Изменение напряжения на конденсаторе

Переходные процессы в электрических цепях

Переходный процесс в электрической цепи — это электромагнитный процесс, возникающий в электрической цепи при переходе от одного установившегося (принужденного) режима к другому. Установившимся (принужденным) называется режим работы электрической цепи, при котором напряжение и токи цепи в течение длительного времени остаются неизменными.

Такой режим в электрической цепи устанавливается при длительном действии источников постоянной или переменной ЭДС при неизменных параметрах этой цепи R, L и С.

Переходный процесс вызывается коммутацией в цепи. Коммутацией называется процесс замыкания или размыкания рубильников или выключателей. Переходный процесс может быть вызван изменением параметров электрической цепи R, L или С.

Переходный процесс базируется на двух законах коммутации:

  1. ток в индуктивности не может изменяться скачком;
  2. напряжение на емкости не может изменяться скачком.

Переходные процессы в электрических цепях

Действительно, если ток в индуктивности L изменяется скачком, т. е. мгновенно, то ЭДС самоиндукции eL становится бесконечно большой (при

Переходные процессы в электрических цепях

В реальных цепях ЭДС самоиндукции может иметь только конечные значения.

Переходные процессы в электрических цепях

Если в цепи с емкостью С напряжение на ее обкладках изменяется скачком, т. е. мгновенно, то появляется бесконечно большой зарядный (или разрядный) ток (при = 0):

Переходные процессы в электрических цепях

Ток в электрических цепях может иметь только конечные значения.

Переходный процесс является быстропротекающим процессом, длительность которого обычно составляет десятые, сотые и даже миллионные доли секунды и сравнительно редко — секунды и даже десятки секунд.

Таким образом, один установившийся режим цепи отделяется от другого некоторым промежутком времени, в течение которого происходит постепенный переход от прежнего состояния цепи к новому.

Переходный процесс в линейных цепях можно рассматривать как результат наложения двух процессов:

  1. нового установившегося режима, который наступает после коммутации;
  2. свободного процесса, обеспечивающего переход цепи от прежнего установившегося режима к новому установившемуся режиму.

Таким образом, ток i цепи в течение переходного процесса можно представить суммой двух токов: нового установившегося Переходные процессы в электрических цепяхи свободного Переходные процессы в электрических цепях, возникающего после коммутации:

Переходные процессы в электрических цепях

Аналогично напряжение в течение переходного процесса равно

Переходные процессы в электрических цепях

В результате переходного процесса происходят изменения тока, напряжения, фазы, частоты и т.д.

Изучение переходных процессов очень важно, так как оно позволяет выявить возможные превышения напряжения на отдельных участках цепи, которые могут оказаться опасными для изоляции установки, позволяет выявить возможные броски токов, величина которых в десятки раз превышает установившийся. Изучение переходных процессов позволяет выявить ситуации, возникающие в электрических цепях при коротком замыкании, резком включении и выключении рубильников, и прочие режимы работы цепи.

Переходный процесс в электрической цепи

Переходный процесс в электрической цепи — это процесс, возникающий в электрической цепи при различных воздействиях, приводящих их из стационарного состояния в новое стационарное состояние, когда при действии различного рода коммутационной аппаратуры, например, ключей, переключателей для включения или отключения источника или приёмника энергии, при обрывах в цепи, при коротких замыканиях отдельных участков цепи и т. д.

Подключение катушки индуктивности к источнику с постоянным напряжением

Если катушку индуктивности (RL) подключить к источнику с постоянным напряжением U (замыкание ключа К), то ток i в не-разветвленной цепи (рис. 20.1а) будет увеличиваться от нуля (в начале переходного процесса) до установившегося значения

Переходные процессы в электрических цепях

Установившийся, т.е. постоянный, ток I не индуктирует в катушке ЭДС самоиндукции, поэтому индуктивное сопротивление в установившемся режиме при условии (20.3) отсутствует.

Переходные процессы в электрических цепях

Этот увеличивающийся ток i индуктирует в индуктивности L катушки ЭДС самоиндукции (см. (9.11))

Переходные процессы в электрических цепях

Следовательно, для любого момента времени переходного процесса по второму закону Кирхгофа можно записать

Переходные процессы в электрических цепях

Разделив уравнение (20.4) на R, получают

Переходные процессы в электрических цепях

В уравнении (20.5) Переходные процессы в электрических цепях— установившийся в конце переходного процесса ток (Переходные процессы в электрических цепях).

Отношение — Переходные процессы в электрических цепяхимеет размерность времени Переходные процессы в электрических цепяхобозначается буквой Переходные процессы в электрических цепях(тау) и называется постоянной времени Переходные процессы в электрических цепях-цепи, т. е.

Переходные процессы в электрических цепях

Тогда уравнение (20.5) можно записать в виде

Переходные процессы в электрических цепях

Если это уравнение проинтегрировать, предварительно разделив переменные (ток и время), а затем спотенцировать, то получим выражение

Переходные процессы в электрических цепях

где е — основание натурального логарифма (е=2,71); I — установившийся ток (Переходные процессы в электрических цепях); (Переходные процессы в электрических цепях) — свободный ток (Переходные процессы в электрических цепях), так как Переходные процессы в электрических цепях, т.е.

Переходные процессы в электрических цепях

Таким образом, уравнение, которое позволяет определить вели-шу тока в цепи с индуктивностью L в любой момент переходно-процесса RL-цепи при подключении реальной катушки индук-1Вности к источнику с постоянным напряжением U, записывается в виде

Переходные процессы в электрических цепях

Воспользовавшись Приложением 9, по выражению (20.10) можно определить, что за время t= ток в цепи увеличивается до 0,63I, а за время t= 4,6 — до 0,99I, т. е. до 99 % установившегося тока I.

Теоретически переходный процесс происходит бесконечно долго. Практически переходный процесс в рассматриваемой цепи считается законченным, когда ток i увеличивается до 99 % установившегося тока I.

Как видим, чем больше xL, тем больше времени t длится перечный процесс.

Таким образом, постоянная времени xL определяет скорость греховного процесса или его длительность.

Переходные процессы в электрических цепях

ЭДС самоиндукции в рассматриваемой цепи, вызванная свободным током , определяется выражением

Переходные процессы в электрических цепях

Таким образом, ЭДС самоиндукции в Переходные процессы в электрических цепях-цепи, подключенной к источнику с постоянным напряжением U, будет уменьшаться. Так, за время t=Переходные процессы в электрических цепях, ЭДС самоиндукции согласно (20.11) уменьшатся до 0,37U, а за время t = 4,6 Переходные процессы в электрических цепях— до 0,01 U, т.е. до 1 % постоянного напряжения U.

Увеличение тока и уменьшение ЭДС самоиндукции катушки при подключении катушки к источнику с постоянным напряжением U показаны на графике рис. 20.1б.

Отключение и замыкание RL-цепи

Если цепь с катушкой, в которой проходит установившийся ток I (рис. 20.1а), разомкнуть, то ток i в такой цепи с большой скоростью уменьшается до нуля и в катушке индуктируется большая ЭДС самоиндукции eL

Переходные процессы в электрических цепях

Эта ЭДС полностью приложена к клеммам ключа, так как при размыкании сопротивление ключа становится бесконечно большим. Эта ЭДС вызывает значительное увеличение электрического поля между контактами ключа, а следовательно, и напряженности поля. Большая напряженность электрического поля может вызвать искровой и даже дуговой разряд между размыкающимися контактами ключа, в результате чего обгорают контакты ключа.

