Источники напряжения параллельно формула

«Нельзя просто так взять и запараллелить источники напряжения»

Не раз и не два мне попадались предложения типа «давайте включим два стабилизатора напряжения параллельно, если не хватает выходного тока одного». В том числе и здесь:
Тут — в авторском тексте о ПК Специалист (Spectrum) habr.com/ru/post/247211 (в итоге — автор применил двухканальный импульсный источник питания).
Тут — в комментариях habr.com/ru/post/400617/#comment_18002157
И тут — в комментариях habr.com/ru/post/400381/#comment_17983821
Да тысячи их:
electronics.stackexchange.com/questions/261537/dc-dc-boost-converter-in-parallel
forum.allaboutcircuits.com/threads/paralleling-lm317ts.16198
forum.arduino.cc/index.php?topic=65327.0 (обсуждение довольно показательное с точки зрения пренебрежения схемотехникой и энергосбережением мобильного робота).

Вспомнив немного ТОЭ и воспользовавшись симулятором TINA-TI, покажем несбыточность малую обоснованность надежд на благоприятный исход этого чита.

О параллельном соединении источников напряжения с точки зрения закона Ома, правил Кирхгофа и примкнувших к ним ТОЭ.

Два источника напряжения (E1, E2) с внутренними сопротивлениями (Rвн1, Rвн2) работают на нагрузку (Rн). Составив и упростив 3 уравнения — получим:
Uн = Rн * (Rвн2*E1 + Rвн1*E2) / (Rвн1*Rвн2 + Rн*[Rвн1+Rвн2]);
I1 = (E1 — Uн) / Rвн1;
I2 = (E2 — Uн) / Rвн2.
Беря номинал 3.3 В с разбалансом ЭДС в ± 0.1% (3,303 и 3,297 В, соответственно), внутренние сопротивления 0,01 Ом и сопротивление нагрузки 3,3 Ом — получим токи 0,8 и 0,2 А соответственно (± 60% от ожидаемых 0.5 А) при напряжении на нагрузке 3,295 В. Обратите внимание на величину исходного разбаланса — если не брать сверхточные и сверхстабильные источники опорного напряжения (стоимостью как крыло от вертолёта), она мало достижима в «вульгарной» микроэлектронике. А чем качественнее наши источники напряжения (меньше их внутреннее сопротивление) и чем выше сопротивление нагрузки — тем больше будет разбаланс токов при прочих равных.
Вооружась этой простой теорией — посмотрим пристальнее на внутреннюю структуру стабилизаторов напряжения.

О параллельном соединении стабилизаторов напряжения с точки зрения наличия в них обратной связи.

Как известно, чуть более чем все современные стабилизаторы напряжения строятся как компенсационные — обратная связь отслеживает напряжение на выходе стабилизатора и поддерживает его постоянным либо меняя внутреннее сопротивление между входом и выходом, либо меняя соотношение замкнутого и разомкнутого состояний между входом и выходом. Из этого вытекает тот факт, что если подать на выход стабилизатора напряжение превышающее его выходное, то ОС должна будет отключить регулирующие элементы и данный стабилизатор выйдет из борьбы за жизнь нагрузки.
Не будем рассматривать здесь случаи линейного стабилизатора с push-pull выходом (используются как источники питания терминаторов DDR-памяти) и импульсных стабилизаторов с синхронным выпрямлением. Первые — должны, а вторые, теоретически, — могут пытаться снижать напряжение на своём выходе.
В случае применения импульсных стабилизаторов — можно рассмотреть и такие гипотетические вещи, как биение частот преобразования или их самосинхронизация… Но это выходит за рамки моих текущих интересов. Для закрытия теоретической части добавлю, что если кто-то предложит использовать внешнее тактирование импульсных стабилизаторов со сдвигом фаз, то Вы опоздали. Микропроцессоры Intel и AMD уже многие годы питаются от многофазных конвертеров, а если есть готовый двух- и более фазный контроллер, то городить внешнюю синхронизацию для отдельных стабилизаторов — бессмысленно.
А теперь — перейдём к симуляции реальности.

