудовании.

Справка! Двухполюсные индикаторы позволяют работать с постоянным и переменным током, их функционал выше.

Однополюсные тестеры-отвертки делятся на:

  • пассивные;
  • с дополнительными функциями;
  • с расширенным функционалом.

Пассивный тестер используется для определения наличия напряжения в электрооборудовании и проводке. Для контакта используется плоская отвертка, сопротивление создает схема в ручке. Светодиод загорается при прикосновении к детали, по которой течет ток.

Как сделать светодиодный индикатор напряжения своими руками: схемы и инструкция

Преимущества пассивной отвертки:

  • простая конструкция;
  • не требуется источник питания;
  • не требуются специальные знания.

Недостатка два: тусклое свечение светодиода и необходимость во время тестирования снять перчатки.

Прибор с дополнительным функционалом можно использовать в двух режимах: бесконтактном и контактном. Определяется наличие напряжения, можно проверить провода, кабели, предохранители. Запитывается такой тестер от батареек. Ноль и фаза определяется так же, как с пассивной отверткой. При тестировании бесконтактным методом прибор держится, не касаясь нижней части. К проводнику подносится верхняя часть.

Важно! Прикасаться к проводнику не нужно. Если светодиод загорелся, проводка (предохранитель) цела.

Индикаторы с расширенным функционалом цифровые. Сделать что-то подобное самостоятельно невозможно.

Большинство двухконтактных индикаторов профессиональные. По функционалу они почти не отличаются от одноконтактных. Эти приборы оснащены двумя щупами, на концах которых острые штыри. В процессе тестирования можно узнать значение напряжения (параметр отображается на экране).

Индикаторы фазы 220В на светодиодах Индикаторы фазы 220В на светодиодах Индикаторы фазы 220В на светодиодах Индикаторы фазы 220В на светодиодах Индикаторы фазы 220В на светодиодах

Индикатор напряжения для сборок литевых батарей 1-7S

Иногда заказываю для сборок аккумуляторов небольшие измерители и вот дошли руки протестировать их, ну и заодно написать микрообзор. Осмотр, немножко тестов и выводов, надеюсь что будет полезно. К сожалению доставка в магазине платная, потому заказывал сразу по нескольку штук чтобы компенсировать это. На момент заказа у продавца вроде были только четыре версии, 1S, 2S, 3S, 4S, но сейчас появились 6S и 7S, при этом странно что нет в продаже версии 5S, подозреваю что скоро появится.

Большая часть измерителей отдал товарищу, но по одной штучке оставил и себе. Каждый измеритель упакован в отдельный пакет, из отличий только наклейка с маркировкой на китайском и указанием диапазона измеряемого напряжения. 1S — 3.3-4.3 Вольта 2S — 6.6-8.4 Вольта 3S — 11.1-12.6 Вольта 4S — 13.2-16.8 Вольта

Также имеется маркировка цвета свечения (предположительно), но у продавца они только в одном варианте.

Если покупается несколько разных вариантов, то лучше их пометить сразу, так как сами по себе они ни маркировки, ни внешних отличий нет.

Читайте также: Тема 6. Классификация помещений, зданий и наружных установок по категориям взрывопожарной и пожарной опасности

На одной из сторон платы есть место под кнопку, скорее всего для включения индикатора, но ни кнопки, ни сопутствующих компонентов на плате нет.

Когда получил индикаторы, то немного удивил размер, почему-то я ожидал что они будут меньше, тем более зная как в китайских магазинах любят делать фото. Размеры самого индикатора — 31.5х20 мм, общие размеры — 43.5х20х9.5мм, расстояние между крепежными отверстиями — 36мм.

Чтобы не запутаться где какой индикатор, пришлось маркером сделать отметки на каждом из них.

Общее качество на троечку, есть следы флюса, пайка так себе, индикатор на некоторых платах припаян криво относительно самих плат.

