Испытание материалов и сварных соединений
Механические свойства характеризуют сопротивление металла деформации и разрушению под действием механических сил (нагрузки).
К основным механическим свойствам относят:
— прочность
— пластичность
— ударную вязкость
— твердость
Прочность – это способность металла не разрушаться под действием механических сил (нагрузки).
Пластичность – это способность металла изменять форму (деформироваться) под действием механических сил (нагрузки) без разрушения.
Ударная вязкость определяет способность металла противостоять ударным (динамическим) механическим силам (ударным нагрузкам).
Твердость – это способность металла сопротивляться проникновению в него других более твердых материалов.
Виды и условия механических испытаний металлов
Для определения механических свойств выполняют следующие виды испытаний:
— испытания на растяжение;
— испытания на статический изгиб;
— испытания на ударный изгиб;
— измерение твердости.
К условиям испытаний образцов относятся: температура, вид и характер приложения нагрузки к образцам.
Температура проведения испытаний:
— нормальная (+20°С);
— низкая (ниже +20°С, температура 0. -60°С);
— высокая (выше+20°С, температура +100. +1200°С).
Вид нагрузок:
растяжение | |
сжатие | |
изгиб | |
кручение | |
срез |
Характер приложения нагрузки:
— нагрузка возрастает медленно и плавно или остаётся постоянной — статические испытания;
— нагрузка прилагается с большими скоростями; нагрузка ударная — динамические испытания;
— нагрузка многократная повторно-переменная; нагрузка изменяется по величине или по величине и направлению (растяжение и сжатие) — испытания на выносливость.
Образцы для механических испытаний
Механические испытания выполняют на стандартных образцах. Форма и размеры образцов устанавливаются в зависимости от вида испытаний.
Для механических испытаний на растяжение используют стандартные цилиндрические (круглого сечения) и плоские (прямоугольного сечения) образцы. Для цилиндрических образцов в качестве основных приняты образцы диаметром dо=10 мм короткий lо=5×do = 50 мм и длинный lо=10×do = 100 мм.
Короткий круглый образец
Длинный круглый образец
Плоские образцы имеют толщину равную толщине листа, а ширина устанавливается равной 10, 15, 20 или 30 мм.
Плоский образец без головок для захватов разрывной машины
Плоский образец с головками
Механические свойства, определяемые при статических испытаниях
Статическими называют испытания, при которых прилагаемая нагрузка к образцу возрастает медленно и плавно.
При статических испытаниях на растяжение определяются следующие основные механические характеристики металла:
— предел текучести (σ т);
— предел прочности или временное сопротивление (σ в);
— относительное удлинение (δ);
— относительное сужение (ψ).
Предел текучести – это напряжение, при котором образец деформируется без заметного увеличения растягивающей нагрузки.
Предел прочности – это напряжение при максимальной нагрузке, предшествующей разрушению образца.
Относительное удлинение – это отношение приращения длины образца после разрушения к его начальной длине до испытания.
Относительное сужение – это отношение уменьшения площади поперечного сечения образца после разрушения к его начальной площади до испытания.
При испытании на статическое растяжение железо и другие пластические металлы имеют площадку текучести, когда образец удлиняется при постоянной нагрузке Рm.
При максимальной нагрузке Рmax в одном участке образца появляется сужение поперечного сечения, так называемая “шейка”. В шейке начинается разрушение образца. Так как сечение образца уменьшается, то разрушение образца происходит при нагрузке меньше максимальной. В процессе испытания приборы рисуют диаграмму растяжения, по которой определяют нагрузки. После испытания разрушенные образцы складывают вместе и измеряют конечную длину и диаметр шейки. По этим данным рассчитывают прочность и пластичность.
Механические испытания на ударный изгиб
Динамическими называют испытания, при которых скорость деформирования значительно выше, чем при статических испытаниях.
Динамические испытания на ударный изгиб выявляют склонность металла к хрупкому разрушению. Метод основан на разрушении образца с надрезом (концентратором напряжений) одним ударом маятникового копра.
Стандарт предусматривает образцы с надрезами трех видов:
образец U – образный с радиусом R = 1 мм (метод KCU);
образец V – образный с радиусом R = 0.25 мм (метод KCV);
образец I – образный с усталостной трещиной (метод КСТ).
Под ударной вязкостью понимают работу удара, отнесенную к начальной площади поперечного сечения образца в месте концентратора.
После испытания по шкале маятникового копра определяют работу удара, которую затрачивают на разрушение образца. Площадь сечения образца определяют до разрушения.