Переходные процессы в электрических цепях

Поэтому рубильники в RL-цепях шунтируются специальными устройствами, которые обеспечивают гашение дугового разряда. Для гашения дугового разряда необходимо одновременно с отключением катушки индуктивности от источника замкнуть ее на разрядное сопротивление R0 (рис. 20.2а).

Переходные процессы в электрических цепях

Уменьшение тока при отключении катушки от источника (рис. 20.1а) происходит по закону

Переходные процессы в электрических цепях

Переходные процессы в электрических цепях

Наглядно это уменьшение можно наблюдать на рис. 20.1б, если кривую изменения eL считать кривой уменьшения тока в соответствующем масштабе.

Переходные процессы в электрических цепях

Постоянная времени при отключении катушки от источника с постоянным напряжением U определяется как и при включении катушки на это напряжение, т.е.

Если катушку с установившимся током I, зашунтированную сопротивлением Ro (рис. 20.2а), отключить от источника (разомкнуть ключ К), то в замкнутом контуре ABCD в начальный момент коммутации Переходные процессы в электрических цепяхпройдет ток Переходные процессы в электрических цепях, т.е. установившийся ток. Этот ток I может оказаться недопустимо большим резистора с сопротивлением Ro.

Переходные процессы в электрических цепях

Для определения активного сопротивления катушки и полного ее сопротивления включают амперметр А и вольтметр V (рис. 20.26), т.е. вместо резистора с сопротивлением Ro в контур CD (рис. 20.26) включен вольтметр V. Этот вольтметр может не быть рассчитан на установившийся ток I, проходящий через него и размыкании ключа, в результате чего может сгореть. Чтобы «сжечь» вольтметр (рис. 20.26), сначала необходимо отключить вольтметр, а затем разомкнуть ключ К.

Как видно, за счет переходных процессов в цепях с индуктивностью возникают большие токи и напряжения. С этим необходимо считаться и учитывать при проектировании и эксплуатации цепей с индуктивностью.

Зарядка, разрядка и саморазрядка конденсатора

Если конденсатор с сопротивлением (утечки) R и емкостью С подключить к источнику с постоянным напряжением U (замыканием ключа К), то в цепи (рис. 20.3а) появится ток зарядки конденсатора (см. (11.16)):

Переходные процессы в электрических цепях

Переходные процессы в электрических цепях

где — напряжение на конденсаторе в любой момент времени переходного процесса.

По второму закону Кирхгофа для цепи зарядки конденсатора (рис. 20.3а) можно записать уравнение

Переходные процессы в электрических цепях

Переходные процессы в электрических цепях

где произведение RC имеет размерность времени, обозначается буквой и называется постоянной времени переходного процесса в RC-цепи, т. е.

Переходные процессы в электрических цепях

Переходные процессы в электрических цепях

Уравнение (20.13) можно записать в виде

Переходные процессы в электрических цепях

Переходные процессы в электрических цепях

Если в уравнении (20.15) разделить переменные, проинтегрировать, а затем спотенцировать, то получится выражение

Переходные процессы в электрических цепях

где U — установившееся напряжение Переходные процессы в электрических цепяхRC-цепи; Переходные процессы в электрических цепях-свободная составляющая напряжения Переходные процессы в электрических цепяхна конденсаторе; т.е. Переходные процессы в электрических цепях

Следовательно, напряжение на заряжающемся конденсаторе в любой момент времени t переходного процесса определяется выражением

Переходные процессы в электрических цепях

По (20.17), пользуясь Приложением 9, можно определить, что за время t= Переходные процессы в электрических цепяхконденсатор зарядится до напряжения Переходные процессы в электрических цепях= 0,63 U, а за время t=4,6 Переходные процессы в электрических цепях— до напряжения Переходные процессы в электрических цепях=0,99U.

Теоретически зарядка конденсатора длится бесконечно долю а практически конденсатор считается заряженным, когда напряжение на нем достигает 99 % напряжения источника U.

Таким образом, и в RC-цепи, чем больше постоянная времени , тем больше времени t тратится на зарядку конденсатор, т. е. и в данном случае постоянная времени характеризует дли тельность зарядки и разрядки конденсатора.

Ток i при зарядке конденсатора (см. (20.13)) уменьшается по за кону
(20. IS)

Переходные процессы в электрических цепях

Переходные процессы в электрических цепях

где — максимальный ток, который имеет место в начальный момент t=0 зарядки конденсатора (момент коммутации).

За время t= ток в цепи заряжающегося конденсатора уменьшится до 0,37 I, а за время t= 4,6 — до 0,01 I, при котором переходный процесс можно считать законченным.

Графики изменения напряжения на конденсаторе и тока в цепи арядки конденсатора изображены на рис. 20.36.

Переходные процессы в электрических цепях

Если конденсатор емкостью С, заряженный предварительно до напряжения U, разряжать через резистор с сопротивлением R рис. 20.4а), то напряжение на конденсаторе и ток в цепи разрядки будут уменьшаться по закону

Переходные процессы в электрических цепях

где U — напряжение на конденсаторе до начала разрядки (при t= 0), а Переходные процессы в электрических цепях— максимальный ток в начальный момент разрядки R (при t=0), Переходные процессы в электрических цепях= RC — постоянная времени в цепи разрядки конденсатора.

Переходные процессы в электрических цепях

Переходные процессы в электрических цепях

За время t= напряжение и ток уменьшатся до 37 % своих максимальных значений. Изменение напряжения и тока на разряжающемся конденсаторе показаны на рис. 20.46 (в разных масштабах).

Переходные процессы в электрических цепях

Если конденсатор емкостью С, заряженный до напряжения U, отсоединить от источника, то он будет разряжаться через свой диэлектрик. Напряжение на нем будет уменьшаться по закону . Процесс разрядки конденсатора через свой диэлектрик называется саморазрядом.

Постоянная времени саморазряда зависит от физических свойств диэлектрика

Переходные процессы в электрических цепях

где р — удельное сопротивление диэлектрика; Переходные процессы в электрических цепях— электрическая постоянная; Переходные процессы в электрических цепях— диэлектрическая проницаемость диэлектрика (относительная).

Для определения напряжения, тока, ЭДС в любой момент переходного процесса Переходные процессы в электрических цепях-цепи и Переходные процессы в электрических цепях-цепи можно воспользоваться таблицей показательных функций (Приложение 9).

Пример 20.1

Катушка электромагнита с параметрами Переходные процессы в электрических цепях=11 Ом и Переходные процессы в электрических цепях= 0,11 мГн подключена к сети постоянного тока с напряжением Переходные процессы в электрических цепях=110 В. Определить время t, за которое ток в катушке i увеличится от нуля до 8 А. Определить, какого значение достигнет ЭДС самоиндукции eL за время t.

Решение

Переходные процессы в электрических цепях

Установившийся ток

Переходные процессы в электрических цепях

Постоянная времени для катушки

Подставляем значение величин в (20.10):

Переходные процессы в электрических цепях, откуда Переходные процессы в электрических цепях.

Переходные процессы в электрических цепях

По Приложению 9 определяется = 1,6, откуда

Переходные процессы в электрических цепях

Переходные процессы в электрических цепях

ЭДС самоиндукции за время с уменьшается со 110 В до значения

Переходные процессы в электрических цепях

Пример 20.2

К зажимам катушки индуктивности с параметрами Переходные процессы в электрических цепях= 100 Ом, Переходные процессы в электрических цепях= 10 Гн подключен вольтметр V (рис. 20.26) электродинамической системы. Сопротивление вольтметра Переходные процессы в электрических цепях5000 Ом. Напряжение на клеммах источника U= 200 В.