Схемотехника довольно проста, стабилизатора напряжения питания нет, потому яркость зависит от напряжения питания. Имеется источник опорного напряжения на базе регулируемого стабилитрона TL431, а также защита от неправильной подачи питания. Что за чип занимается измерением я определить не смог, сначала думал что это четырехканальный компаратор LM339, но у него выходы выведены на 1, 2, 13 и 14 контакты, а у чипа обозреваемой платы на 1, 7, 8, 14 выводы.

Ниже на фото две платы, 1S и 4S, чтобы понять в чем между ними отличия. 1. Резисторы через которые питаются сегменты индикатора (R1-R5). 2. Резистор R9.

Все остальные компоненты идентичны на всех платах. При этом номинал резистора питания TL431 одинаков для всех плат и из-за этого ток потребления будет зависеть от входного напряжения.

Индикатор пятисегментный, один общий в виде символа батарейки и четыре сегмента для индикации уровня заряда (собственно потому я и думал что здесь применен LM339), но при этом существует и индикатор с пятью сегментами уровня заряда, мне такой попадался на Таобао. Мало того, есть еще и много вариантов цветов индикации.

Читайте также: Диммер – что это, принцип действия светорегулятора, преимущества и недостатки, область применения, схема подключения устройства

Размеры индикатора платы в обзоре и показанного выше очень похожи, 30.8х17.8мм против 31.5х20мм у обозреваемой платы.

Теперь немного тестов. Индикатор обозреваемой платы имеет два цвета свечения, символ батарейки — красный, сегменты — синий. При этом символ батарейки состоит из шести параллельно включенных светодиодов.

Яркость достаточная, но у самой низковольтной версии сильно зависит от напряжения питания, но это вполне предсказуемо, остальные ведут себя гораздо стабильнее. Есть и небольшая сложность, из-за того что цвета свечения синий и красный, то лучше использовать нейтральный светофильтр. Для примера ниже четыре варианта — 1. Без светофильтра 2. Зеленый светофильтр, видны все сегменты, но яркость сильно падает и становятся более заметны светодиоды подсветки символа батарейки. 3. Красный светофильтр — виден только символ батарейки 4. Синий светофильтр, отлично видны сегменты, но символ батарейки почти не виден.

Измерения, для начала ток потребления. Ниже на фото результат измерений для четырех режимов из пяти — только символ батарейки, + один сегмент, + два сегмента и + четыре сегмента, фото с тремя сегментами выкладывать не стал, но думаю что можно принять среднее между третьим и четвертым фото. На всех фото где включены сегменты измерен ток сразу после его включения. 1-4, 1S 5-8, 2S 9-12, 3S 13-16, 4S

Видно что ток постоянно растет, хотя номиналы резисторов, через которые питаются светодиоды сегментов, разные. Происходит это из-за того, что резистор питания TL431 один и тот же на всех платах. Если необходимо уменьшить ток потребления, то можно номинал этого резистора (R14) пропорционально увеличить, например для платы 2S поставить 2кОм.

А теперь напряжение включения сегментов. Сразу сделаю отступление, гистерезиса или нет или он очень мал, потому у самой низковольтной версии бывает «дрожание» яркости, хотя в тесте я поднимал напряжение с дискретностью в 10мВ.

Также я сделал пересчет зависимости напряжения индикации к одному аккумулятору в зависимости от версии измерителя и у меня получилось: 1S…….2S…….3S…….4S 3.35 — 3.36 — 3.43 — 3.37 3.57 — 3.53 — 3.64 — 3.57 3.72 — 3.70 — 3.81 — 3.76 3.92 — 3.90 — 4.03 — 3.97

Видно что результаты немного «плавают», но в целом картина довольно ясна, диапазон измерения примерно 3.4-4.0 Вольта, что примерно соответствует почти полностью разряженному и заряженному аккумулятору. Напряжение литиевого аккумулятора обычно резко снижается с 4.2 до 4 Вольт, затем идет относительно плавное снижение до 3.3-3.4 Вольта и далее опять более резкое падение. Я бы сказал, что индикатор отображает примерно диапазон от 15 до 90%.

