Особенности зарядки и характеристики 18650
Перезаряжаемые источники тока (аккумуляторы) формата 18650 широко применяются в быту для питания переносных потребителей. Для выбора источников питания важно знать характеристики элементов 18650, их устройство и основные правила эксплуатации.
Технические характеристики аккумулятора 18650
Технические характеристики аккумуляторов 18650 определяются их технологией производства, и ей же ограничиваются. Литий-ионные аккумуляторы равного размера имеют одинаковые параметры, или, хотя бы, одного порядка. Физику не обмануть, и аккумуляторы с «выдающимися» характеристиками, скорее всего, являются подделкой от неизвестного производителя.
Вольтаж
Большинство типов нормально заряженных Li-ion элементов на холостом ходу выдают 3,7 вольта. Их можно слегка перезарядить (без вреда для аккумулятора) до уровня 4,2 вольта, но даже под небольшой нагрузкой напряжение в течение нескольких минут упадет до номинальных 3,7 В.
Инженер-электроник. Работаю в мастерской по ремонту бытовых приборов. Увлекаюсь схемотехникой.
Этим свойством пользуются не самые добросовестные маркетологи. Они указывают напряжение батареи из нескольких банок для уровня 4,2 вольта. Так, аккумулятор из 4 ячеек выдает 14,8 вольт (из расчета 3,7 х 4), а на корпус наносится маркировка 16,8 вольт (из расчета 4,2 х 4). Это имеет значение при выборе АКБ для электроинструмента, где повышенное напряжение означает больший вращающий момент.
Номинальное напряжение батарей 18650, произведенных по современной литий-железофосфатной технологии батареи более низкое — 3,2 вольта (максимальное – 3,6 вольт). Это связано со спецификой электрохимических реакций. Зато у них выше рабочий ресурс (в циклах).
Наименьшее напряжение, при котором аккумулятор считается разряженным без вреда для своего состояния, считается уровень 2,5 вольт. Но для безопасности лучше не разряжать батарею ниже 2,75 вольта. Этот уровень и принят за границу 0% заряда.
Емкость
Элементы 18650 выпускаются по литий-ионной технологии. В нем должны протекать определенные электрохимические реакции в определенном объеме, поэтому емкость ограничена рамками технологии. В 2022 году потолком для изделий среднего уровня является 3600 мА*ч. Есть сведения, что ведущим изготовителям удается выполнить конструктив аккумулятора так, что емкость может достичь 4500 и даже 5000 мА*ч, но это, пожалуй, теоретический потолок для текущего момента.
Если емкость, указанная на корпусе, выше этой цифры – это однозначно фейк . И уж точно не стоит доверять декларациям о том, что емкость аккумуляторов (как правило, неизвестных производителей) достигает 15000, 20000, а то и 30000 мА*ч. Создать такие источники тока в рамках форм-фактора 18650 на сегодняшний день невозможно.
Типоразмеры и вес аккумуляторов 18650
Само название форм-фактора 18650 содержит указание на габариты элемента:
- диаметр 18 мм;
- длина 65 мм.
Вес батареи не стандартизирован, но он обычно составляет около 50 грамм с небольшими отклонениями (в зависимости от примененных материалов для корпуса и т.п.).
Многие элементы 18650 имеют длину на 1,5..3 мм больше, чем 65 мм. Такое бывает, если батарея оснащена внутренней платой защиты – она занимает определенное место и увеличивает размеры устройства.
Влияет ли на параметры цвет батарейки
В интернете и в быту можно услышать различные мифы о том, что цвет оболочки источника тока 18650 определяет его параметры или технологию изготовления. На самом деле, выбор цвета определяется лишь креативностью дизайнера на заводе и экономическими факторами – какая краска окажется дешевле и прочнее. Хотя в пределах одной фирмы никто не запрещает выпускать, например, желтые батарейки одной емкости, а зеленые — другой (просто для удобства производства, учета, складирования и т.п.). Но никаких стандартов здесь не существует.
Устройство
Как и любые электрохимические источники тока, Li-ion элементы типоразмера 18650 состоят из:
Еще одной необходимой составляющей для компактных элементов является сепаратор. Он не позволяет замкнуться аноду и катоду при их тесном расположении. Сепаратор пропитывают электролитом, в качестве которого применяется этилен карбонат.
Электролит является основным источником опасности в Li-ion элементах – при напряжении выше 4,3 вольта он разлагается и может загореться.
В литий-полимерных элементах между электродами прокладывают полимерную пленку. Она служит и сепаратором, и электролитом.
В качестве анода применяют медную фольгу с графитовым покрытием. Катод выглядит, как алюминиевая фольга с покрытием из производных лития, давших название классу перезаряжаемых источников. Пакет из электродов и сепаратора сворачивается в рулон – так получаются источники тока цилиндрической формы.
Как определить плюс и минус
Аккумулятор 18650 внешне похож на пальчиковую батарейку, хотя и больше размером. Конструктив его тоже похож на гальванический элемент типоразмеров АА и ААА, поэтому плюсовой вывод можно определить визуально тем же способом:
- плюсом служит более выпуклый электрод;
- минусом – корпус, точнее, его неизолированное донце.
У батарей с встроенной защитой конструкция выводов та же, но выступ плюса выполнен менее явно, на его стороне имеются отверстия для выхода газа. Донце минуса тоже может иметь небольшую выпуклость и отверстия (а может не иметь).
Подключение с неверной полярностью может вызвать неисправность как нагрузки, так и самого аккумулятора (из-за превышения тока, перегрева и т.п.). Поэтому в случае сомнений лучше перепровериться мультиметром. Надо перевести его в режим постоянного тока и приложить щупы к терминалам батарейки.
Если на дисплее тестера значение напряжения индицируется со знаком «минус», значит, плюсовой вывод тестера подключен к минусовому электроду элемента, а минусовой – к плюсовому. Если напряжение индицируется без знака «минус», значит, каждый вывод подключен к соответствующему по полярности электроду – положительный к положительному, отрицательный – к отрицательному.
Виды и типы аккумуляторов 18650
Несмотря на общее название класса возобновляемых источников питания – литий-ионные батареи – под этим названием скрывается несколько подкатегорий, различающихся по используемому активному веществу и некоторым потребительским свойствам. Для удобства сравнения разновидностей Li-ion элементов характеристики батарей 18650 различного исполнения сведены в таблицу.