Определить напряжение на зажимах вольтметра и ток в обмотках прибора (обмотки соединены последовательно) при t=0, если размыкание рубильника К произойдет мгновенно и дуги не возникнет.

Решение

До размыкания рубильника через катушку проходил ток

Переходные процессы в электрических цепях

В момент размыкания рубильника (t = 0) весь этот ток проходит обмоткам вольтметра. При этом на вольтметре напряжение cтанет равным

Переходные процессы в электрических цепях

Такого напряжения (10 кВ) и такого тока (2 А) обмотка вольтметра (обычно подвижная обмотка электродинамического прибора рассчитана на ток порядка десятков, максимум, сотен миллиампер) не выдержит и сгорит.

При размыкании рубильника с конечной скоростью между расходящимися контактами рубильника К (рис. 20.26) возникнет электрическая дуга. Это приведет к тому, что увеличение напряжения на вольтметре и тока через обмотки вольтметра будет меньше, чем в рассмотренном выше случае (мгновенное размыкание рубильника). Однако меры предосторожности для сохранения вольтметра и рубильника, описанные выше, нужно соблюдать.

Пример 20.3

Конденсатор емкостью С= 2 мкФ через сопротивление R= 500 кОм подключается к источнику с постоянным напряжением U= 220 В.

Переходные процессы в электрических цепях

Определить напряжение на конденсаторе и ток в цепи заряда конденсатора i через 2 с от начала заряда конденсатора t= 2 с), а также время t’, за которое этот конденсатор зарядится р напряжения Uc= 150 В.

Решение

Постоянная времени заряда конденсатора

Переходные процессы в электрических цепях

Напряжение на конденсаторе через 2 с от начала заряда

Переходные процессы в электрических цепях

Ток в цепи заряда конденсатора через 2 с от начала заряда

Переходные процессы в электрических цепях

Переходные процессы в электрических цепях

так как

Время t’ заряда конденсатора до напряжения 150 В определяется по формуле (20.17):

Переходные процессы в электрических цепях

Переходные процессы в электрических цепях

Откуда

Из таблицы показательных функций (Приложение 9) находят t’= 1,14 с.

Пример 20.4

Параметры цепи, изображенной на рис. 20.5, следующие: Переходные процессы в электрических цепяхПереходные процессы в электрических цепяхПереходные процессы в электрических цепях

Определить значение токов в ветвях через время t= 2 с после замыкания ключа К.

Переходные процессы в электрических цепях

Решение

Для ветви (1) с индуктивностью определяются:

Переходные процессы в электрических цепях

установившийся ток

Переходные процессы в электрических цепях

и постоянная времени

Тогда ток через 2 с будет равен

Переходные процессы в электрических цепях

Для ветви (2) с емкостью определяются:

максимальный установившийся ток по окончании переходного процесса

Переходные процессы в электрических цепях

Переходные процессы в электрических цепях

и постоянная времени .

Тогда ток зарядки через 2 с будет равен

Переходные процессы в электрических цепях

Переходные процессы в электрических цепях

Для ветви (3) с активным сопротивлением определяется ток ветви

Переходные процессы в электрических цепях

Переходные процессы в электрических цепях

Постоянная времени = 0, так как отсутствуют L и С.

Переходные процессы в электрических цепях

Через 2 с значение тока будет таким же, т. е.

Переходные процессы в электрических цепях. Классический метод расчета

Возникновение переходных процессов:

В предыдущих главах рассматривались установившиеся процессы в линейных электрических цепях, т. е. такие процессы, при которых напряжения и токи либо неизменны во времени (цепи постоянного тока), либо представляют собой периодические функции времени (цепи переменного тока).

Наступлению установившегося процесса, отличного от первоначального режима работы цепи, предшествует, как правило, переходный процесс, при котором напряжения и токи изменяются непериодически.

Переход от одного режима работы цепи к другому может быть вызван изменением параметров или схемы цепи, называемым в общем случае в электротехнике коммутацией.

Можно теоретически считать, что коммутация цепи производится мгновенно, т. е. на включение, выключение или переключение цепи время не расходуется. Тем не менее переход от исходного режима работы цепи к последующему установившемуся процессу происходит не мгновенно, а в течение некоторого времени. Объясняется это тем, что каждому состоянию цепи соответствует определенный запас энергии электрических и магнитных полей. Переход к новому режиму связан с нарастанием или убыванием энергии этих полей. Энергия Переходные процессы в электрических цепяхзапасаемая в магнитном поле индуктивности L, и энергия Переходные процессы в электрических цепяхзапасаемая в электрическом поле емкости С, не могут изменяться мгновенно: энергия может изменяться непрерывно, без скачков, так как в противном случае мощность, равная производной энергии по времени, достигала бы бесконечных значении, что физически невозможно. Именно поэтому, например, в случае размыкания ветви с индуктивной катушкой в месте размыкания неизбежно возникает искра, в сопротивлении которой расходуется энергия, накопленная в магнитном поле индуктивной катушки. Аналогично если замкнуть накоротко выводы конденсатора, который был предварительно заряжен, то запасенная в нем электрическая энергия рассеется в сопротивлении соединяющего провода и между контактами.

Если исключить случаи размыкания индуктивности и замыкания накоротко емкости и рассматривать цепи, в которых энергия, накапливаемая в магнитном или электрическом поле, может рассеиваться в виде теплоты в сопротивлениях, то, считая, что коммутация происходит мгновенно, можно искрообразование не учитывать.

Для завершения переходного и наступления установившегося процессов теоретически требуется бесконечно большое время. Практически, однако, время переходного процесса определяется малым интервалом, по истечении которого токи и напряжения настолько приближаются к установившимся значениям, что разница оказывается практически неощутимой. Чем интенсивнее происходит рассеяние энергии в сопротивлениях, тем быстрее протекает переходный процесс.

Если бы электрическая цепь состояла только из сопротивлений и не содержала индуктивностей и емкостей, то переход от одного установившегося состояния к другому совершался бы мгновенно, без затраты времени. В реальных электротехнических устройствах тепловые потери, обусловленные током, магнитные и электрические поля сопутствуют друг другу. Применяя специальные схемы и подбирая соответствующие параметры цепи, можно в зависимости от необходимости ускорить или замедлить переходный процесс.

В одних случаях переходные процессы в электрических цепях нежелательны и опасны (например, при коротких замыканиях в энергетических системах). В других случаях переходный процесс представляет собой естественный, нормальный режим работы цепи, как это, например, имеет место в радиопередающих и радиоприемных устройствах, системах автоматического регулирования и других цепях.

Существуют различные методы расчета переходных процессов в линейных электрических цепях. Настоящая глава посвящена классическому методу решения дифференциальных уравнений, описывающих переходные процессы.

Законы коммутации и начальные условия

Высказанные выше положения о том, что запас энергии магнитного или электрического поля может изменяться только плавно, без скачков, выражают принцип непрерывности во времени потокосцепления индуктивности и электрического заряда емкости и называются законами коммутации.

Невозможность скачкообразного изменения потокосцепления следует из того, что в противном случае на индуктивности появилось бы бесконечно большое напряжение Переходные процессы в электрических цепяхчто лишено физического смысла. Ввиду равенства Переходные процессы в электрических цепяхпринцип непрерывности потокосцепления означает, что при неизменном L ток i не может изменяться скачком. Итак, в начальный момент после коммутации ток в индуктивности остается таким же, каким он был непосредственно перед коммутацией, а затем плавно изменяется.