По итогам осмотра и тестов могу сказать, что индикаторы вполне работоспособны и полезны, но есть несколько замечаний: 1. Заметны отдельные светодиоды у символа батарейки 2. Ток потребления заметно растет с ростом напряжения, исправляется заменой резистора R14 3. Нет кнопки включения.

По последнему пункту поясню. Так как нет кнопки «программно» включающей индикатор, то сделать это можно только подачей питания, но обычно нет смысла держать его всегда включенным, а обычная мелкая кнопка имеет относительно высокое сопротивление и результат измерения будет сильно зависеть как от силы нажатия не кнопку, так и от срока ее службы.

В остальном вещь полезная и на мой взгляд недорогая, а большой выбор вариантов дает возможность использовать в разных устройствах, например в шуруповерте, повербанке и т.п. Недавно покупал еще раз, вышло чуть дешевле — ссылка.

На этом у меня все, надеюсь что обзор был полезен, как всегда жду вопросов и просто комментариев.

Схемы индикатора напряжения своими руками

Основная функция индикатора напряжения в быту – определить целостность электросети. Для радиолюбителя важна возможность определить параметры и прозвонить даже неработающие электроприборы. Своими руками можно сделать только первый тип индикаторов. Опытный радиолюбитель может сделать индикатор, позволяющий прозванивать провода.

В быту часто используются самодельные пробники (контрольки), реже – мультиметры. Контролька – это лампочка накаливания в патроне, провода выполняют роль щупов. Она позволяет не только определить наличие/отсутствие тока, но и вольтаж по яркости свечения. Сделать что-то подобное со светодиодной лампой не получится.

Как сделать светодиодный индикатор напряжения своими руками: схемы и инструкция

Мультиметр позволяет определить все параметры сразу, так как выполняет функции вольтметра, амперметра и омметра. Им можно определить емкость конденсаторов, проверять транзисторы и диоды. Такой прибор сделать нельзя, его нужно купить.

Работа с сетью 220 В

Самый простой указатель напряжения электросети без источника питания делается из резистора, ограничителя тока (транзистора), выпрямителя (диода) и любого светодиода. Сопротивление резистора 100 – 150 кОм.

  • ток 10-100 мА;
  • напряжение 1-1,1 В;
  • обратное напряжение 30-75 В.

Важно! Для изготовления такого индикатора плата не обязательна.

При 220 В частоте 3 Гц светодиод загорается. Корректировать частоту и повысить яркость можно изменением емкости конденсатора. Такой индикатор срабатывает при минимальном напряжении 4,5 В. Кроме тока сети он может определить исправность, включенное и выключенное состояние электроприбора.

Проверка постоянного напряжения

Для проверки сети на 12 вольт и целостности соединений можно сделать другой светодиодный индикатор (нужны 2 разноцветных светодиодных элемента). Для ограничения тока можно использовать резистор с сопротивлением 50-100 Ом или лампочку накаливания с небольшой мощностью. Один из светодиодов загорается при подключении напряжения соответствующей полярности.

Читайте также: Как самостоятельно собрать, подключить и помыть люстру — полная инструкция покупателю

В самодельный индикатор для сети 12 В можно добавить конденсатор, диод и 2 транзистора. Полевой транзистор стабилизирует ток. Конденсатор, защищающий диод от скачков напряжения, нужен с емкостью 0,1 мкФ, неполярный. Резистор с сопротивлением 1 Мом является нагрузкой биполярного транзистора. При проверке сети с постоянным напряжением диод проверяет полюса. Если ток переменный, этот элемент срезает минусовую половину. При подаче напряжения значение тока определяет биполярный транзистор и сопротивление резистора (500-600 Ом).