Тип аккумулятора | Материал анода | Материал катода | Достоинства | Недостатки |
---|---|---|---|---|
Литий-кобальтовые | кобальтат лития LiCoO2 | Графит на медной фольге | Высокая удельная энероемкость | Нетолерантность к повышенным токам зарядки, невысокий ресурс, невысокая токоотдача |
Литий-марганцевые | литий-марганцевая шпинель LiMn2O4 | Графит на медной фольге | Возможность зарядки повышенным током, высокая токоотдача. | Сниженная энергоемкость |
Литий-никель-марганец-кобальт-оксидные | Соединение лития, никеля, кобальта | Графит на медной фольге | Возможность получать заданные характеристики сочетанием активных веществ | Повышенная стоимость |
Литий-железофосфатные | литий-феррофосфат LiFePO4 | Графит на медной фольге | Повышенная стойкость к перезаряду, высокая токоотдача, повышенный ресурс | Плохая терпимость к пониженным температурам, несколько сниженная энергоемкость |
Литий-никель-кобальт-алюминий-оксидные | Соединение лития, алюминия, кобальта | Графит на медной фольге | Высокая энергоемкость, повышенный ресурс | Повышенная пожароопасность, высокая стоимость |
Литий-титанатные | Любой на основе лития | пентатитанат лития (Li4Ti5O12) | Повышенный зарядный ток, ускоренная зарядка, высокая надежность, широкий диапазон рабочих температур (в области отрицательных значений) | Сниженное рабочее напряжение (2,4 вольта), меньшая удельная энергия |
Расшифровка маркировки
Единого стандарта маркировки элементов рассматриваемого типоразмера нет. Но большинство производителей все же придерживается определенных правил. Они предусматривают буквенную маркировку из трех литер IXR, где:
- I означает Li-ion технологию;
- X – тип активного вещества катода;
- R – Rechargeable (перезаряжаемый).
На месте литеры X могут быть различные буквы, образующие сочетания:
Буквенное сочетание | Тип активного вещества |
---|---|
ICR | Литий-кобальт |
IMR | Литий-марганец |
INR | Литий-никель-кобальт-марганец |
IFR | Литий-феррофосфат |
Элементы с катодами из лития, алюминия, кобальта обозначаются NCR или NCA.
Далее следуют цифры 18650, обозначающие типоразмер, а следующими двумя цифрами может быть обозначена емкость ячейки. Так, аккумулятор, на корпус которого нанесено ICR18650-26F произведен по литий-кобальтовой технологии и имеет емкость 2600 мА*ч.
Не все производители придерживаются подобных принципов. Так, компания LG только в 2019 году перешла к этой системе, а ранее применялась маркировка вида LGDS318650, где DS – наименование модели . У других производителей встречаются и другие варианты обозначений. Так, Panasonic наряду со стандартной маркировкой применяет обозначение CGR и специфическую маркировку характеристик. Так, элемент CGR18650CG может выдать наибольший ток в 430 мА, а CGR18650CE – в 540 мА при равных напряжении 3,6 вольт и емкости 2250 мА*ч. У Sony можно встретить обозначение SE US18650GR, а линейку высокотоковых ячеек этот производитель обозначает дополнительными литерами VTC (VTC6/7/8) и т.п.
Особенности зарядки
Оптимальным для элементов 18650, как и других источников на основе лития, считается двухступенчатая зарядка. Первый этап производится стабильным током, второй – стабильным напряжением. На самом деле многие зарядные устройства второй этап заменяют режимом ступенчатого снижения тока, а более простые – просто снижают зарядный ток.
Самые простые зарядники вторую стадию подзарядки не обеспечивают. Это не позволяет полностью использовать емкость элемента.
Минимально и максимально допустимое напряжение для 18650
Разряжать Li-ion элементы можно до напряжения 2,75 (минимум – 2,5) вольта. Все, что ниже, считается глубоким разрядом, который снижает емкость аккумулятора и даже может привести к выходу его из строя.
В интернете можно найти советы по восстановлению банок, ушедших в глубокий разряд. Эффективность этих способов примерно нулевая, а некоторые (например, зарядка «ударным» током) откровенно опасны и могут привести к возгоранию.
Номинальным напряжением полностью заряженного литий-ионного элемента считается 3,7 вольта. Можно зарядить аккумулятор до 4,2 вольта, но не выше. Li-ion элементы очень не любят перезаряд, это может привести к возгоранию элемента и взрыву. Тушить литий-ионные источники крайне сложно. Заливание водой приведет лишь к усилению реакции из-за выделения водорода. Перекрывать доступ кислорода также малоэффективно – в аккумуляторе есть все вещества, необходимые для поддержания горения.
Как своими руками сделать точечную сварку для 18650
Каким током заряжать аккумулятор 18650
Оптимальным для заряда Li-ion аккумуляторов считается ток, равный 0,5..1 от его емкости С. Так, элемент с заявленной характеристикой в 2400 мА*ч, можно заряжать током от 1,2 до 2,4 А. Меньший зарядный ток может продлить ресурс элемента, но и увеличит время зарядки. Больший ток заряда уменьшит срок службы аккумулятора, несмотря на заверения поклонников Quick Charge и подобных технологий.
Сколько заряжается элемент 18650
Корректного ответа на этот вопрос не существует. Время зарядки зависит, в основном, от сочетания нескольких факторов:
- фактической емкости батареи;
- уровня остаточного заряда;
- зарядного тока.
Сочетание этих факторов может быть различным, поэтому и время заряда может значительно различаться.
Существуют и дополнительные условия, влияющие на время пополнения запаса энергии – температура, восприимчивость аккумулятора к ней (старые элементы более чувствительны) и т.п.
Отличия в зарядке АКБ с защитной микросхемой и без нее
Если батарея оснащена платой защиты (это можно определить по наличию вентиляционных отверстий с одного или двух торцов корпуса), то это наиболее безопасный вариант. Схема разорвет цепь заряда при достижении наибольшего допустимого уровня напряжения (а также не даст уйти аккумулятору в глубокий разряд, отключив нагрузку). Такую батарею достаточно вставить в зарядное устройство.