ОПРЕДЕЛЕНИЕ ТВЕРДОСТИ МЕТАЛЛОВ
Твердостью называется свойство металла оказывать сопротивление пластической деформации в поверхностном слое при вдавливании шарика, конуса или пирамиды. Измерение твердости отличается простотой и быстротой осуществления и выполняется без разрушения изделия. Широкое применение нашли три метода определения твердости:
— твердость по Бринеллю (единица твердости обозначается HB);
— твердость по Роквеллу (единица твердости обозначается HR);
— твердость по Виккерсу (единица твердости обозначается HV).
Определение твердости по Бринеллю заключается во вдавливании стального шарика диаметром D = 10 мм в образец (изделие) под действием нагрузки и в измерении диаметра отпечатка d после снятия нагрузки.
Твердость по Бринеллю обозначают цифрами и буквами НВ, например, 180 НВ. Чем меньше диаметр отпечатка, тем выше твердость. Чем выше твердость, тем больше прочность металла и меньше пластичность. Чем мягче металл, тем меньше устанавливают нагрузку на приборе. Так при определении твердости стали и чугуна нагрузку принимают 3000 Н, никеля, меди и алюминия – 1000 Н, свинца и олова – 250 Н.
Определение твердости по Роквеллу заключается во вдавливании наконечника с алмазным конусом (шкалы А и С) или стального шарика диаметром 1.6 мм (шкала В) в испытуемый образец (изделие) под действием последовательно прилагаемых предварительной (Ро )и основной (Р) нагрузок и в измерении глубины внедрения наконечника (h). Твердость по Роквеллу обозначается цифрами и буквами HR с указание шкалы. Например, 60 HRC (твердость 60 по шкале С).
Определение твердости по Виккерсу заключается во вдавливании алмазного наконечника, имеющего форму правильной четырехгранной пирамиды, в образец (изделие) под действием нагрузки и в измерении диагонали отпечатка d, оставшегося после снятия нагрузки. Метод используется для определения твердости деталей малой толщины и тонких поверхностных слоёв с высокой твердостью. Твердость по Виккерсу обозначается цифрами и буквами HV, например, 200 HV.
Испытания на статический изгиб
Технологические испытания на статический изгиб служит для определения способности металла воспринимать заданный по форме и размерам загиб. Аналогичные испытания проводят и на сварных соединениях.
Испытанию на загиб подвергают образцы из листового и фасонного (пруток, квадрат, уголок, швеллер и др.) металла. Для листового металла ширина образца (b) принимается равной двойной толщине(2•t), но не менее 10 мм. Радиус оправки указывается в технических условиях.
Различают три вида изгиба:
— загиб до определенного угла;
— загиб вокруг оправки до параллельности сторон;
— загиб вплотную до соприкосновения сторон (сплющивание).
Отсутствие в образце трещин, надрывов, расслоений или излома является признаком того, что образец выдержал испытание.
Напряжения и деформации в стали
Когда усилие или комбинация усилий прилагается к материалу, в том числе, к стали, то этот материал – сталь – реагирует на это проявлением деформации, то есть изменением своих размеров, часто очень сложным образом.
Когда усилие или комбинация усилий прилагается к материалу, в том числе, к стали, то этот материал – сталь – реагирует на это проявлением деформации, то есть изменением своих размеров, часто очень сложным образом.
Что такое деформация
Каждый из нас видел по телевизору, как прыгают с высоты метров этак двухсот – с моста или специальной платформы – экстремалы-прыгуны, которые привязаны за ноги к резиновому канату. Этот резиновый канат растягивается прямо у нас на глазах и хорошо видно как его сечение значительно уменьшается. Этот канат растягивается так, чтобы не ударить прыгуна об землю, а потом обратно сжимается. В этом примере деформация резинового каната – изменение его длины и толщины – хорошо видна.
Но так бывает не всегда. Например, если какой-то достаточно тяжелый груз подвесить на вертикальной стальной проволоке, то длина этой проволоки, конечно же, увеличиться, а ее поперечное сечение – уменьшится. Однако эту деформацию – изменение размеров проволоки — не так просто заметить. Для этого нужны специальные тщательные измерения длины и диаметра этой проволоки, как до подвешивания груза, так и тогда, когда он на ней уже висит.
Механические свойства материала, в том числе, стали, описывают взаимоотношение между напряжениями, которые действуют на материал из-за приложенных нагрузок и деформациями, которые этот материал испытывает в результате этих напряжений.
Что такое напряжение
Понятие напряжения в самой общей форме – это усилие или нагрузка, поделенная на площадь, на которую она действует. Здесь лучше выразиться математически, что дает следующее выражение:
σ = F/A,
где F – усилие (сила), которая воздействует на площадь А,
А – площадь, на которую воздействует усилие F,
σ – напряжение на площадке площадью А.