Такой прибор подходит для работы с переменной и постоянной сетью с напряжением 5-600 В.

Двухуровневый индикатор напряжения на светодиодах

Индикацию осуществляют светодиоды HL1 и HL2, транзисторы VT1 и VT2 обеспечивают согласование светодиодов с выходами логических элементов. Светодиодный индикатор напряжения работает следующим образом. Если сетевое напряжение будет менее 200 В, компаратор на ОУ DA1.2 переключится в состояние с высоким уровнем напряжения (лог. 1) на выходе. Логический элемент DD1.2 инвертирует этот уровень, и на его выходе установится низкий уровень (лог. 0), поэтому светодиод HL1 погашен.

Одновременно на выходе элемента DD1.4 будет постоянно присутствовать лог. 1, в результате транзистор VT2 откроется и станет постоянно светить светодиод HL2 красного свечения, индицируя снижение сетевого напряжения ниже порога. Когда сетевое напряжение находится в интервале 200…250 В, на выходе ОУ DA1.2 присутствует лог. 0. Элемент DD1.2 инвертирует этот уровень, и на его выходе будет лог 1. В этом случае транзистор VT2 закроется (светодиод HL2 погаснет), а транзистор VT1 откроется, поэтому включится и будет постоянно гореть светодиод HL1 зелёного свечения, индицируя, что напряжение сети в норме.

При превышении сетевым напряжением 250 В компаратор на ОУ DA1.1 переключается в состояние с лог. 1 на выходе. Это приведёт к запуску генератора импульсов, и светодиод HL2 начинает периодически вспыхивать. В результате светодиод зелёного свечения светит постоянно, а красного — вспыхивает. Эта комбинация сигнализирует о превышении сетевым напряжением верхнего порога. Индикатор напряжения начинают налаживать с того, что устанавливают желаемые пороги переключения индикатора.

Для этого движки подстроечных резисторов R3 и R4 устанавливают в нижнее по схеме положение. К выходу ЛАТРа подключают вольтметр переменного тока и вход индикатора. Устанавливают на входе индикатора напряжение 200 В, и подстроечным резистором R3 добиваются включения светодиода HL2 зелёного свечения, при этом должен погаснуть светодиод HL1 красного свечения. Затем подают напряжение 250 В, и движком подстроечного резистора R4 добиваются периодического включения красного светодиода HL1 с одновременно горящим зелёным светодиодом.

На этом налаживание можно считать законченным. Индикатор напряжения на 220в применяют постоянные резисторы МЛТ, ОМЛТ, С2-23 соответствующей мощности, подстроечные — СП3-19, СП3-38а или импортные, оксидные конденсаторы — К50-35, конденсатор С2 — металлоплёночный импортный, например, В32922-С3334-К фирмы Epcos, рассчитанный на работу на переменном токе с номинальным напряжением не менее 305 В, С4 — плёночный серии К73 или керамический К10-17.

Светодиоды — любые маломощные соответствующего цвета свечения с диаметром корпуса 3…5 мм. В качестве корпуса индикатора использована круглая пластмассовая коробка диаметром около 55 мм из под косметического крема. В неё помещена круглая универсальная печатная плата из стеклотекстолита. Применён проводной монтаж.

Основные выводы

Самостоятельно делают индикаторы по простым схемам. Никакие другие дорогостоящий детали не требуются. Для изготовления пробника можно использовать корпус высохшего маркера или неисправного мобильного телефона. На лицевую часть можно вывести щуп в виде штыря, на торец – кабель, оснащенный зажимом-«крокодильчиком» или щупом.

СветодиодыКак получают белый свет свечения светодиода

СветодиодыПринцип работы и схемы подключения двухцветных светодиодов

Как сделать светодиодный индикатор напряжения своими руками: схемы и инструкция

Светодиоды давно применяется в любой технике из-за своего малого потребления, компактности и высокой надежности в качестве визуального отображения работы системы. Индикатор напряжения на светодиодах это полезное устройство, необходимое любителям и профессионалам для работы с электричеством. Принцип используется в подсветках настенных выключателей и выключателей в сетевых фильтрах, указателях напряжения, тестерных отвертках. Подобное устройство можно сделать своими руками из-за его относительной примитивности.