Если защита у аккумулятора отсутствует, контролировать уровень заряда придется самостоятельно (или довериться зарядному устройству). Если заряжается батарея из нескольких последовательно соединенных аккумуляторов без плат индивидуальной защиты, то из-за разброса характеристик может возникнуть коллизия. Часть элементов уже будет заряжена, часть еще будет требовать пополнения энергии. Чтобы избежать перезаряда одних элементов и недозаряда других, в этом случае применяют специальные устройства, называемые балансирами (BMS). Такая плата отслеживает уровень напряжения на каждой ячейке. При достижении необходимого уровня заряженная банка закорачивается и выводится из процесса зарядки.
Как зарядить аккумулятор 18650 без зарядного устройства
Аккумулятору 18650, как и любому перезаряжаемому элементу, безразлично, что служит источником электрической энергии для заряда. Главные условия:
- чтобы напряжение было не меньше 4,2 вольта;
- чтобы источник выдавал при этом напряжении достаточный ток.
Поэтому зарядить литий-ионную батарею можно от любого источника тока. Например, от лабораторного источника питания. На нем можно выставить максимальное напряжение и наибольший ток, поэтому такая зарядка будет безопасной.
Можно зарядить ячейку и от обычного зарядного устройства, выдающего напряжение стандарта USB. Для этого от шнура зарядника надо отрезать выходной разъем, зачистить провода и закрепить их (например, скотчем). Еще лучше использовать для подключения специальный холдер. Следить за уровнем заряда придется самостоятельно.
Таким способом можно заряжать только батареи с защитной платой. Незащищенные банки могут уйти в перезаряд, что легко вызовет возгорание.
Если предполагается и впредь заряжать аккумуляторы от телефонного ЗУ или от другого источника стандарта USB, лучше сделать зарядное устройство на базе готовой платы на основе микросхемы TP4056. Приобрести ее можно в интернете. Ток заряда выставляется резистором, подключенным к выводу 2 микросхемы.
Разработчики довели безопасность эксплуатации элементов 18650 до высокого уровня. При их использовании достаточно соблюдать самые простые правила, и электрохимические источники тока прослужат пользователю верой и правдой долгое время.
Инженер-электроник. Работаю в мастерской по ремонту бытовых приборов. Увлекаюсь схемотехникой.
Литиевые аккумуляторы 18650
Сложно найти область, где нет приборов, работающих на электрической энергии. Мобильные источники представляют аккумуляторы и одноразовые батарейки, питающие потребителя за счет превращения химической энергии в электрическую. Литий-ионные аккумуляторы представляют электронные пары с активными компонентами, содержащими соли лития. По форме аккумулятор напоминает одноразовую пальчиковую батарейку, но несколько большего размера, имеет сотни циклов зарядки, относится Li-ion аккумуляторам 18650.
Устройство li-ion аккумулятора 18650
Производство литий-ионных аккумуляторов основано на площадках компаний Sanyo, Sony, Panasonic, LG Chem, Samsung SDI, Skme, Moli, BAK, Lishen, ATL, HYB. Другие фирмы покупают элементы, переупаковывают их, выдавая за собственную продукцию. Они еще и пишут на термоусадочной пленке недостоверную информацию об изделии. В настоящий момент нет литий-ионных аккумуляторов 18650 емкостью выше 3600 мА-ч.
Основное отличие аккумуляторов от батарей в возможности многократной перезарядки. Все батарейки рассчитаны на напряжение 1,5 В, у изделия li-ion на выходе 3,7 В. Форм фактор 18650 означает, литиевый аккумулятор длиной 65 мм, диаметром 18 мм.
Характеристики рабочего режима литиевого аккумулятора 18650:
- Максимальное напряжение 4,2 В, причем даже незначительная перезарядка значительно сокращает срок службы.
- Минимальное напряжение 2,75 В. При достижении 2,5 В требуются особые условия восстановления емкости, При напряжении на клеммах2,0 В заряд не восстанавливается.
- Минимальная рабочая температура -20 0 С. Зарядка при минусовой температуре не возможна.
- Максимальная температура +60 0 С. При более высокой температуре можно ожидать взрыва или загорания.
- Емкость измеряется Ампер/часах. Полностью заряженный аккумулятор емкостью 1 А/ч может выдать 1А тока в течение часа, 2 А продолжительностью 30 минут или 15 А на протяжении 4 минут.
Контроллер заряда li-ion аккумулятора 18650
Основные производители выпускают стандартные литиевые аккумуляторы 18650 без защитной платы. Этот контроллер, выполненный в виде электронной схемы, устанавливают сверху на корпус, несколько удлиняя его. Плата располагается перед отрицательной клеммой, защищает АКБ от КЗ, перезаряда, переразряда. Собирается защита в Китае. Есть приборы хорошего качества, встречается откровенное надувательство – недостоверная информация, емкость 9 000А/ч. После установки защиты корпус помещается в термоусадочную пленку с надписями. За счет дополнительной конструкции корпус становится длиннее и толще, может не поместиться в предназначенное гнездо. Типоразмер его может быть 18700, увеличиться за счет дополнительных действий. Если аккумулятор 18650 используется для создания батареи в 12 В, в которой предусмотрен общий контроллер заряда, прерыватели на отдельных Li -ion элементах не нужны.
Целью защиты является обеспечение работы источника энергии в заданных параметрах. При зарядке простым ЗУ защита не допустит перезаряда и вовремя отключит питание, если литиевый аккумулятор 18650 сел до напряжения 2,7 В.
Маркировка литиевых аккумуляторов18650
На поверхности корпуса аккумулятора нанесена маркировка. Здесь можно найти полную информацию о технических свойствах. Кроме даты изготовления, срока годности и бренда производителя, зашифровано устройство литиевых аккумуляторов 18650, и связанные с этим аспектом потребительские качества.
- ICR– катод литий-кобальтовый. Аккумулятор обладает высокой емкостью, но рассчитан на небольшие токи потребления. Используют в ноутбуках, видеокамерах и подобной длительно работающей технике с небольшим потреблением энергии.