О параллельном соединении стабилизаторов напряжения в симуляторе.

Первый пример — вариация простенького линейного стабилизатора из app. note на регулируемый источник опорного напряжения типа 431.
Он применялся, например, в некоторых ранних блоках питания ATX для стабилизации напряжения 3.3 В. На сток регулирующего транзистора подавалось 5 В, а резистор в цепи затвора питался от 12 В.
Поскольку в симуляции нас не волнует КПД, то для простоты на входе один единственный источник питания. Также — с ходу я не нашёл средства внести погрешность в опорное напряжение TL431, кроме как добавить генератор напряжения G1 в цепь управляющего электрода. Вот результат расчёта (меню «Анализ постоянного тока», раздел «Переходные характеристики»):

Как видим — достаточно разбаланса опорных напряжений в 3 мВ, чтобы один из стабилизаторов превратился в тыкву. А это всего 0,12% от номинального, да ещё отнюдь не каждая 431 имеет точность лучше 0.5%.
Предложение «поставим в цепь обратной связи триммер и подгоним правильное деление тока нагрузки» я отметаю на том основании, что типичные подстроечные резисторы (Bourns и muRata, керметные, одно и многооборотные) — имеют вибростойкость до 1% (изменение зафиксированного отношения напряжений или сопротивлений после воздействия вибрации с ускорением 20..30 G).
Упомянутые в ссылках на зарубежные ресурсы пляски с последовательными резисторами на выходах стабилизаторов — я даже рассматривать не буду. Просто потому, что этим убивается то, для чего собственно и ставится стабилизатор напряжения — постоянство напряжения на нагрузке при изменении её тока потребления.
Потом я вспомнил, что на выходе обычно есть конденсаторы… Добавление на выходы конденсаторов по 1000 мкФ с ESR 100 мОм не внесло кардинальных отличий в результаты симуляции параллельной работы этих стабилизаторов (меню «Анализ переходных процессов»).

Возможно, кто-то скажет: «Сработает ограничение по току у первого стабилизатора и второй тоже подключится». Но очевидно, что даже если это произойдёт, то первый всё равно продолжит работать с перегрузкой, что не прибавит надёжности нашей системе. Вот пример работы пары LP2951 (максимальный ток нагрузки — 100 мА, ограничение тока в модели — около 160 мА) с общим током нагрузки около 180 мА.
Почему такое старье? Потому, что они есть у меня в удобном для втыкания в «бредовую борду» DIP’е и, если кто-то из читателей пожелает пойти путём Фомы, то я смогу измерить всё IRL.
Результаты симуляции (меню «Анализ переходных процессов»):

Как видите — второй и не думает деятельно участвовать в спасении нагрузки от голода. А благодаря бóльшему коэффициенту усиления — выход из игры происходит при меньшем разбалансе.

На этом — всё. Питайтесь правильно!

Вывод.

Если максимальный выходной ток стабилизатора напряжения не обеспечивает потребности питаемой схемы, то есть только два выхода — заменить стабилизатор на модель с бóльшим выходным током или использовать схемотехническую балансировку выходных токов нескольких стабилизаторов.

P.S. «Всякое лыко — в строку». Во время подготовки статьи на глаза попалась широко растиражированная в документации на стабилизатор типа 1117 схема переключателя «батарея — сеть» с параллельным включением их выходов. К ней есть вопросы о практической применимости, но тему статьи она подтверждает чуть более, чем полностью. Привожу фрагмент из документации фирмы «ON semiconductor», который снабжён текстовыми пояснениями:

The 50 Ohm resistor that is in series with the ground pin of the upper regulator level shifts its output 300 mV higher than the lower regulator. This keeps the lower regulator off until the input source is removed.

P.P.S. Дописал вывод. Точнее — скопировал его из синопсиса.

Synopsis: You can’t boost output current of weak voltage regulators by simple parallel connection. You must use tougest one or special schematic for properly current sharing.