Аналогично невозможность скачкообразного изменения электрического заряда q следует из того, что в противном случае через емкость проходил бы бесконечно большой токПереходные процессы в электрических цепях, что также лишено физического смысла. Ввиду равенства Переходные процессы в электрических цепяхпринцип непрерывности электрического заряда означает, что при неизменном С напряжение Переходные процессы в электрических цепяхне может изменяться скачком. Итак, в начальный момент после коммутации напряжение на емкости остается таким же, каким оно было непосредственно перед коммутацией, а затем плавно изменяется.

При этом следует отметить, что в цепях с идеализированными сосредоточенными параметрами скачкообразно могут изменяться: 1) токи в сопротивлениях и емкостях и 2) напряжения на сопротивлениях и индуктивностях.

Значения тока в индуктивности и напряжения на емкости в момент коммутации называются независимыми начальными условиями.

Обычно принимают, что коммутация происходит в момент времени t= 0; тогда ток в индуктивности и напряжение на емкости в момент времени непосредственно перед коммутацией обозначаются через Переходные процессы в электрических цепяха в начальный момент переходного процесса после коммутации — черезПереходные процессы в электрических цепях

Переходные процессы в электрических цепях

На основании законов коммутации:

Эти равенства выражают начальные условия цепи, в которых происходит коммутация.

При нулевых начальных условиях, т. е. косцаПереходные процессы в электрических цепяхПереходные процессы в электрических цепяхиндуктивность в начальный момент после коммутации равносильна разрыву цепи, а емкость равносильна короткому замыканию.

В случае ненулевых начальных условий, т. е. когда Переходные процессы в электрических цепяхиндуктивность в первый момент равносильна источнику тока Переходные процессы в электрических цепях, а емкость равносильна источнику э. д. с. Переходные процессы в электрических цепях(0).

Независимые начальные условия характеризуют энергию магнитного и электрического полей, запасенную к моменту коммутации, и для расчета переходного процесса обязательно требуется знание этих начальных условий, причем совершенно безразлично, каким образом эти условия в цепи были созданы.

При расчете переходных процессов в разветвленных электрических цепях наряду с независимыми начальными условиями используются так называемые зависимые начальные условия, а именно: значения токов, напряжений и их производных в начальный момент времени (t = 0).
До сих пор нами исключались из рассмотрения случаи коммутации, при которых неизбежно между контактами возникает искра или дуга. Один из таких случаев показан на рис. 14-1, а. До коммутации ток проходит через индуктивность Переходные процессы в электрических цепяхи контакт, шунтирующий индуктивность Переходные процессы в электрических цепяхток в Переходные процессы в электрических цепяхравен нулю. В момент t = 0 контакт размыкается и индуктивности Переходные процессы в электрических цепяхи Переходные процессы в электрических цепяхоказываются включенными последовательно; ток в них принудительно становится одинаковым. Поскольку в момент коммутации ток в Переходные процессы в электрических цепяхне изменяется, а ток в Переходные процессы в электрических цепяхравен нулю, в силу первого закона Кирхгофа ток должен замкнуться через дугу, образовавшуюся между контактами. Кроме того, если под Переходные процессы в электрических цепяхподразумевать реальную индуктивную катушку, то ток может частично

Переходные процессы в электрических цепях

замкнуться и через межвитковую емкость. После быстрого погасания дуги токи в Переходные процессы в электрических цепяхуравниваются. Эта начальная стадия переходного процесса протекает столь быстро, что ею практически можно пренебречь, считая, что токи в Переходные процессы в электрических цепяхуравниваются мгновенно. Именно в этом смысле можно условно говорить о скачкообразном изменении токов в индуктивностях, которое предшествует исследуемому переходному процессу в цепи. При этом для расчета переходного процесса используется принцип непрерывности суммарного потокосцепления при коммутации, т. е. Переходные процессы в электрических цепяхПереходные процессы в электрических цепях. Скачкообразное изменение токов и соответствующих им потоков в Lx и L2 в момент коммутации не сопряжено в данном случае с наведением бесконечно большой суммарной э. д. с. самоиндукции, поскольку суммарное лотокосцепление не претерпевает скачкообразного изменения. При новых значениях токов в Переходные процессы в электрических цепяхмагнитная энергия, запасенная в катушках, будет меньше энергии, запасенной в первой катушке до коммутации. Часть энергии превратится в тепло в искре, а также излучится.

Переходные процессы в электрических цепях

Найденный таким образом ток может рассматриваться как независимое начальное условие для расчета переходного процесса во всей цепи на рис. 14-1, а после разрыва дуги.

При коммутациях в цепях с емкостями при отсутствии сопротивлений также возможны весьма быстрые перераспределения зарядов, условно рассматриваемые как мгновенные. В этом случае применим принцип непрерывности суммарного заряда. Полученные при этом значения зарядов и напряжений на отдельных емкостях используются в расчете последующего переходного процесса как независимые начальные условия.

Например, в случае схемы на рис. 14-1, б принцип непрерывности суммарного заряда до и после коммутации выражается равенством

Переходные процессы в электрических цепях

При сделанном допущении в остальной электрической цепи, соединенной с емкостями, не возникает бесконечно большого тока, так как суммарный заряд не изменяется скачкообразно при t=0.

В процессе рассматриваемой коммутации энергия электрического поля уменьшится, так как часть ее превратится в тепло в очень малом сопротивлении проводника при очень большом токе, а также сможет выделиться в искре и излучиться.

Установившийся и свободный режимы

В общем случае анализ переходного процесса в линейной цепи с сосредоточенными параметрами r, L, С и М сводится к решению обыкновенных линейных неоднородных дифференциальных уравнений, выражаюших законы Кирхгофа. Эти уравнения представляют собой линейную комбинацию напряжений, токов, их первых производных и интегралов по времени.

Например, если какая-нибудь э. д. с. е (t) включается в цепь, состоящую из последовательно соединенных r, L и С, то интегродифференциальное уравнение имеет вид:

Переходные процессы в электрических цепях

Это уравнение после дифференцирования приводится к неоднородному дифференциальному уравнению второго

Переходные процессы в электрических цепях

Как известно, общий интеграл такого^ уравнения равен сумме частного решения неоднородного уравнения и общего решения однородного уравнения.

Частное решение выражает установившийся режим, задаваемый источником.

Расчеты установившихся токов рассмотрены в предыдущих главах.

Общее решение физически определяет поведение цепи при отсутствии внешних источников электрической энергии и заданных начальных условиях. Функции, определяемые общим решением, называются свободными составляющими (токов, напряжений и пр.).

В случае, рассмотренном выше, однородное уравнение имеет вид:

Переходные процессы в электрических цепях

и соответствующее ему характеристическое уравнение

Переходные процессы в электрических цепях

Переходные процессы в электрических цепях

Если корни характеристического уравнения обозначить через , то общее решение запишется в виде:

Переходные процессы в электрических цепях

Переходные процессы в электрических цепях

где — постоянные интегрирования, которые определяются из начальных условий .

Полный переходный ток в цепи равен сумме установившегося и свободного токов:

Переходные процессы в электрических цепях

Аналогично напряжение, заряд, магнитный поток и другие функции на любом участке цепи в переходном режиме состоят из установившейся и свободной составляющих.

Переходные процессы в электрических цепях

На основании законов коммутации можно найти начальные независимые условия После этого можно написать согласно (14-7):

Переходные процессы в электрических цепях

Переходные процессы в электрических цепях

откуда

Итак, начальные значения свободных функций Переходные процессы в электрических цепяхи Переходные процессы в электрических цепях(0) определяются изменениями в момент коммутации соответствующих установившихся функций.