Напряжения в наше время выражают в единицах МПа, что означает миллион (10 6 ) единиц Н/м 2 (ньютон на метр квадратный).
Существует два различных способа описания этих самых напряжений: инженерные и истинные.
Инженерные напряжения
Инженерные напряжения обычно применяют в инженерных расчетах. Они основаны на исходной площади поперечного сечения детали или изделия, которое рассматривается. Поскольку инженерные напряжения рассчитываются для исходной – не нагруженной – площади, то они не учитывают, что эта площадь поперечного сечения изменилась после того как к детали было приложена нагрузка. Когда материал находится под нагрузкой, то результирующее изменение площади поперечного сечения зависит от механических свойств материала и величины прилагаемой нагрузки.
Истинные напряжения
Истинные напряжения основаны на фактической в каждый момент – мгновенной – площади поперечного сечения. Поэтому это, в принципе, более точный метод описания напряжений. Однако поскольку величину истинных напряжений определить намного труднее, чем инженерных напряжений, то на практике их редко применяют.
Деформация – безразмерное число
Применение понятия «деформация» позволяет количественно описывать изменения размеров и формы тела, которые возникают при приложении напряжений, которые, в свою очередь, возникают при приложении некоторой нагрузки. Важно отметить, что деформация – это «чистое», безразмерное число. У деформации нет каких-либо единиц измерения. Чтобы вычислить деформацию нужно сравнить начальные, исходные размеры или форму тела до приложения нагрузки с теми же размерами или формой того же тела под нагрузкой.
Формула, по которой вычисляют деформацию, имеет величины одной и той же размерности (метры, сантиметры, миллиметры) как в знаменателе, так и в числителе. Поэтому, понятно еще из школьной физики, что эти размерные единицы взаимно сокращаются, и в результате мы получаем безразмерное число. Эта процедура хорошо видна при вычислении напряжений и деформаций для простого испытания на растяжение.
Испытание металлов на растяжение
При обычном инженерном испытании металлических материалов при растяжении, в том числе, стали, получают инженерную же диаграмму напряжение-деформация. Эта диаграмма строится по результатам измерений нагрузка-удлинение, которые выполняют на образце, который постепенно подвергается растяжению (рисунок 1)
Рисунок 1 – Стандартный образец для испытания на растяжение, который применяют для определения механических свойств металлических материалов, в том числе, сталей.
Диаграмма растяжения
Инженерное напряжение σ, которое применяют на диаграмме напряжение-деформация на рисунке 2, является средним или номинальным напряжением в разрывном образце. Его получают путем деления величины нагрузки F на исходную – не нагруженную – площадь А0 поперечного сечения этого образца.
Рисунок 2 – Инженерная диаграмма напряжение-деформация. Чаще ее называют диаграммой растяжения. Пересечение пунктирной линии с диаграммой напряжение-деформация дает величину предела текучести при остаточной деформации, обычно, 0,2 %.
По мере увеличения напряжения в разрывном образце расстояние между метками базовой длины изменяется под воздействием приложенных напряжений. Результирующая деформация ɛ, которая указана на инженерной диаграмме напряжение-деформация, является средней или номинальной линейной – одноосной – деформацией. Величину этой деформации получают путем деления изменения базовой длины образца δ на исходную базовую длину образца L0:
Поскольку и инженерное напряжение (σ) и деформация (ɛ) получены путем деления нагрузки на образец и удлинения образца на одну и ту же постоянную величину L0, то форма диаграммы нагрузка-удлинение и напряжение-деформация имеют одинаковую форму.
Форма и размеры диаграммы растяжения стали зависит от:
- химического состава стали,
- виде термической обработки,
- режимов пластического деформирования,
- скорости нагружения,
- температуры и
- напряженного состояния в ходе испытания на растяжение.
Механические свойства стали чаще всего определяют именно путем испытания растяжение, которое описано выше. Характеристики стали, которые обычно применяют для описания диаграммы растяжения конкретной стали включают:
- предел прочности (временное сопротивление разрыву),
- предел текучести,
- удлинение базовой длины образца (в процентах),
- сужение площади поперечного сечения образца (в процентах).
Различные типы испытаний, которые включают применение различных нагрузок на стальной образец, применяют также для определения других механических свойств стали. Примерами таких механических свойств стали являются модуль упругости, твердость, сопротивление усталости и ударная вязкость.