  • Источники питания
  • схемотехника для чайников
  • ТОЭ

Соединение источников питания

К химическим источникам питания относятся источники эдс, в которых энергия протекающих химических реакций преобразуется в электрическую энергию. К химическим источникам относятся гальванические элементы, аккумуляторы и «батарейки» и пр.

Необходимость соединения элементов питания возникает в том случае, когда требуемое напряжение и ток потребителя превышают соответствующие значения источника питания.

Важным условием соединения химических источников питания в единую цепь, является равенство их эдс и внутреннего сопротивления.

Существует три способа подключения химических источников питания:

    • последовательно;
    • параллельно;
    • смешанно.

    Соединенные между собой любым способом источники питания образуют так называемую батарею, рассматриваемую в цепи как единое целое.

    Последовательное соединение источников питания

    При последовательном подключении химических источников питания отрицательный полюс одного источника соединяется с положительным полюсом следующего источника и т.д. Положительный и отрицательный полюсы последнего и первого источника батареи подключаются к нагрузке внешней цепи (рисунок 1).

    Рис. 1. Последовательное соединение источников питания

    Общая эдс батареи при последовательном соединении химических источников питания равна сумме эдс всех входящих в нее элементов

    Если учесть, что эдс всех источников одинаковая, предыдущее выражение может быть записано в виде

    где Ei – эдс каждого источника питания в батарее.

    При последовательном соединении внутренне сопротивление полученной батареи будет равно сумме сопротивлений каждого источника питания

    где Ri – внутреннее сопротивление каждого источника питания в батарее.

    При последовательном соединении источников питания, емкость батареи будет равна емкости каждого из источников питания.

    Последовательное соединение химических источников питания применяется в том случае, когда ток нагрузки не превышает номинальный ток одного элемента, а напряжение – больше эдс одного источника.

    Параллельное соединение источников питания

    При параллельном соединении положительные полюсы источников питания соединяются в один общий узел, а отрицательные – в другой узел (рисунок 2).

    Рис. 2. Параллельное соединение источников питания

    При данном способе соединения эдс батареи равна эдс одного любого источника, включенного в ее состав

    где Ei – эдс каждого источника питания в батарее.

    Внутреннее сопротивлении батареи уменьшается во столько раз, сколько источников входит в ее состав, и вычисляется по формуле

    где Ri – внутреннее сопротивление каждого источника питания в батарее.

    Параллельное соединение химических источников питания применяется в том случае, когда напряжение потребителя равно напряжению одного источника питания, а сила тока потребителя (нагрузки) значительно превосходит разрядный ток источника.

    Смешанное соединение источников питания

    При смешанном соединении элементы объединяются в группы последовательно соединенных элементов с равным числом источников питания. Положительные контакты каждой группы источников питания соединяются в один общий узел, а отрицательные – в другой узел (рисунок 3).

    Рис. 3. Смешанное соединение источников питания

    Смешанное соединение применяется тогда, когда необходимо обеспечить нагрузку напряжением и током, большим чем у входящих в состав батареи источников питания.

    Способы соединения проводников

    формулки.ру

    К одному источнику тока можно подключить несколько потребителей. Применяют два вида соединений:

    1. параллельное;
    2. последовательное;

    Каждый из способов характеризуется своими математическими формулами, описывающими силу тока, напряжения и сопротивления на отдельных участках цепи.

    Так же, используется смешанное соединение, как комбинация двух описанных способов.

    Параллельное соединение

    Такой способ соединения можно получить, когда каждый вывод проводника будет контактировать с соответствующим ему выводом другого проводника (рис. 1).

    Рис. 1. Параллельный способ соединения

    Сопротивление параллельно включенной цепочки можно определить по такому правилу:

    \(\large R_, R_\left( \text\right) \) – сопротивления проводников.

    При этом, общее \(\large R_> \) сопротивление окажется даже меньше самого наименьшего из резисторов в цепи.