Общее устройство и принцип работы

Световыми индикаторами называют указатели, работающие на основе источника света. Светодиодные приборы работают за счет светового излучения из p-n-перехода при прохождении через него тока.

В быту используются переносные приборы для индикации, в том числе мультиметры. Основное предназначение – определение наличия/отсутствия тока и разности значений напряжения. Вольтаж зависит от типа прибора, по конструкции индикаторы бывают одно- и двухполюсные. При первом варианте токоведущая часть одна, при втором – две.

В магазинах продаются простые тестеры в виде авторучек и отверток. Конструкция размещается в корпусе из диэлектрика со смотровым окошком. Основные элементы: светодиод и резистор. Снизу располагается щуп, сверху металлический контакт для касания рукой.

Читайте также: Терморегулятор в розетку для бытовых обогревателей — устройство, варианты установки розетки с термостатом и контролем температуры

Эти приборы позволяют:

  • определить ноль и фазу;
  • вольтаж на предохранительном оборудовании.

Справка! Двухполюсные индикаторы позволяют работать с постоянным и переменным током, их функционал выше.

Однополюсные тестеры-отвертки делятся на:

  • пассивные;
  • с дополнительными функциями;
  • с расширенным функционалом.

Пассивный тестер используется для определения наличия напряжения в электрооборудовании и проводке. Для контакта используется плоская отвертка, сопротивление создает схема в ручке. Светодиод загорается при прикосновении к детали, по которой течет ток.

Преимущества пассивной отвертки:

  • простая конструкция;
  • не требуется источник питания;
  • не требуются специальные знания.

Недостатка два: тусклое свечение светодиода и необходимость во время тестирования снять перчатки.

Прибор с дополнительным функционалом можно использовать в двух режимах: бесконтактном и контактном. Определяется наличие напряжения, можно проверить провода, кабели, предохранители. Запитывается такой тестер от батареек. Ноль и фаза определяется так же, как с пассивной отверткой. При тестировании бесконтактным методом прибор держится, не касаясь нижней части. К проводнику подносится верхняя часть.

Важно! Прикасаться к проводнику не нужно. Если светодиод загорелся, проводка (предохранитель) цела.

Индикаторы с расширенным функционалом цифровые. Сделать что-то подобное самостоятельно невозможно.

Большинство двухконтактных индикаторов профессиональные. По функционалу они почти не отличаются от одноконтактных. Эти приборы оснащены двумя щупами, на концах которых острые штыри. В процессе тестирования можно узнать значение напряжения (параметр отображается на экране).

Индикаторы фазы 220В на светодиодах Индикаторы фазы 220В на светодиодах Индикаторы фазы 220В на светодиодах Индикаторы фазы 220В на светодиодах Индикаторы фазы 220В на светодиодах

Руководство по изготовлению

Собрать схему с использованием светового или звукового индикатора для своего авто можно в домашних условиях. Если у вас есть опыт в электротехнике, то это задача не займет много времени. Но даже если вы никогда прежде не занимались выполнением таких работ, то в этом нет ничего сложного. Главное — это правильно соединить все элементы схемы и подключить их к бортовой сети.

Рассмотрим пример сборки индикатора для определения напряжения аккумулятора авто. Вместо десяти отдельных диодных элементов, которые отмечены на схеме, мы будем использовать цельный индикатор, поскольку он занимает не так много места.

Что понадобится?

Что приготовить перед тем, как приступить к процессу:

  • сама схема, в нашем примере используется LM 3914;
  • диодная планка, рассчитанная на 10 сегментов, можно использовать Kingbright DC-763HWA;
  • блок питания с возможностью регулировки от 10 до 15 вольт;
  • резисторы.