- IMR – катод литий-марганцевый. Обладает способностью выдавать большие токи, выдерживает разрядку до 2,5 а/ч.
- INR– катод из никелатов. Обеспечивает высокие токи, выдерживают разряд до 2,5 В.
- NCR– специфическая маркировка компании Panasonic. По свойствам аккумулятор идентичен IMR. Используются никелаты, соли кобальта, окись алюминия.
Позиции 2,3,4 называют «высокотоковыми», их используют для фонарей, биноклей, фотоаппаратов.
Литий-феррофосфатные аккумуляторы обладают способностью работать при глубоком минусе, восстанавливаются при глубоком разряде. Недооценены на рынке.
По маркировке можно определить, это литиевый заряжаемый аккумулятор буквы – I R. Если есть буквы C/M/F – известен материал катода. Будет указана емкость, обозначенная mA/h. Дата выпуска и срок годности расположены в разных местах.
Следует знать, нет у производителей литиевых многозарядных батарей изделий емкостью больше 3 600 мА/ч. Для того чтобы отремонтировать батарею ноутбука или собрать новую нужно приобретать аккумуляторы без защиты. Для использования в единичном экземпляре нужно покупать элементы с защитой.
Как проверить литиевый аккумулятор 18650
Если покупая дорогой прибор, вы сомневаетесь в правдивости информации на корпусе, есть способы проверки. Кроме специальных измерителей можно использовать подручные средства.
- У вас есть зарядное устройство, можно засечь время полной зарядки определенной силой тока. Произведение времени на силу тока выявит приблизительную емкость li-ion аккумулятора.
- Вам поможет интеллектуальное зарядное устройство. Оно покажет и напряжение, и емкость, но стоит прибор дорого.
- Подключите фонарик, замерьте силу тока, и ждите, когда светоч потухнет. Произведение времени на силу тока дает емкость тока в А/ч.
Определить мощность аккумулятора можно по весу: литиевый аккумулятор 18650 емкостью 2000мА/ч должен весить 40 г. Чем выше емкость, тем больше вес. Но бракоделы научились подсыпать песок в корпус, для тяжести.
Зарядное устройство для литиевых аккумуляторов 18650
Литиевые аккумуляторы требовательны к параметрам напряжения на клеммах. Предельное напряжение 4,2 В, минимальное – 2,7 В. поэтому зарядное устройство работает как стабилизатор напряжения, создавая на выходе 5 В.
Определяющими показателями является ток зарядки и количество элементов в батарее, выставляемые своими руками. Каждый элемент (банка) должен получить полный заряд. Распределяется энергия с использованием схемы балансира для литиевых аккумуляторов 18650. Балансир может быть встроенным или контроль ведется вручную. Хорошее ЗУ стоит дорого. Сделать зарядку своими руками для li-ion может каждый, кто разбирается в электрических схемах и умеет паять.
Предлагаемая схема зарядного устройства, выполненного своими руками для литиевых аккумуляторов 18650, проста, будет отключать потребителя после зарядки самостоятельно. Стоимость комплектующих около 4 долларов, не дефицит. Приспособление надежное, не перегреется и не загорится.
Схема зарядного устройства для литиевых аккумуляторов 18650
В зарядном, сделанном своими руками, ток в цепи регулируется резистором R4. Сопротивление подбирают таким, чтобы первоначальный ток зависит от емкости литиевого аккумулятора 18650.Каким током заряжать li-ion аккумулятор, если его емкость 2 000 мА/ч? 0,5 – 1,0 С составит 1-2 ампера. Это и есть ток зарядки.
Каким током заряжать li-ion аккумулятор 18650
Есть порядок восстановления работоспособности литиевого аккумулятора 18650 после падения напряжения до рабочего. Мы восстанавливаем емкость, измеряемую в ампер-часах. Поэтому вначале подключаем Li-ion аккумулятор форм-фактор 18650 к ЗУ, потом своими руками устанавливаем ток зарядки. Напряжение изменяется по времени, начальное 0,5 В. Как стабилизатор, ЗУ рассчитан на 5 В. Для сохранения работоспособности, благоприятными считают параметры 40-80 % от емкости.
Схема зарядки li-ion аккумулятора 18650 предполагает 2 этапа. Вначале нужно поднять напряжение на полюсах до 4,2 В, далее постепенным снижением силы тока стабилизировать емкость. Заряд считается полным, если сила тока снизилась до значения 5-7 мА, когда питание отключится. Весь цикл зарядки не должен превышать 3 часа.
Самая простая одногнездная китайская зарядка для li-ion аккумуляторов 18650 рассчитана на зарядный ток в 1 А. Но следить за процессом придется самостоятельно, переключать своими руками. Универсальные зарядные устройства дороги, но имеют дисплей и самостоятельно ведут процесс.
Как правильно зарядить Li-ion аккумулятор 18650 в ноутбуке? Подключение комплекта источников энергии в гаджете через Pover Bank. Батарея может заряжаться от сети, но важно отключать питание, как только блок набрал емкость.
Восстановление li-ion аккумулятора 18650
Если АКБ отказывается работать, это может проявиться так:
- Источник энергии быстро разряжается.
- Аккумулятор сел и не заряжается вообще.
Быстро разрядиться может любой источник, если емкость пропала. Именно этим страшен перезаряд и глубокий разряд, от которых ставится защита. Но нет спасения от естественного старения, когда хранение на складе ежегодно снижает емкость банок. Способов регенерации нет, только замена.
Что делать, если аккумулятор не заряжается после глубокого разряда? Как восстановить li-ion 18650? После отключения аккумулятора контроллером, в нем еще есть запас энергии, способный выдать 2.8-2.4 В напряжения на полюсах. Но зарядное устройство не распознает заряд до 3,0В, ему все, что ниже, то и ноль. Можно ли разбудить аккумулятор, запустить химическую реакцию вновь? Что нужно сделать, чтобы поднять заряд li-ion 18650 до 3,1 -3,3В? Нужно использовать способ «толкнуть» аккумулятор, дать ему необходимый заряд.
Не вдаваясь в расчеты, используйте предложенную схему, смонтировав ее с резистором 62 Ом (0,5Вт). Здесь использован блок питания на 5 В.
Если резистор греется, на литиевом аккумуляторе ноль, значит, есть КЗ или неисправен модуль защиты.