В частном случае при нулевых начальных условиях:

Переходные процессы в электрических цепях

В зависимости от порядка дифференциальных уравнений, описывающих исследуемые переходные процессы, различают цепи первого, второго и более высокого порядков.

В цепях первого порядка накопление энергии происходит только в одном элементе, L или С в форме магнитной энергии, или электрической энергии . Одноконтурная цепь, содержащая элементы, в которых накапливается энергия обоих видов — магнитная « электрическая, представляет собой цепь второго порядка . Разветвленные цепи могут быть более высокого порядка.

Переходный процесс в цепи r, L

Положим, что в момент t = 0 цепь, состоящая из сопротивления r и индуктивности L, включенных последовательно, присоединяется к источнику э. д. с. е (t) (рис. 14-2).

Переходные процессы в электрических цепях

Переходные процессы в электрических цепях

Дифференциальное уравнение для времени записывается в виде

Переходные процессы в электрических цепях
Характеристическое уравнение имеет видПереходные процессы в электрических цепяхи соответственно корень уравнения Переходные процессы в электрических цепях

Отсюда свободный ток

Переходные процессы в электрических цепях
Переходный ток в цепи определится суммой установившегося и свободного токов:Переходные процессы в электрических цепях

Установившийся ток может быть найден, если задана э. д. с. е (t).

Рассмотрим три случая:

1) включение в цепь г, L постоянной э. д. с. £;

2) короткое замыкание цепи г, L

Переходные процессы в электрических цепях

3) включение в цепь г, L синусоидальной э. д. с.

1. Включение в цепь г, L постоянной э. д. с.

При включении в цепь г, L постоянной э. д. с. Е установившийся ток равен Е’/г. Поэтому согласно (14-9)

Переходные процессы в электрических цепях

Постоянная интегрирования А находится по начальному условию

Переходные процессы в электрических цепях

Согласно уравнению (14-10) при t — 0

Переходные процессы в электрических цепях
откуда Переходные процессы в электрических цепяхСледовательно,Переходные процессы в электрических цепях

Переходные процессы в электрических цепях

здесь — предельное значение, к которому стремится ток i (t) по мере неограниченного возрастания t, называемое установившимся током.

В начальный момент t = 0 э. д. с. самоиндукции Переходные процессы в электрических цепях= Переходные процессы в электрических цепяхи полностью компенсируется э. д. с. источника, так как ток i (0) равен нулю.

С течением времени э. д. с. самоиндукции убывает, а ток в цепи возрастает, асимптотически приближаясь к установившемуся значению.

Переходные процессы в электрических цепях

На рис. 14-3 показаны кривые установившегося, свободного и переходного токов; на том же рисунке изображена кривая напряжения на индуктивности
Переходные процессы в электрических цепях
Из курса математического анализа известно, что еслиПереходные процессы в электрических цепях, то подкасательная равна Переходные процессы в электрических цепях. В данном случае при любом значении t
Переходные процессы в электрических цепях
Величина Переходные процессы в электрических цепяхносит название постоянной времени. Постоянная времени измеряется в секундах:

Переходные процессы в электрических цепях
Выражение (14-11) показывает, что постоянная времени графически определяется длиной подкасательной к кривой Переходные процессы в электрических цепяхили Переходные процессы в электрических цепяхпри любом значении t.

Нарастание тока происходит тем быстрее, чем меньше постоянная времени и соответственно чем быстрее убывает э. д. с. самоиндукции. Для различных моментов времени ток в цепи, выраженный в процентах конечного (установившегося) значения составляет:

Переходные процессы в электрических цепях

Следовательно, постоянная времени цепи г, L равна промежутку времени, в течение которого свободная составляющая тока убывает в е = 2,718 раза и соответственно ток в этой цепи, включенной на постоянное напряжение, достигает 63,2% своего установившегося значения.

Переходные процессы в электрических цепях

Как видно из рис. 14-3 и приведенной выше таблицы», переходный процесс теоретически длится бесконечно долго. Практически же можно считать, что он заканчивается спустя

2. Короткое замыкание цепи r, L.

Положим, что цепь r, L, присоединенная к источнику постоянного или переменного напряжения, замыкается при t = 0 накоротко (рис. 14-4, а). В образовавшемся при этом контуре r, L благодаря наличию магнитного поля индуктивной катушки ток исчезает не мгновенно: э. д. с. самоиндукции, обусловленная убыванием магнитного потока, стремится поддержать ток в контуре за счет энергии исчезающего магнитного поля.

Переходные процессы в электрических цепях

По мере того как энергия магнитного поля постепенно рассеивается, превращаясь в сопротивлении г в тепло, ток в контуре приближается к нулю.

Процесс, происходящий в короткозамкнутом контуре г, L, является свободным; установившийся ток в данном случае равен нулю.

Переходные процессы в электрических цепях

Положив в (14-9) получим:

Переходные процессы в электрических цепях

Постоянная интегрирования А находится из начального условия

Переходные процессы в электрических цепях

Переходные процессы в электрических цепях

здесь i (0—) — значение тока в индуктивности в момент, непосредственно предшествовавший короткому замыканию; оно может быть положительным или отрицательным.

На рис. 14-4, б изображены кривые спада тока в короткозамкнутом контуре и кривая напряжения на индуктивности

Переходные процессы в электрических цепях

в предположении, что i (0) > 0.

Переходные процессы в электрических цепях

Постоянная времени контура может быть найдена графически как подкасательная к кривой i (t) (например-, в момент t = 0).

Переходные процессы в электрических цепях

Переходный процесс в короткозамкнутом контуре заканчивается теоретически при . За это время в сопротивлении г выделяется в виде тепла энергия

Переходные процессы в электрических цепях

т. е. вся энергия, запасенная в магнитном поле катушки до коммутации.

Переходные процессы в электрических цепях

Так же как и в предыдущем случае, переходный процесс в короткозамкнутом контуре можно практически считать законченным спустя

3. Включение в цепь r, L синусоидальной э. д. с.

При включении в цепь r, L синусоидальной э. д. с. Переходные процессы в электрических цепяхустановившийся ток будет:
Переходные процессы в электрических цепях
где
Переходные процессы в электрических цепях
На основании (14-9)
Переходные процессы в электрических цепях
где
Переходные процессы в электрических цепях
Постоянная интегрирования определяется по начальному условию Переходные процессы в электрических цепях

Следовательно, Переходные процессы в электрических цепяхоткуда А =Переходные процессы в электрических цепяхПоэтому искомый ток будет:

Переходные процессы в электрических цепях

На рис. 14-5, а изображены кривые Переходные процессы в электрических цепяхНачальные ординаты Переходные процессы в электрических цепяходинаковы и противоположны по знаку; поэтому ток в начальный момент равен нулю. Свободный ток убывает по показательному закону. По истечении времени Переходные процессы в электрических цепяхсвободный ток уменьшается в е=2,718 раза по сравнению с начальным значением Переходные процессы в электрических цепях(0). Постоянная времени прямо пропорциональна добротности
контура Q и обратно пропорциональна частоте Переходные процессы в электрических цепяхПереходные процессы в электрических цепях
Если в момент коммутации (t = 0) ток Переходные процессы в электрических цепяхпроходит через нуль, т. е. выполняется условие Переходные процессы в электрических цепяхили Переходные процессы в электрических цепях= Переходные процессы в электрических цепях, то свободный ток не возникает и в цепи сразу наступает установившийся режим без переходного процесса.