Этапы

Вкратце рассмотрим инструкцию по изготовлению устройства:

Читайте также: Релейный модуль с циклическим таймером DС 12 Вольт

  1. В первую очередь, печатную плату необходимо очистить от пыли. Проследите за тем, чтобы этот компонент был чистым, на нем не должно быть следов подгорания, в противном случае это может привести к неработоспособности девайса в будущем.
  2. На готовой к использованию плате необходимо собрать все компоненты в соответствии с приведенной схемой. Для пропайки элементов используйте паяльник с расходными материалами. Все без исключения составляющий части девайса должны быть зафиксированы как можно более прочно. Если крепление резисторов и диодной планки будет слабым, то конструкция со временем может разболтаться в результате вибраций, соответственно, работоспособность девайса будет нарушена.
  3. Для большего удобства и обеспечения более компактной сборки устройства правый резисторный элемент нужно обрезать.
  4. После того, как все составляющие на плате будут установлены, осуществляется настройка системы. Для этого на плату нужно подать напряжение величиной 10.5 вольт и произвести регулировку правого подстроечника. Вам нужно добиться того, чтобы включилась первая диодная полоска на устройстве.
  5. Затем на устройство нужно подать 15-вольтовое напряжение и произвести регулировку девайса таким образом, чтобы начала гореть последняя полоска на плате. Помните о том, что гореть должны не все полоски, а только одна из них.
  6. Далее, вам остается только установить изготовленный девайс в любом удобном для вас месте и подключить его к бортовой сети. В частности, если вы делали девайс для определения заряда АКБ, то лучше будет подключить его на участке цепи, который соединен непосредственно с аккумулятором.
  7. Чтобы удостовериться в том, что устройство функционирует правильно, вам необходимо с помощью мультиметра проверить заряд самой аккумуляторной батареи. После чего сопоставить эти цифры с делением на шкале 10-сегментного индикатора. Если заряд АКБ полный, то должна гореть последняя полоска, если средний — то диодная лампочка посредине индикатора, а если заряд минимальный — то первая лампа.

Плата для сборки устройства

Цена вопроса

Если вы хотите установить в свой автомобиль индикатор напряжения, то можно купить уже готовый цифровой девайс. Стоимость более-менее качественного устройства будет начинаться от 250 рублей. На рынке можно встретить варианты, цена которых составляет 1500 тысячи руб., но такие цифровые девайсы дополнительно оснащаются разными регуляторами, к примеру, температуры в салоне.

Схемы индикатора напряжения своими руками

Основная функция индикатора напряжения в быту – определить целостность электросети. Для радиолюбителя важна возможность определить параметры и прозвонить даже неработающие электроприборы. Своими руками можно сделать только первый тип индикаторов. Опытный радиолюбитель может сделать индикатор, позволяющий прозванивать провода.

В быту часто используются самодельные пробники (контрольки), реже – мультиметры. Контролька – это лампочка накаливания в патроне, провода выполняют роль щупов. Она позволяет не только определить наличие/отсутствие тока, но и вольтаж по яркости свечения. Сделать что-то подобное со светодиодной лампой не получится.

Мультиметр позволяет определить все параметры сразу, так как выполняет функции вольтметра, амперметра и омметра. Им можно определить емкость конденсаторов, проверять транзисторы и диоды. Такой прибор сделать нельзя, его нужно купить.

Схема наличия тока Паяльник с зарядкой от usb Схема на 12 вольт

Для чего нужен логический пробник?

Это устройство с успехом применяется, когда необходимо произвести предварительную проверку работоспособности элементов простой электрической схемы, а также для первичной диагностики несложных приборов – то есть в тех случаях, когда не требуется высокая точность измерений. С помощью логического пробника можно:

  • Определить наличие в электроцепи напряжения величиной 12 – 400 В.
  • Определить полюса в цепи постоянного тока.