Как восстановить литиевый аккумулятор 18650, используя универсальное ЗУ? Выставить ток заряда 10 мА, и выполнить предзарядку, как написано в инструкции к прибору. После поднятия напряжения до 3,1 В зарядить в 2 этапа по схеме SONY.
Какие литиевые аккумуляторы 18650 лучше на Али Экспресс
Если для вас важна стоимость и качество литиевого аккумулятора 18650, воспользуйтесь ресурсом AliExpress. Здесь много товара, от разных производителей. Искомый аккумулятор пользуется спросом, его любят подделывать. Поэтому необходимо знать основные отличия хорошей модели от реплики.
Критично отнеситесь к указанной емкости. Только лучшие производители добились 3 600 А/ч, средние имеют показатель 3000-3200 А/ч. Защищенный аккумулятор больше на 2-3 мм в длину и чуть толще незащищенного. Но если вы собираете батарею, защита не нужна, не переплачивайте.
Добротные изделия и здесь стоят дороже. Учтите, что Ultrafire обещает 9000 мА/ч, но на деле оказывается в 5-10 раз ниже. Лучше использовать товар от проверенного производителя, стараться покупать всегда одну и ту же марку аккумулятора.
Предлагаем посмотреть порядок восстановления литиевого аккумулятора 18650
Литиевые аккумуляторы 18650
Это просто бомба-2. Li-Ion — как не взлететь
За последний десяток лет литий-ионные аккумуляторы из дорогостоящей экзотики перешли в разряд самых распространенных источников автономного питания. Неудивительно, что они стали популярными и в руках самодельщиков, в том числе и начинающих. Иногда от технических решений в их творениях волосы становятся дыбом – ведь особенностью аккумуляторов данного типа является их повышенная опасность, в первую очередь – пожарная. Мой рассказ о том, как правильно «готовить» эту «рыбу фугу», чтобы никто не сгорел и не взорвался.
Предыдущая статья на «взрывную» тему здесь.
Принцип работы литий-ионнного аккумулятора.
Химические источники тока на основе лития получили распространение уже давно. Литиевые батарейки уже в конце XX века прочно укрепились в часах, калькуляторах, материнских платах компьютеров, пультах дистанционного управления. По принципу действия они мало чем отличаются от марганец-цинковых элементов, за тем исключением, что литий заменяет собой цинк, а вместо водного раствора щелочи или хлористого аммония – электролит на основе неводных растворителей, таких как пропиленкарбонат или хлористый тионил, в котором растворена литиевая соль, диссоциирующая с образованием иона лития, который и переносит ток в таком электролите. Но замена цинка на литий привела к тому, что напряжение возросло с полутора до трех вольт, а энергоемкость увеличилась в несколько раз. При этом химически инертный органический электролит и высокая степень герметичности конструкции свели саморазряд практически на нет — отдавая микроамперные токи, такая батарейка может работать десятилетиями.
Знаете, почему нельзя заряжать обычные батарейки? Казалось бы, при протекании тока в зарядном направлении, на электродах будут идти процессы «в обратном порядке»: на отрицательном электроде будет осаждаться цинк, а на положительном – активная масса, бывшая когда-то двуокисью марганца и отдавшая свой кислород, будет снова окисляться, вновь превращаясь в свежую MnO2. Но все портит то, что одновременно с этими процессами разлагается и вода в электролите. Выделяющиеся газы раздувают корпус батарейки и выдавливают электролит наружу с печальными последствиями для аппаратуры.
В литиевом элементе нет воды. Пропиленкарбонат, служащий растворителем, не подвержен электролизу, поэтому такой элемент можно зарядить без побочных реакций. Однако, такой литиевый аккумулятор «не взлетел». Вернее, он как раз взлетал – на воздух. Литий никак не хотел ложиться на свой анод аккуратным тонким слоем, а кристаллизовался в виде игольчатых кристаллов – дендритов. Точно такие же дендриты, к слову, образуются и при попытке зарядить марганец-цинковую батарейку, но именно в литиевом аккумуляторе они приводили к катастрофе. Рано или поздно такой дендрит перекрывал промежуток между анодом и катодом и вызывал короткое замыкание. Протекающий ток разогревал и катодную массу, из которой выделялся кислород, и литий, который в этом кислороде воспламенялся, и сепаратор, который просто прекращал свое существование, после чего литий, электролит и катодная масса – горючее и окислитель – превращались в адскую смесь. Как рассказывал мне один знакомый, причастный к этим экспериментам изобретатель – военные, для которых они пытались эти аккумуляторы создать, потеряли всякий интерес к ним, как к источникам тока, но регулярные мощные взрывы, сопровождающиеся ослепительным красным (от лития) пламенем, их восхищали и каждый раз военные интересовались, нельзя ли куда-то применить эту взрывчатку.
В этом направлении работали и за рубежом, и кое-чего даже добились, применяя механически более прочные керамические сепараторы, особые методы заряда, специальные добавки в электролит. Но все равно опасность дендритообразования сохранялась – слишком опасным был такой аккумулятор для его практического применения, если превышал размеры и емкость крохотной часовой батарейки-таблетки.
Прорыв принесли два открытия. Первое – это обнаружение способности некоторых сложных оксидов и сульфидов, содержащих литий, отдавать и поглощать обратно ионы лития на катоде. Второе – способность соединений слоистой структуры (графит, дисульфид молибдена) обратимо поглощать в межслоевое пространство значительные количества лития (вплоть до соединения состава LiC6), захватывая его атомы немедленно после разрядки ионов Li + на аноде и предотвращая его выделение в металлической форме, а значит, предотвращая образование дендритов. За эти открытия и изобретение литий-ионного аккумулятора в прошлом году была присуждена Нобелевская премия. Ее лауреаты – М.С. Уиттингем, первооткрыватель явления интеркаляции лития в дисульфиды титана и молибдена, впервые предложивший использовать это явление в аккумуляторах, Дж. Гуденаф, исследовавший обратимость поглощения и выделения ионов лития кобальтитом лития на катоде, и собственно, изобретатель литий-ионного аккумулятора Акира Ёсино.