Переходные процессы в электрических цепях

Если же коммутация происходит при то начальный свободный ток максимален (рис. 14-5, б),

Переходные процессы в электрических цепях

Переходные процессы в электрических цепях

а именно и ток переходного режима дости-

гает экстремального значения (положительного или отрицательного) в конце первого полупёриода. Однако даже в предельном случае, когда r= 0 и, следовательно, Переходные процессы в электрических цепях Переходные процессы в электрических цепяхток не может превышать амплитуды установившегося режима более чем вдвое.

При достаточно большой постоянной времени Переходные процессы в электрических цепяхпервым слагаемым в правой части дифференциального уравненияПереходные процессы в электрических цепях
можно пренебречь по сравнению со вторым слагаемым, приняв приближенноПереходные процессы в электрических цепях, откудаПереходные процессы в электрических цепяхи соответственно Переходные процессы в электрических цепяхПереходные процессы в электрических цепях

Следовательно, цепь с последовательно соединенными сопротивлением и индуктивностью при большой постоянной времени можно рассматривать как интегрирующее звено.

В свою очередь при достаточно малой постоянной времени, пренебрегая вторым слагаемым уравнения, приближенно получаем:

Переходные процессы в электрических цепях
откуда
.Переходные процессы в электрических цепях
т. e. цепь с последовательно соединенными сопротивлением и индуктивностью при малой постоянной времени представляет собой дифференцирующее звено.

В обоих случаях функция е(t) может быть произвольной.

Интегрирующие и дифференцирующие звенья входят в качестве элементов в системы автоматического управления и регулирования.

Переходный процесс в цепи r, С

Положим, что в момент t = О цепь, состоящая из сопротивления г и емкости С, включенных последовательно, присоединяется к источнику э. д. с. е (t) (рис. 14-6).

Переходные процессы в электрических цепях

На основании второго закона Кирхгофа уравнение для времени t 0 имеет вид:

Переходные процессы в электрических цепях
где Переходные процессы в электрических цепях— напряжение на емкости.
С учетом того, чтоПереходные процессы в электрических цепях
получим:

Переходные процессы в электрических цепях

здесь искомой величиной является напряжение на емкости.

Характеристическое уравнениеПереходные процессы в электрических цепяхи соответственно корень уравненияПереходные процессы в электрических цепяхСледовательносвободная слагающая напряжения на емкости

Переходные процессы в электрических цепяхгде Переходные процессы в электрических цепях— постоянная времени контура r, С (измеряется в секундах: Переходные процессы в электрических цепяхПереходные процессы в электрических цепях

Переходные процессы в электрических цепях

Переходное напряжение на емкости равно сумме принужденного и свободного напряжений:

Переходные процессы в электрических цепях

В свою очередь ток в контуре

Рассмотрим три случая:

1) включение в цепь г, С постоянной э. д. с.

2) короткое замыкание цепи r, С

Переходные процессы в электрических цепях

3) включение в цепь r, С синусоидальной э. д. с.

Включение в цепь r, С постоянной э. д. с.

Включим постоянную э. д. с. Е в цепь с сопротивлением г и предварительно заряженной емкостью С (полярности заряженной емкости указаны на рис. 14-6 знаками + и —); начальное напряжение на емкости

(0) обозначим для простоты через U.

Переходные процессы в электрических цепях

Установившееся напряжение на емкости равно э. д. с. источника. Поэтому согласно (14-12)

Переходные процессы в электрических цепях

Постоянная интегрирования А, входящая в (14-14), находится по начальному условию:

При t = 0 имеем Переходные процессы в электрических цепяхоткуда Переходные процессы в электрических цепяхСледовательно,Переходные процессы в электрических цепях

Переходные процессы в электрических цепях

Согласно (14-13) ток в контуре

Если Е > U, то с течением времени напряжение на емкости возрастает, стремясь к установившемуся значению Е, а ток убывает, стремясь в пределе к нулю; на рис. 14-7, а изображены кривые нарастания Переходные процессы в электрических цепяхи спада i. Чем больше постоянная времени, тем медленнее происходят нарастание Переходные процессы в электрических цепяхи спад i.

Если Е 0), убывающей (с 0) или убывающей (с 1 В случае, когда э. д. с. изменяется в виде импульса, имеющего кусочно-аналитическую форму, представляется часто целесообразным применять интеграл Дюамеля

токи же Переходные процессы в электрических цепях— из уравнений Кирхгофа после коммутации: Переходные процессы в электрических цепях

Переходные процессы в электрических цепях

Подстановка в эти уравнения найденных значений и

Переходные процессы в электрических цепях

дает:

Переходные процессы в электрических цепях

Переходные процессы в электрических цепях

Начальное значение производной тока в индуктивности определяется также из уравнения Кирхгофа:

Переходные процессы в электрических цепях

откуда при t = О

Переходные процессы в электрических цепях
Пример (4-2. Определить ток i в иепи на рис. 14-17, если известно, что е = E = 100 В, Переходные процессы в электрических цепяхПереходные процессы в электрических цепях

Подстановка заданных значений в приведенное выше характеристическое уравнение дает:

Переходные процессы в электрических цепях

Переходные процессы в электрических цепях

корни характеристического уравнения комплексные:

Переходные процессы в электрических цепях

Переходные процессы в электрических цепях

Переходные процессы в электрических цепях

Переходные процессы в электрических цепях

Переходные процессы в электрических цепях

В начальный момент следовательно, 0 = 0,952 + М, откуда М= — 0,952.

Производная тока по времени

Переходные процессы в электрических цепях

Переходные процессы в электрических цепях

В начальный момент

Следовательно, в начальный момент напряжение на ветви Переходные процессы в электрических цепях(и параллельной ей ветви Переходные процессы в электрических цепяхравно Переходные процессы в электрических цепяхНачальное значение

производнойПереходные процессы в электрических цепях) определяется из уравнений Переходные процессы в электрических цепяхоткудаПереходные процессы в электрических цепях

Переходные процессы в электрических цепях

Следовательно, подставляя значение в выражение для производной при t= 0, получаем:

Переходные процессы в электрических цепях

откуда

Переходные процессы в электрических цепях

Переходные процессы в электрических цепях

Итак,

Переходные процессы в цепях с распределенными параметрами

Переходные процессы в электрических цепях

Переходные процессы в цепях с распределенными параметрами (в линиях, обмотках электрических машин и т. п.) возникают при коммутациях, передаче непериодических сигналов или под влиянием внешнего электромагнитного поля (например, при грозовых разрядах). Для исследования переходных процессов в однородных цепях с распределенными параметрами пользуются дифференциальными уравнениями (11-2) в частных производных:

где r, L, g и С — параметры цепи на единицу длины; х — координата рассматриваемой точки, отсчитываемая от начала цепи.

В общем виде решение этих дифференциальных уравнений достаточно сложно. Решение упрощается, если пренебречь потерями В этом случае
е. считать, что r и g равны нулю.

Переходные процессы в электрических цепях

Дифференцируя (14-28) по х:

Переходные процессы в электрических цепях

и используя (14-29), получаем:
Переходные процессы в электрических цепях
Дифференциальное уравнение (14-30) известно в математической физике под названием уравнения ко—лебаний струны. Его решение дано Даламбером и имеет вид:
Переходные процессы в электрических цепях
где
Переходные процессы в электрических цепях
Первая слагающая представляет собой одиночную прямую волну напряжения, которая без изменения перемещается в сторону возрастающих х, т. е. от начала к концу цепи. Для всех значений х, при которых Переходные процессы в электрических цепяхconst, эта слагающая имеет одно и-то же значение, т. е. волна движется со скоростью Переходные процессы в электрических цепях

Вторая слагающая представляет собой одиночную о б -ратную волну напряжения, которая без изменения перемещается в противоположном направлении.