Прозвонка самодельным пробником

  • Произвести проверку состояния транзисторов, диодов и других электрических элементов.
  • Определить фазную жилу в электроцепи переменного тока.
  • Прозвонить электрическую цепь для проверки ее целостности.

Наиболее простыми и надежными приборами, с помощью которых производятся перечисленные манипуляции, являются индикаторная отвертка и звуковая отвертка.

Работа с сетью 220 В

Самый простой указатель напряжения электросети без источника питания делается из резистора, ограничителя тока (транзистора), выпрямителя (диода) и любого светодиода. Сопротивление резистора 100 – 150 кОм.

  • ток 10-100 мА;
  • напряжение 1-1,1 В;
  • обратное напряжение 30-75 В.

Важно! Для изготовления такого индикатора плата не обязательна.

При 220 В частоте 3 Гц светодиод загорается. Корректировать частоту и повысить яркость можно изменением емкости конденсатора. Такой индикатор срабатывает при минимальном напряжении 4,5 В. Кроме тока сети он может определить исправность, включенное и выключенное состояние электроприбора.

Проверка постоянного напряжения

Для проверки сети на 12 вольт и целостности соединений можно сделать другой светодиодный индикатор (нужны 2 разноцветных светодиодных элемента). Для ограничения тока можно использовать резистор с сопротивлением 50-100 Ом или лампочку накаливания с небольшой мощностью. Один из светодиодов загорается при подключении напряжения соответствующей полярности.

В самодельный индикатор для сети 12 В можно добавить конденсатор, диод и 2 транзистора. Полевой транзистор стабилизирует ток. Конденсатор, защищающий диод от скачков напряжения, нужен с емкостью 0,1 мкФ, неполярный. Резистор с сопротивлением 1 Мом является нагрузкой биполярного транзистора. При проверке сети с постоянным напряжением диод проверяет полюса. Если ток переменный, этот элемент срезает минусовую половину. При подаче напряжения значение тока определяет биполярный транзистор и сопротивление резистора (500-600 Ом).

Читайте также: 12 примеров использования реле времени с задержкой выключения или включения в быту

Такой прибор подходит для работы с переменной и постоянной сетью с напряжением 5-600 В.

От неоновой лампочки к светодиоду

Решение состояло в изменении самого режима свечения с непрерывного на импульсный. Если попробовать оценить мощность, потребляемую неоновой лампой, то при напряжении 100 В и емкостном токе 20 мкА она составит 100 х 20 мкА = 2 мВт. Если подводить такую мощность к светодиоду в течение интервала времени, например, 10 мс, а не целую секунду, то он на этом интервале вполне хорошо засветится. Ведь при напряжении 100 В ток через него составит 0,002 Вт х 100/100 В = 0,002 А = 2 мА.
Если обеспечить накопление энергии в некоторой схеме (например, в релаксационном генераторе) в течение долей секунды, а затем – резкий ее сброс на светодиод за 10 мс, то последний будет периодически ярко вспыхивать. Получится светодиодный индикатор напряжения без встроенной батарейки.

13 схем индикаторов разряда li-ion аккумуляторов: от простых к сложным

Основные выводы

Самостоятельно делают индикаторы по простым схемам. Никакие другие дорогостоящий детали не требуются. Для изготовления пробника можно использовать корпус высохшего маркера или неисправного мобильного телефона. На лицевую часть можно вывести щуп в виде штыря, на торец – кабель, оснащенный зажимом-«крокодильчиком» или щупом.

СветодиодыКак получают белый свет свечения светодиода

СветодиодыПринцип работы и схемы подключения двухцветных светодиодов

Терминология

В многочисленных статьях, размещенных в Сети, можно встретить термины «указатель напряжения», «указатель низкого напряжения», «индикатор напряжения». При этом зачастую никакого разграничения между областями их использования не приводится, а иногда они даже отождествляются. Попробуем разобраться в этом вопросе.