Принцип работы литий-ионного аккумулятора Акиры Ёсино, изобретенного им в 1991 году, состоит в следующем. Однозарядные катионы лития – это практически единственный ион, переносящий ток в органическом неводном электролите. Противоионом является громоздкая и малоподвижная молекулярная «конструкция», обладающая отрицательным зарядом.
Ион Li+ при зарядке аккумулятора разряжается на поверхности графитового анода, превращаясь в нейтральный атом лития. Этот атом немедленно вступает поглощается графитом, проникая между слоями его кристаллической решетки. Образуется графитид лития – так называемый интеркалят или соединение внедрения. По своим химическим свойствам это сильный и активный восстановитель.
Одновременно с этим, кобальтит лития на катоде поставляет в раствор ионы лития, а сам при этом, теряя литий, все больше по составу приближается к двуокиси кобальта, в результате чего становясь сильным и активным окислителем.
Разность электрохимических потенциалов между этими окислителем и восстановителем равна ЭДС литий-ионного аккумулятора.
При разряде происходят обратные процессы. Литий, покидая межслоевое пространство на аноде, отдает во внешнюю цепь электрон и приобретает заряд, становясь катионом, а графитид лития – просто графитом. На катоде эти катионы возвращается в вакансии кристаллической решетки кобальтита лития, который теряет свои окислительные свойства, принимая электрон во внешнюю цепь.
Из-за отсутствия побочных процессов данная электрохимическая система обладает весьма высокой степенью обратимости и по этой причине характеризуется прекрасным КПД.
Литий-полимерные аккумуляторы не являются, как многие думают, каким-то отдельным видом аккумуляторов. В них вместо жидкого электролита используется гелеобразный на полимерной основе, а все электрохимические процессы в них ничем не отличаются. Отсутствие (вернее, минимальное количество) жидкого электролита позволяет придавать им практически любую форму и вместо прочного металлического корпуса помещать их в корпуса из полимерной пленки в виде запаянного пакетика, что помимо прочего повышает плотность хранения энергии.
Существуют также разновидности литий-ионных аккумуляторов с различными электрохимическими системами, такие, как литий-железофосфатные и литий-титанатные. Принцип действия у них тот же самый, но иные материалы катодной массы и, соответственно, другие напряжения. Удельная емкость этих аккумуляторов ниже, чем у классической кобальтовой литий-ионной системы, но они превосходят их по сроку службы, способности отдавать ток при низких температурах и, по утверждению производителей – по безопасности.
Собственно, безопасность – едва ли не основная «беда» литий-ионных аккумуляторов.
Скрытая угроза
Увы, «укротив» литий, Акира Ёсино не сделал этого огненного льва безобидным мышонком. Да и как можно ожидать полной безопасности от устройства, в котором, повторюсь, сильный и активный окислитель соседствует с столь же сильным и активным восстановителем и разделяют их лишь несколько десятков микрон пористой полимерной пленки-сепаратора? Стоит этой пленке где-нибудь прохудиться, допустив короткое замыкание, лавинообразный процесс саморазогрева и саморазрушения уже не остановить. Содержимое аккумулятора превращается во взрывчатую смесь горючего и окислителя. И эту смесь уже подожгли.
То, что литий-ионные аккумуляторы обычно не взрываются, обусловлено множеством предосторожностей, которые соблюдаются при их эксплуатации. Соблюдаются не силами пользователя – за этим следят автоматические электронные устройства. Там, где применяется литий-ионный аккумулятор, нет места простейшим зарядным устройствам из мира «свинца» и «никель-кадмия». Зарядное устройство обязано быть «умным». Процесс заряда литий-ионного аккумулятора многостадийный, требует строгого выдерживания параметров и должен быть вовремя завершен, и перекладывать ответственность за это на пользователя категорически недопустимо, так как его забывчивость в таком случае может привести к пожару или взрыву.
Дело в том, что отсутствие побочных процессов в литий-ионном аккумуляторе не абсолютно. Для того, чтобы их не было, нужно не выйти за определенную «безопасную» территорию. Так, при напряжении выше 4,2..4,5 В или при слишком большом токе заряда графит уже не успевает «впитать» литий, и он образует металлическую фазу. То же происходит, если графит теряет активную поверхность, что происходит, например, из-за переразряда. Как только на поверхности появляется металл, он начинает образовывать дендриты и… можно вызывать пожарных. Наконец, перенапряжение может вызвать электролиз компонентов электролита (в том числе и неконтролируемых примесей) и выделение газов, давление которых может нарушить герметичность аккумулятора, что также чревато пожаром – соединение внедрения лития в графит самовоспламеняется на воздухе.
Опасна и перегрузка при разряде. Перегрев разрядным током может вызвать вскипание или термическое разложение электролита, выделение кислорода из катодной активной массы, повреждение сепаратора. Результат тот же: КЗ и пожар. К тому же эффекту приведет и механическое повреждение аккумулятора.
Является «правилом хорошего тона» не полагаться на надежность зарядного устройства. В абсолютном большинстве промышленно выпускающихся устройств (за исключением «маргинальных» случаев вроде электронных сигарет и авиамоделей), содержащих литий-ионные аккумуляторы, независимо от контроллера, на который возложены функции заряда, имеется еще один контроллер, выполняющий функции защиты. В простейшем своем варианте (например, на микросхеме DW01A, являющейся основой плат защиты почти всех китайских аккумуляторов), он отключает аккумулятор при перезаряде (превышении допустимого напряжения), переразряде, слишком большом зарядном и разрядном токе, перегреве. В более сложных случаях к этим базовым функциям добавляется балансировка батареи (если она состоит из нескольких элементов, соединенных последовательно), контроль за ее «здоровьем», подсчет ампер-часов при заряде и разряде (что позволяет определить оставшийся процент заряда гораздо точнее, чем при простом измерении напряжения) и другие функции. Данный контроллер – его называют Battery management system (BMS) или просто «платой защиты», как правило, является неотделимой частью аккумуляторной батареи, находясь с ней в одном корпусе и будучи наглухо припаянным к его выводам.
Есть еще третья ступень защиты. Это механическое устройство, разрывающее цепь при повышении давления или температуры внутри «банки» аккумулятора. К сожалению, оно – не панацея, так как во многих случаях нагрев и газовыделение начинаются уже после того, как возгорание батареи уже нельзя остановить.