Для нахождения тока произведем замену переменных, обозначив Переходные процессы в электрических цепяхНа основании (14-29) и (14-31)
Переходные процессы в электрических цепях
Но

Переходные процессы в электрических цепях

Переходные процессы в электрических цепях

Переходные процессы в электрических цепях

Интегрирование последнего уравнения дает Переходные процессы в электрических цепях
Переходные процессы в электрических цепях

Выражения (14-31) и (14-32) записываются сокращенно:

Переходные процессы в электрических цепях
здесь Переходные процессы в электрических цепях— прямая и обратная волны тока; Переходные процессы в электрических цепях— волновое сопротивление.

Переходные процессы в электрических цепях

Следовательно, напряжение и ток прямой и соответственно обратной волн связаны законом
Аналогичный результат был получен для установившихся прямой и обратной волн при рассмотрении синусоидального режима в однородной линии. Физически установившиеся волны представляют собой бесконечные суммы прямых и обратных одиночных волн, отраженных от обоих концов линии.

Переходные процессы в электрических цепях

Итак, при отсутствии потерь в однородной цепи с распределенными параметрами напряжение и ток могут быть представлены как сумма и разность двух волн, движущихся с одинаковой скоростью в противоположных напряжениях, без изменения их формы. При этом в любой точке однородной цепи отношение, напряжения и тока для прямой и обратной волн равно волновому сопротивлению гв.

Если на пути распространения волны встречается неоднородность, например воздушная линия переходит в кабельную или волна достигает конца линии (разомкнутого или замкнутого через сопротивление или на короткое), происходит отражение волны. В зависимости от характера неоднородности отражение может быть частичным или полным. В первом случае наряду с отраженной волной возникает преломленная волна, распространяющаяся за место нарушения однородности; во втором случае преломленная волна отсутствует.

Переходные процессы в электрических цепях

Обозначим — напряжение и ток в месте отражения;

Переходные процессы в электрических цепях

— напряжение и ток падающей (прямой) волны;

Переходные процессы в электрических цепях

Постоянная интегрирования может быть отнесена к функциям

Переходные процессы в электрических цепях
Переходные процессы в электрических цепях— напряжение и ток отраженной (обратной) волны;

Переходные процессы в электрических цепях

— напряжение и ток преломленной (прямой) волны;

Переходные процессы в электрических цепях— волновые сопротивления для прямой и обратной волн Переходные процессы в электрических цепяхи преломленной волныПереходные процессы в электрических цепях

В месте неоднородности выполняется условие равенства
напряжений и токов:
Переходные процессы в электрических цепях
Следовательно,
Переходные процессы в электрических цепях
Подстановка в (14-36) значений Переходные процессы в электрических цепях Переходные процессы в электрических цепяхдает: Переходные процессы в электрических цепях

В результате совместного решения уравнений (14-35) — (14-37) находятся отраженная Переходные процессы в электрических цепяхи преломленная Переходные процессы в электрических цепяхволны:

Переходные процессы в электрических цепях

Переходные процессы в электрических цепях

где — коэффициент отражения.

Переходные процессы в электрических цепях

Соответственно ток отраженной волны

а ток преломленной волны

Переходные процессы в электрических цепях
Последнее выражение показывает, что ток в конце линии после отражения можно найти как ток в эквивалентной цепи, в которую включается напряжение, равное двойному напряжению падающей волны, и которая состоит из волнового сопротивления первой линии Переходные процессы в электрических цепяхи последовательно соединенного с ним сопротивления нагрузки (в которое входит вторая линия своим волновым сопротивлением Переходные процессы в электрических цепях

Опишем процесс включения однородной линии без потерь. После присоединения линии к источнику э. д. с. по линии начнет распространяться зарядная волна, создающая напряжение и ток. Если в конце линии присоединена нагрузка, равная волновому сопротивлению линии,

то падающая волна, достигнув ее, не отразится и в линии сразу наступит установившийся режим. Если же нагрузка с линией не согласована, то падающая зарядная волна, достигнув конца линии, претерпит отражение. Распространяясь в обратную сторону, отраженная волна сложится с падающей, причем напряжения волн суммируются, а токи вычитаются (алгебраически). Достигнув начала линии, обратная волна снова отразится от источника э. д. с., как от короткозамкнутого конца; появится новая прямая волна напряжения и тока, которая также отразится от конца, и т. д. Процесс будет продолжаться до наступления установившегося режима. Теоретически в идеальной линии без потерь при чисто реактивной нагрузке процесс колебаний будет продолжаться бесконечно долго. В реальной линии при наличии потерь волны напряжения и тока будут постепенно затухать в направлении распространения.

Напряжение и ток в линии в произвольный момент времени определятся как алгебраические суммы и соответственно разности напряжений и токов прямых и обратных волн.

Пользуясь формулами и схемой замещения, описанной выше, можно найти напряжение и ток, возникающие в месте присоединения сосредоточенной нагрузки или перехода одной линии в другую (см. пример 14-3).

Следует отметить что индуктивность, включенная последовательно в линию, или емкость, включенная параллельно проводам линии, сглаживает фронт преломленных волн; активное сопротивление, включенное в линию параллельно, уменьшает преломленную волну.

Переходные процессы в электрических цепях

Пример 14-3. К концу линии, имеющей волновое сопротивление присоединена индуктивная катушка r, L. Определить ток в катушке и напряжение на ней под воздействием прямоугольной волны U

Переходные процессы в электрических цепях

Переходные процессы в электрических цепях

Переходные процессы в электрических цепях

Переходные процессы в электрических цепях

Переходные процессы в электрических цепях

соответствует моменту падения волны на катушках

  1. Электротехника
  2. Основы теории цепей
  • Переходные процессы в линейных цепях
  • Переходные процессы в нелинейных цепях
  • Переходные процессы в электрических цепях с сосредоточенными параметрами
  • Переходные процессы в колебательных контурах
  • Цепи с взаимной индукцией
  • Трехфазные цепи
  • Периодические несинусоидальные напряжения и токи в линейных цепях
  • Нелинейные цепи переменного тока

При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org

Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи

Сайт пишется, поддерживается и управляется коллективом преподавателей

Telegram и логотип telegram являются товарными знаками корпорации Telegram FZ-LLC.

Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.

Конденсатор

Рассмотрим водопроводную модель конденсатора. Ранее мы говорили о том, что ток может течь только в трубе, соединенной в кольцо в замкнутой цепи. Но можно представить пустую емкость, в которую можно заливать воду, пока емкость не заполнится. Это и есть конденсатор — емкость, в которую можно заливать заряд.

Для большей аналогии лучше представить себе водонапорную башню, в модели — трубу бесконечной длины поставленную вертикально. Вода насосом закачивается в эту трубу с нижнего торца и поднимается на высоту. Чем больше воды закачали и чем выше она поднялась — тем сильнее столб воды давит на днище и выше там давление. Так-то в эту бесконечную трубу можно сколько угодно воды (электрического заряда) закачать, но при этом противодавление столба воды будет расти. Если качать заряд генератором напряжения, то когда противодавление сравняется с давлением (напряжением), создаваемым генератором — закачка остановится.

Если характеристикой резистора является сопротивление, то электрической характеристикой конденсатора является емкость.