Многочисленные правила применения электрозащитных средств, которые постоянно изменяются и переиздаются, всегда оперируют термином «указатель напряжения». При этом все подобные приборы разделяются на двухполюсные, состоящие из двух корпусов, соединенных гибким изолированным проводником; и однополюсные, содержащие один корпус. Первые работают на активном токе, протекающем через оба корпуса, а вторые – на емкостном, протекающем через тело пользователя.

Широко используемый в обиходе термин «индикатор напряжения» относится именно ко второму типу указателей. Их ранние модели выпускались в виде отвертки с индикатором-лампочкой в рукоятке. Современные устройства больше похожи на строительный маркер (правда, с металлической контактной частью на конце).

13 схем индикаторов разряда li-ion аккумуляторов: от простых к сложным

Другие варианты подключения

В предыдущих схемах защитный диод был включен встречно-параллельно, однако его можно разместить и так:

13 схем индикаторов разряда li-ion аккумуляторов: от простых к сложным

Это вторая схема включения светодиодов на 220 вольт без драйвера. В этой схеме ток через резистор будет в 2 раза меньше, чем в первом варианте. А, следовательно, на нем будет выделяться в 4 раза меньше мощности. Это несомненный плюс.

Но есть и минус: к защитному диоду прикладывается полное (амплитудное) напряжение сети, поэтому любой диод здесь не прокатит. Придется подобрать что-нибудь с обратным напряжением 400 В и выше. Но в наши дни это вообще не проблема. Отлично подойдет, например, вездесущий диод на 1000 вольт — 1N4007 (КД258).

Не смотря на распространенное заблуждение, в отрицательные полупериоды сетевого напряжения, светодиод все-таки будет находиться в состоянии электрического пробоя. Но благодаря тому, что сопротивление обратносмещенного p-n-перехода защитного диода очень велико, ток пробоя будет недостаточен для вывода светодиода из строя.

Внимание! Все простейшие схемы подключения светодиодов в 220 вольт имеют непосредственную гальваническую связь с сетью, поэтому прикосновение к ЛЮБОЙ точке схемы — ЧРЕЗВЫЧАЙНО ОПАСНО!

Для уменьшения величины тока прикосновения нужно располовинить резистор на две части, чтобы получилось как показано на картинках:

13 схем индикаторов разряда li-ion аккумуляторов: от простых к сложным

Благодаря такому решению, даже поменяв местами фазу и ноль, ток через человека на «землю» (при случайном прикосновении) никак не сможет превысить 220/12000=0.018А. А это уже не так опасно.

Несколько слов об окружающих нас емкостях

Как работает емкостный индикатор напряжения? Чтобы понять это, давайте вернемся на мгновение к электрической теории цепей и вспомним, как функционирует конденсатор. Он имеет два проводника, или пластины, разделенные диэлектриком. Многие думают, что конденсаторы – это отдельные элементы электронных схем, но в действительности мир заполнен конденсаторами, присутствия которых мы обычно просто не замечаем. Вот пример. Предположим, что вы стоите на ковре, покрывающем бетонный пол прямо под горящим светильником с напряжением 220 В. Хотя вы этого и не ощущаете, но ваше тело проводит очень небольшой (порядка микроампера) переменный ток, так как оно является частью цепи, состоящей из двух последовательно включенных конденсаторов. Двумя пластинами первого конденсатора являются нить накала в электролампочке и ваше тело. Диэлектриком – воздух (и, возможно, ваша шляпа) между ними. Пластинами второго конденсатора являются ваше тело и бетонный пол (он достаточно хороший проводник).

Диэлектрик второго конденсатора – это ковер плюс ваши ботинки и носки. Поскольку бетонный пол хорошо заземлен, как и нулевой провод питающей сети, к цепи из двух этих последовательных конденсаторов приложено напряжение в 220 В.