Кстати, типичная цифра, характерная для LiIon – 250 Вт*ч/кг или 0,9 МДж/кг. Это всего вчетверо меньше запаса энергии в таких ВВ, как тротил. В мощном ноутбуке «тротиловый эквивалент» аккумулятора может быть сравним с ручной гранатой. Так что с литий-ионными аккумуляторами шутки плохи. Их взрыв вполне может привести к смерти и увечьям многих людей.
Видео и фотографии взрывов и возгораний литий-ионных аккумуляторов в сети можно найти много. Надеюсь, они убедят вас, что все более чем серьезно.
Заряжаем и разряжаем правильно
А теперь разберемся с тем, как правильно заряжать эти опасные литий-ионные аккумуляторы, чтобы они не были так опасны.
Общепринятым, рекомендуемым всеми производителями литий-ионных аккумуляторов, является алгоритм CC-CV. Это означает, что начинается заряд стабилизированным током, а при достижении определенного напряжения далее оно стабилизируется на этом уровне. Этот метод близок к методу заряда свинцовых аккумуляторов, отличаясь от него лишь режимом.
Для большинства стандартных литий-ионных аккумуляторов напряжение перехода от стадии CC к стадии CV при комнатной температуре – 4,20 В. Некоторые старые аккумуляторы с анодом на основе каменноугольного кокса следует заряжать лишь до 4,10 В, тогда как в последнее время все чаще встречаются «высоковольтные» аккумуляторы, которые допускают заряд до 4,35 и даже 4,45 В. Небольшое превышение этого напряжения вызывает резкое сокращение срока службы, а более значительное превышение приводит к возгораниям и взрывам. Требуемая точность установки порогового напряжения для стандартных аккумуляторов составляет ±50 мВ, а у «высоковольтных» тем выше, чем выше напряжение, вплоть до ±5 мВ при пороговом напряжении 4,45 В. Разумеется, пониженное напряжение приводит лишь к снижению доступной емкости, а вот повышение напряжения недопустимо ни при каких случаях.
Стандартным током заряда считается 0,5С и большинство аккумуляторов без ущерба позволяют заряжать их током до 1С, а некоторые допускают и более высокие токи при условии недопущения перегрева. С здесь – ток в амперах, численно равный емкости в ампер-часах. Но таким током нельзя заряжать глубоко разряженные аккумуляторы, напряжение на клеммах которых снизилось ниже 2,9-3,0 В. В этом случае необходима стадия предварительной зарядки (precharge) – аккумулятор заряжается током 0,05-0,1С, пока напряжение не достигнет трех вольт. А вот слишком глубоко разряженные аккумуляторы заряжать нельзя вообще. Зарядное устройство должно не допускать зарядки аккумулятора, если напряжение на его клеммах снизилось ниже 2,5 В. При таком глубоком разряде аккумулятор обычно сильно теряет в емкости, но это еще полбеды: его заряд сопряжен с опасностью металлизации лития и возгорания. Кстати, «высоковольтные» аккумуляторы более чувствительны к глубокому разряду, и не следует допускать их разряда ниже 2,75 В.
На стадии CV ток снижается по экспоненте. На этой стадии аккумулятор не должен оставаться до бесконечности. Заряд должен быть автоматически прекращен после снижения тока до 0,05-0,1С.
Такой многоступенчатый алгоритм зарядки предпочтительно реализовывать на специализированных микросхемах-контроллерах. Таких контроллеров в настоящее время выпускается множество, как самостоятельных (типичные примеры — всем известные LTC4054-4,2, TP4056, TP5000 и т.п.), так и встроенных в многофункциональные контроллеры питания, включающие несколько отключаемых линейных и импульсных преобразователей напряжения, наподобие применяемой во многих мобильных устройствах микросхемы RK819.
Плохой, очень плохой практикой является применение для этой цели обычных интегральных линейных и импульсных стабилизаторов, а в особенности — популярных и продаваемых именно как «платы для зарядки Li-Ion» модулей с Aliexpress на LM2596, XL4015 и т.п. Именно так нередко делают, переделывая шуруповерты на литиевые аккумуляторы, не учитывая опасности того, что со временем установленное на выходе напряжение может «уйти» из-за невысокого качества подстроечных резисторов на этих китайских платах. Если движок этого резистора потеряет контакт с резистивным элементом, на выходе попросту окажется входное напряжение. И это не говоря о том, что без внешних схемных решений такой «контроллер» не отключит аккумулятор по окончании заряда и не обеспечит предзаряд сильно разряженного аккумулятора малым током. В любом случае, проектируя и собирая зарядное устройство для литий-ионных аккумуляторах, следует думать о надежности. Неисправность здесь может обойтись очень дорого, иногда — в человеческую жизнь.
Другое крайне неудачное решение, встречающееся в практике самодельщиков и даже «у китайцев» — заряжать аккумулятор, снабженный платой защиты, до ее срабатывания. Во-первых, BMS отключает аккумулятор уже при превышении напряжения. Во-вторых при такой зарядке, без стадии CV используется только часть емкости. Парадокс: батарея одновременно пере- и недозаряжается.
Как крайний случай, можно заряжать литий-ионные аккумуляторы током 0,1С до достижения 4,10..4,15 В с последующей отсечкой. Но, по некоторым данным, предположительно, такой режим плохо сказывается на токоотдаче и сроке службы аккумуляторов.
Литий-ионные аккумуляторы очень плохо переносят не только перезаряд, но и переразряд. Напряжение 2,5 В на «банку» и ниже фатально — такой аккумулятор уже опасно заряжать. А области между 2,5 и 3 В, которая хоть и формально является допустимой, следует по возможности избегать, так как это отрицательно сказывается на сроке службы. В устройстве, питаемом от литий-ионных аккумуляторов, следует предусмотреть принудительное отключение при снижении напряжения до 3 В. Кстати, подавляющее большинство смартфонов отключаются уже при напряжении 3,35..3,4 В, так как в их контроллерах питания применяются только понижающие преобразователи напряжения, и при более низком напряжении невозможно формирование напряжения 3,3 В. Поэтому все советы «ставить телефон на зарядку, не дожидаясь отключения, так как это очень вредно для батареи» не соответствуют действительности. Такое высокое напряжение отсечки, разумеется, немного уменьшает полезную емкость, и вместе с тем немного продлевает срок службы аккумулятора.