    Примечание: Иногда проводник, обладающий сопротивлением, называют резистором, от английского слова resistance. Кроме резисторов используют и другие обозначения элементов на схемах.

    Общее сопротивление меньше меньшего из включенных параллельно сопротивлений.

    Величину, обратную сопротивлению, называют проводимостью. Ее измеряют в единицах, деленных на Ом:

    \(\large G = \frac \left( \text\right) \) – проводимость материала, из которого изготовлен проводник.

    Эти две величины являются обратными друг для друга, поэтому, чем больше сопротивление проводка, тем меньше его проводимость.

    При параллельном соединении проводимости складываются.

    Напряжение на проводниках

    Напряжения, приложенные к концам всех параллельных участков, равны.

    \(\large U_, U_\left( B\right) \) – напряжения на концах проводников.

    Рис. 2. Равенство напряжений на концах параллельно соединенных элементов цепи

    Правило для токов

    Общий ток разделится на части. По каждому из параллельных участков будет протекать свой ток.

    \(\large I_, I_\left( B\right) \) – токи, протекающие по параллельно включенным проводникам.

    Рис. 3. Токи, протекающие через каждый параллельно включенный элемент, складываются

    При этом, согласно закону Ома (ссылка), чем меньше сопротивление участка, тем больший ток по нему протекает (рис. 4).

    Рис. 4. Пример распределения токов на сопротивлениях параллельной части цепи

    Из рисунка 4 следует, через проводник с наименьшим (2 Ом) сопротивлением протекает наибольший ток 3 Ампера. А наименьший ток 1 Ампер течет по проводнику, обладающему максимальным сопротивлением 6 Ом.

    Во время протекания электрического тока будет наблюдаться его тепловое действие, то есть, резисторы будут нагреваться, независимо от того, параллельно, или последовательно мы их соединяем. Количество выделенной теплоты можно вычислить по закону Джоуля — Ленца.

    Последовательное соединение

    Для нахождения общего сопротивления цепочки, применяют такое правило:

    Рис. 5. Последовательный способ соединения

    Общее сопротивление больше большего из включенных последовательно сопротивлений.

    Правило для напряжений

    Приложенное к концам цепочки напряжение распределится между проводниками. Чем большее сопротивление имеет проводник, тем большее падение напряжения будет наблюдаться на его концах.

    Рис. 6. Способ рассчитать общее напряжение

    Общее напряжение разделится на части. Большее напряжение будет на участке с большим сопротивлением.

    На рисунке 7 представлена цепочка, состоящая из 4-ех сопротивлений, соединенных последовательно. На проводнике с наименьшим сопротивлением 5 Ом напряжение составляет 1 Вольт.

    Рис. 7. Пример распределения напряжений на сопротивлениях последовательной цепи

    Наибольшее напряжение 4 Вольта находится на концах проводника с сопротивлением 20 Ом. В то время, как общее напряжение на концах цепочки составляет 10 Вольт.

    Примечание: Иногда вместо фразы «напряжение на концах проводника» физики употребляют словосочетание «падение напряжения». Учитывая то, что после каждого элемента последовательной цепочки, остается лишь некоторая часть первоначального общего напряжения.

    Ток в проводниках

    Подобно жидкости, протекающей в трубе, состоящей из нескольких последовательно соединенных частей, через последовательно соединенные элементы будут проходить одни и те же заряды, то есть, будет протекать единый общий ток.

    В последовательно включенной цепочке через все ее элементы протекает один и тот же ток.

    Рис. 8. Равенство токов, протекающих через элементы последовательной цепочки

    Выводы

    Для решения задач нужно запомнить правила для определения сопротивлений параллельной и последовательной цепочек. Эти правила будут справедливы не только для двух, но и для любого количества включенных элементов.

    Оставшиеся формулы для напряжений и токов легко получить из формул для сопротивлений, с помощью закона Ома для участка цепи.

    Для расчетов разветвленных цепей применяют правила Кирхгофа.