С=Q/U

Емкость говорит, сколько заряда можно в конденсатор закачать, чтобы напряжение там поднялось до величины U. Можно сказать, что емкость характеризует диаметр трубы. Чем ýже труба, тем быстрее поднимается уровень воды при закачке и растет давление на дне трубы. Давление же зависит только от высоты водяного столба, а не от массы закачанной воды.

В электрических терминах, чем меньше емкость конденсатора, тем быстрее растет напряжение при закачке туда заряда.

Напомню, что электрический ток I равен количеству протекающего заряда Q в секунду. То есть I=Q/T, где T — время. Это все равно, что поток воды исчисляемый кубометрами в секунду. Или килограммами в сек, потом проверим по размерности).

Поэтому конденсатор с маленькой емкостью заполняется зарядом быстро, а с большой емкостью — медленно.

Рассмотрим теперь электрические цепи с конденсатором.

Пусть конденсатор подключен к генератору напряжения.

рис 9. Подключение конденсатора к генератору напряжения.

«Главный инженер повернул рубильник» S1 и.. тыдыщ. Что произошло?

Идеальный генератор напряжения имеет бесконечную мощность и может выдавать бесконечный ток. Когда замкнули рубильник в нашу емкость хлынуло бесконечное количество заряда в секунду и она мгновенно заполнилась и напряжение на ней выросло до U.

Теперь рассмотрим более реальную цепь.

Это Вторая Главная Цепь в жизни инженера-электронщика (после делителя напряжения) —
RC–цепочка.

RC–цепочка

RC -цепочки бывают интегрирующего и дифференцирующего типа.

RC–цепочка интегрирующего типа

рис 10. Подключение RC -цепочки интегрирующего типа к генератору напряжения.

Что произойдет в этой схеме, если замкнуть выключатель S1?

Конденсатор С исходно разряжен и напряжение на нем рано 0. Поэтому ток в первый момент будет равен I=U/R. Затем конденсатор начнет заряжаться, напряжение на нем увеличивается, и ток через резистор начнет уменьшаться. I=(U-Uc)/R. Этот процесс будет продолжаться, конденсатор будет заряжаться уменьшающимся током до напряжения источника U. Напряжение на конденсаторе при этом будет расти по экспоненте.

рис 11. График роста напряжения на конденсаторе при подаче напряжения величиной U (ступеньки).

Вопрос: А если запитать такую цепочку от генератора тока, как будет расти напряжение на конденсаторе?

Почему цепочка называется — «интегрирующего типа»?

Как выше было отмечено, ток в первый момент после подачи напряжение будет равен I=U/R, так как конденсатор разряжен, и напряжение на нем равно 0. И какое-то время, пока напряжение на конденсаторе Uc мало по сравнению с U, ток будет оставаться почти постоянным. А при заряде конденсатора постоянным током напряжение на нем растет линейно.

Uc=Q/C, а мы помним, что ток это количество заряда в секунду, то есть скорость протекания заряда. Другими словами, заряд это интеграл от тока.

Q = ∫ I * dt =∫ U/R * dt

Uc=1/RC * ∫ U * dt

Но все это близко к истине в начальный момент, пока напряжение на конденсаторе малó.

На самом деле все сводится к тому, что конденсатор заряжается постоянным током.
А постоянный ток выдает генератор тока. (См. вопрос выше)
Если источник напряжения выдает бесконечно большое напряжение и сопротивление R также имеет бесконечно большую величину, то по факту мы имеем уже идеальный генератор тока, и внешние цепи на величину этого тока влияния не оказывают.

RC–цепочка дифференцирующего типа

Ну тут все то же самое, что в интегрирующей цепочке, только наоборот.

рис 12. Дифференцирующая цепочка.

Более подробно свойства RC цепей хорошо освещены в интернете.

Параллельное и последовательное соединение конденсаторов

Так же как резисторы, конденсаторы можно соединять последовательно и параллельно.

При параллельном соединении емкости складываются — ну это и понятно, это как заполнять сообщающиеся сосуды, общий объем получается равным сумме объемов. При последовательном же соединении получится так, что конденсатор с маленькой емкостью заполнится зарядом быстрее, чем конденсатор с большой емкостью. Напряжение на маленьком конденсаторе быстро вырастет почти до напряжения источника ( ну и остальные конденсаторы внесут свой вклад) , ток в общей цепи уменьшится до нуля, и процесс заряда конденсаторов прекратится. Таким образом емкость последовательно соединенных конденсаторов получается меньше емкости самого маленького из них.

Upd.
Рассмотрим более подробно процесс заряда конденсатора на схеме рис.10 (по мотивам учебника И.В.Савельева «Курс общей физики», том II. «Электричество» )
Как было сказано в предыдущей статье О природе электрического тока электрический ток — это движение заряженных частиц. В проводниках ( в отличие от диэлектриков-изоляторов) часть электронов является свободными и такие электроны могут перескакивать от одного атому к другому. В целом проводник электрически нейтрален — отрицательный заряд электронов компенсируется положительным зарядом ядер атомов. Чтобы заставить электроны двигаться нужно создать их избыток на одном конце проводника и недостаток на другом. Этот избыток электронов на одном полюсе создает батарейка вследствие протекающих в ней электрохимических реакций. Когда проводник присоединяется к полюсам батарейки электроны от полюса, где их избыток начинают двигаться к другому полюсу, потому что одноименные заряды отталкивают друг друга. Эти свободные электроны движутся внутри проводника по всему объему.
Движение электронов в RC цепи на рис. 3 имеет другой характер. Поскольку цепь не замкнута (обкладки конденсатора не соединены друг с другом) постоянный ток в цепи идти не может. Поэтому поступающий избыток электронов с полюса батарейки приводит к тому, что проводник теряет электрическую нейтральность. Избыточный заряд q, распределяется по поверхности проводника так, чтобы напряженность поля внутри проводника была равна нулю. Ну это понятно, одноименные заряды отталкиваются и стремятся расположиться подальше друг от друга, то есть на поверхности. Если бы не было резистора R, то перераспределение зарядов по поверхности происходило бы мгновенно. Однако резистор ограничивает ток ( движение зарядов) поэтому перераспределение происходит постепенно. По мере зарядки конденсатора напряжение на нем растет и ток через резистор уменьшается. Избыточные электроны концентрируются на одной обкладке и создают электрическое поле. Это поле отталкивает электроны, находящиеся на другой обкладке и «проталкивает» их дальше по проводнику к отрицательному полюсу батареи. (Знаки + и в данном случае берем условно). Таким образом в незамкнутой цепи протекает ток заряда конденсатора. Этот ток не постоянный и уменьшается со временем. Однако, если в какой-то момент поменять полярность батареи, то ток потечет уже в обратную сторону. Если это переключение делать достаточно часто, так чтобы конденсатор не успевал полностью зарядиться, то в цепи все время будет течь ток, то в одну, то в другую сторону. Это и происходит, когда говорят, что «конденсатор проводит переменный ток».
Для плоского конденсатора емкость равна С=ε0*ε*S/d , где d – зазор между обкладками, ε – диэлектрическая проницаемость вещества, заполняющего зазор, S — площадь обкладок.
То есть на емкость влияет не только площадь обкладок и расстояние между ними, но и материал диэлектрика, который между обкладками помещен. Причем на емкость конденсатора материал диэлектрика может влиять достаточно сильно, с разными дополнительными эффектами, см. например статью «Поляризация диэлектрика»

Литература
«Драма идей в познании природы», Зельдович Я.Б., Хлопов М.Ю., 1988
«Курс общей физики», том II. «Электричество» И.В.Савельев
Википедия — статьи про электричество.