Все механические свойства стали
Почти полный список механических свойств для стали включает:
- Твердость. Мера сопротивления вдавливанию
- Линейные коэффициенты упругости для растягивающих, сжимающих и сдвиговых нагрузок
- Предел текучести (при растягивающих, сжимающих и сдвиговых нагрузках). Показывает уровень напряжения, при котором возникают необратимые пластические деформации
- Предел прочности (при растягивающих, сжимающих и сдвиговых нагрузках). Показывает максимальные инженерные напряжения, которые материал может выдержать без разрушения. Предел прочности при растяжении – временное сопротивление разрыву – обычно связывают с началом образования шейки на разрывном образце (см. рисунок 2)
- Усталостная прочность. Показывает уровень циклических напряжений, которые вызывают разрушение из-за усталости металла после определенного количества циклов нагружения, например, 1 миллион
- Ударная вязкость. Показывает уровень поглощения ударной энергии от нагрузок, которые способен поглотить металл до разрушения
- Вязкость разрушения. Показывает уровень сопротивления разрушению, когда в изделии присутствуют дефекты и концентраторы напряжений
- Сопротивление высокотемпературной ползучести и разрушению.
- Износостойкость.
Методы испытания стали
Строительство – наука точная. Она не терпит ошибок и просчетов, поэтому для создания различного рода конструкций проводятся испытания стали. Это необходимо для того, чтобы будущая постройка была надежной, долговечной и безопасной. Испытывают сталь методом растяжения, сжатия, механического воздействия. Особенно распространенно испытание на растяжение, так как оно позволяет уберечь строение от нештатных ситуаций и аварий.
Как проводятся испытания и на что обращают внимание?
Исследование осуществляется с помощью специальных машин с гидравлическим и ручным приводом. Первый вариант создает большую мощность и позволяет составить точную диаграмму растяжения.
Механические статические испытания на растяжение позволяют определить свойства стали. Проводятся они в соответствии с требованиями ГОСТа.
Характеристики прочности
Для оценки прочности учитываются следующие характеристики:
- Предел пропорциональности. Он позволяет определить максимальное напряжение, при котором действие закона Гука прекращается. Иными словами, происходит деформация изделия.
- Предел текучести – значение напряжения, нагрузки, при котором происходит деформация конструкции. Данный показатель позволяет рассчитать допустимое напряжение на изделие.
- Предел прочности – определение максимального усилия, при котором материал остается неизменным, не разрушается. Если же превысить этот показатель, то это приведет к разрыву и разрушению конструкции.
- Напряжение разрыва. С помощью испытаний определяется истинное и условное напряжение.
Упругость материала
Предел упругости – исследование свойств материала на максимальную нагрузку, после которой не возникает пластических (остаточных) деформаций. Данный показатель выявить можно только при тонких исследованиях.
Пластичность материала
- Относительное остаточное удлинение определяется по конкретной формуле, где требуется введение показаний исходной и расчетной длины образца – Δ=(L1-L0)*100% / L0.
- Относительное остаточное сужение. Оно также определяется по формуле, где следует знать площадь сечения стержня и шейки.
Образцы для статических испытаний
Для испытаний на растяжение согласно требованиям подбираются образцы специальных размеров прямоугольного или круглого сечения. Главное условие – обработанная поверхность, однородность изделий по размеру, соосность, отсутствие порезов и царапин.
Длина образцов круглого поперечного сечения для коротких изделий должна быть не более 5 диаметров, а для нормальных – 10.
Наиболее ходовыми образцами для исследований являются изделия диаметром 6, 10, 20 мм. Обязательно перед началом испытаний их замеряют в 3-х местах. Погрешность может составлять 0.1 мм в длину, площадь сечения – 0.5 %.
Динамические испытания
Главное исследование – испытание на излом. Проводится оно путем резкого механического воздействия на конструкцию. Затем осуществляется анализ изменений состояния материала с помощью микроскопа. Таким способом можно оценить способ противодействия металла внезапной ударной нагрузке. Образец, который используется для таких испытаний, чаще всего имеет квадратное сечение (10 на 10 мм) и разные виды надрезов:
- V-образный – используется для исследований материала, предназначенного для ответственных и важных конструкций.
- U-образный – размещается внутри стержня. Используется такой образец для установления норм для стержней с V-образным надрезом.
- С Т-образным концентратором. Применяются образцы для анализа сплавов, использоваться которые будут для конструкций с большим сопротивлением к росту трещин.
Динамические испытания позволяют определить величину ударной вязкости и определить прочность материала.Все испытания должны проводиться в лабораториях производителями, чтобы гарантировать качество и надежность изделий, а продажа металлопроката должна осуществляться только проверенными компаниями. Только в таком случае будет уверенность в том, что материал безопасный и соответствует всем нормативам и требованиям.
Склад 1: Минск, Монтажников 53
Склад2: Минская обл. Молодечненский район г.п. Радошковичи
Склад 3: Минск, Селицкого 17