Балансировка
Процесс заряда осложняется, если мы имеем дело с батареей из последовательно соединенных элементов. Дело в том, что двух одинаковых аккумуляторов не бывает. Если емкость одного из них будет чуть больше, а другого – чуть меньше, напряжение на последнем будет расти быстрее, чем на первом. В таком случае, если мы будем заряжать батарею до 8,40 В, этот аккумулятор окажется в итоге немного перезаряженным. Со временем эти небольшие перезаряды приведут к более быстрому износу, а значит, напряжение на этом аккумуляторе будет завышаться с каждым разом все сильнее. Возникает «снежный ком» нарастающей разбалансировки батареи, который может закончиться взрывом.
Чтобы этого не допустить, необходимо контролировать напряжение не только всей батареи, но и каждого элемента в отдельности, не допуская превышения напряжений каждого из них. Обычно применяются те или иные схемы балансировки, шунтирующие «опережающие» элементы во время заряда, когда те достигают максимального напряжения. Это так называемые пассивные схемы балансировки. Очевидно, при их работе часть энергии рассеивается в виде тепла, что существенно снижает КПД зарядки и ухудшает тепловые условия внутри аккумуляторной сборки. Более эффективными и лучше использующими емкость являются методы активной балансировки, обеспечивающие перекачку энергии с клемм уже зарядившейся «банки» к еще недозаряженным.
На рисунке — простейшая схема балансировки батареи из двух элементов на двух компараторах (https://power-e.ru/hit/sistemy-balansa/). Обычно же такие системы выполняются на специализированных микросхемах, таких, как LTC3300-1 и включаются в состав BMS, оставаясь подключенными к аккумуляторной батарее всегда. Такие контроллеры обладают широким набором функций, включающих не только балансировку, но и мониторинг состояния батареи в течение их срока службы.
В настоящее время распространение получили интеллектуальные системы балансировки, лучше использующие емкость аккумуляторов за счет компромиссного распределения зарядного тока, которое определяется реальными емкостями каждого из элементов, измеренными в предыдущих циклах.
Как обращаться, хранить, куда девать остатки
Исходя из вышесказанного, обращаться с литий-ионными аккумуляторами следует с осторожностью. Опасность возгорания и взрыва возникает при неправильном заряде, коротком замыкании и механических повреждениях. Последнее особенно актуально для литий-полимерных аккумуляторов, лишенных прочного защитного корпуса. Случайно или намеренно проколов или разорвав пленку, защищающую аккумулятор, вы можете уже через 10-15 секунд получить у себя в руках ослепительный красный огонь. Это же может случиться при изгибе и сдавливании аккумулятора, а в особенности, если каким-либо инструментом проткнуть его насквозь. Такое случается при попытках извлечь аккумулятор, приклеенный на двусторонний скотч, из мобильного телефона для его замены на новый. Риск снижается при извлечении разряженного аккумулятора, поэтому это следует сделать перед началом работы. По этой же причине, а также по причине того, что при замыкании он может выдать десятки, если не сотни ампер тока, хранить такие аккумуляторы следует надежно и аккуратно упакованными, а не в куче радиохлама.
Вообще перед хранением эти аккумуляторы следует довести до уровня заряда 30-50%. Хранить их следует при комнатной температуре. А то некоторые «специалисты» утверждают, что их нужно держать в холодильнике. Не нужно. А вот старые, убитые и особенно вздувшиеся аккумуляторы хранить ни в коем случае нельзя, от них нужно избавиться как можно скорее, так как они непредсказуемы и могут в любой момент стать причиной пожара.
Вопрос «куда утилизировать» достаточно сложен. Учитывая экологическую опасность лития (по ПДК близок к свинцу), их должны утилизировать специальные организации, но у нас в стране я таких организаций, работающих с частными лицами, не знаю. Не следует выбрасывать их в мусор и в особенности в контейнеры для батареек. Пожалуй, идеальный вариант — некий закрывающийся ящик с песком на открытом воздухе, содержимое которого забирали бы специальные службы.
Нельзя (и если очень хочется, то тоже нельзя!) пытаться паять аккумуляторы. Только точечная сварка! Исключение — литий-полимерные со специально удлиненными выводами под пайку и цилиндрические аккумуляторы с заранее приваренными ленточными ламелями. Даже небольшой перегрев может привести и к разгерметизации с последующим самовоспламенением, и к расплавлению сепаратора и внутреннему КЗ.
Всякие шаманства типа «подтолкнуть аккумулятор» или «разблокировать контроллер» — это риск того, что у вас в руках, в кармане или в постели окажется огненный шар. Помните, что если контроллер аккумулятора заблокировался, это не потому что жадный до денег производитель хочет, чтобы вы купили новый. Это потому что производителю неохота оплачивать ущерб, нанесенный загоревшимися аккумуляторами.
Собрав зарядное устройство (неважно — как самостоятельное изделие или в составе какой-либо конструкции), нужно провести первый цикл заряда, подключив вместе с аккумулятором вольтметр и миллиамперметр, и убедившись, что оно работает корректно. Причем обратите внимание на точность измерений: максимально допустимое отклонение напряжения от номинальных 4,2 В не превышает 1,2%, а погрешность распространенных недорогих мультиметров разрядностью 3,5 цифр при измерении этого напряжения на пределе 20 В достигает 1%.
Собирая батарею из нескольких аккумуляторов, нужно подбирать максимально близкие (в пределах 1-3%) по емкости элементы при последовательном соединении, и по внутреннему сопротивлению — при параллельном. Перед соединением элементов параллельно нужно уравнять их по напряжению. Элементы для батареи должны быть строго из одной партии.
Нельзя ремонтировать батарею путем замены одного элемента на новый. Разбалансировка при этом практически гарантирована. А чем грозит разбалансировка, вы уже знаете (подсказка — пожаром и взрывом).
Плавкий предохранитель — это то, что должно быть в цепи любого литий-ионного аккумулятора.
И еще раз — будьте внимательны и осторожны.