Измерить напряжение на транзисторе

Основы измерений, как выполнять измерения в радиоэлектронике

Основы измерений для начинающих радиолюбителей и тех кто начал заниматься радиоэлектроникой, что такое точность измерений, измерение постоянного напряжения и другие полезные знания. При ремонте или налаживании электронной техники невозможно обойтись без измерений силы тока, напряжения, сопротивления, а так же других электрических величин, от которых зависит работа схемы.

Вступление

Наиболее часто приходится измерять постоянные и переменные напряжения и токи, сопротивления. Для этих целей выпускаются различные комбинированные измерительные приборы. Самый популярный из них, — цифровой мультиметр (типа М-838 или аналогичный).

Недорогой прибор, позволяющий измерять постоянное и переменное напряжение, постоянный ток, сопротивление, а так же проверять диоды и маломощные транзисторы.

У некоторых моделей есть «прозвонка» (пищит, когда щупы замкнуты), а более дорогие могут еще измерять емкости конденсаторов, частоту электрических колебаний и быть источником импульсов (генератором), частотой около 1 кГц.

Мало владеть прибором, необходимо еще и уметь им пользоваться, да так, чтобы не повредить прибор или «объект измерения».

Точность измерения

Измерить электрическую величину, и вообще любую величину, с абсолютной точностью невозможно.

Всегда существует погрешность, зависящая как от самого измерительного прибора, так и от человека, проводящего измерение. Например, точность измерения сильно зависит от правильности выбора предела измерения. Допустим, в какой-то цепи есть напряжение 2,9875V.

Если вы пользуетесь мультиметром, чтобы получить наиболее точный результат измерения, нужно, в данном случае, выбрать предел «20V». На этом пределе мультиметр покажет «2,98V». Если же вы выберете предел «200V», прибор покажет «2,9V».

Измерительные приборы делятся на семь классов точности: 0,1; 0,2; 0,5; 1,0; 1,5; 2,5; 4,0 (кроме особых случаев, когда требуются сверхточные измерения).

Эти числа показывают какую погрешность допускает прибор, в процентах от выбранного предела измерения. Недорогие приборы, типа мультиметра М-838, обычно, не дают погрешность меньше класса 1,0.

Таким образом, если ваш мультиметр соответствует классу точности 1,0, то на пределе «20V» он может ошибаться не более чем на 0,2V (20/100 * 1,0=0,2).

Кроме класса точности прибора и правильности выбора предела измерения, на результат измерения оказывает влияние и такой показатель, как внутреннее (или входное) сопротивление. Но об этом позже.

Измерение постоянного напряжения

При измерении напряжения, вольтметр или мультиметр, предварительно переключенный на измерение постоянного напряжения (DCV), подключают параллельно источнику напряжения, которое нужно измерить. Предположим, нужно измерить напряжение на резисторе R2 (рис. 1). Для этого мультиметр М мы подключаем параллельно резистору R2.

Полярность измеряемого постоянного напряжения мультиметр показывает относительно своего гнезда «СОМ». То есть, в схеме на рис. 1, щуп, идущий от гнезда «СОМ» подсоединен к минусу измеряемого напряжения, а второй щуп (V) — к плюсу. Таким образом, напряжение на щупе V относительно щупа СОМ положительное.

Экспериментальная схема

Рис. 1. Экспериментальная схема.

Если щупы поменять местами или перевернуть «батарейку» G1, напряжение на щупе V относительно щупа СОМ будет отрицательным, и на табло мультиметра перед числом-результатом измерения появится значок «-». Как видите, чтобы измерить напряжение нужно знать две точки, между которыми есть искомое напряжение.

Когда говорят, что нужно измерить напряжение на резисторе, конденсаторе или каком-то другом объекте, имеющим два вывода, все понятно, — один щуп подключаем к одному выводу, а второй -к другому. Но как быть, если требуется измерить напряжение в точке «А», или на коллекторе VТ1 (рис. 2)?

Здесь следует знать, что если нигде не говорится относительно чего нужно измерять напряжение в данной точке, его всегда измеряют относительно общего провода. Таким образом, щуп «СОМ» мультиметра подключаем к общему проводу схемы, а второй щуп — к точке, в которой требуется измерить напряжение, в данном случае к коллектору VT1 (рис. 2).

Подключение вольтметра для измерения нпаряжения на коллекторе транзистора относительно общего

Рис. 2. Подключение вольтметра для измерения нпаряжения на коллекторе транзистора относительно общего.

Если же сказано, что напряжение на коллекторе VT1 нужно измерить относительно его эмиттера, то прибор нужно подключать, соответственно, между эмиттером и коллектором транзистора (рис. 3).

Измерение напряжения на коллекторе транзистора относительно эмиттера

Рис. 3. Измерение напряжения на коллекторе транзистора относительно эмиттера.

Поэтому, прежде чем начинать измерять напряжения в схеме, нужно разобраться относительно чего это делать. И подключить «СОМ» мультиметра к тому самому месту, относительно которого нужно измерить напряжение.

Любой вольтметр обладает некоторым внутренним сопротивлением, которое в определенных случаях может оказывать очень существенное влияние на результат измерения.

Может быть даже так, что при подключении вольтметра с недостаточно большим внутренним (входным) сопротивлением схема вообще перестанет работать.

Чтобы понять, почему входное сопротивление вольтметра должно быть как можно больше, обратимся к рисунку 4. Предположим, есть делитель напряжения на двух одинаковых резисторах по 100 кОм каждый. Значит, напряжение на резисторе R2 (U2), согласно формуле: U1/U2=(R1+R2)/R2, будет равно половине напряжения источника питания G1 (U1), то есть 4,5V.

Схема эксперимента с сопротивлением вольтметра

Рис. 4. Схема эксперимента с сопротивлением вольтметра.

А теперь посмотрим, что произойдет, если к R2 подключить вольтметр, у которого внутреннее (входное) сопротивление (RV) равно, допустим, 10 кОм. Внутренне сопротивление вольтметра RV окажется включенным параллельно резистору R2 (зашунтирует его).

В результате фактическое сопротивление R между минусом источника питания G1 и точкой соединения R1 и R2 упадет до величины, определяемой формулой: R=(R2*RV)/(R2+RV), и будет уже не 100 кОм, а всего около 9,09 кОм.

Теперь, согласно формуле U1/U2=(R1+R)/R, напряжение на R2, при подключенном к R2 вольтметре с внутренним сопротивлением 10кОм, будет около 0,749V.

И это напряжение покажет вольтметр, вместо положенных 4,5V! Если же внутреннее сопротивление вольтметра значительно больше R2, например, 1000 кОм (1 Мегаом), результат измерения будет ближе к реальному:

R= (100*1000)/(100+1000) = 90,9 кОм.

U2= 9 /((100+90,9)/90,9) = 4,286V.

Как видите, чем выше внутреннее (входное) сопротивление вольтметра по отношению к внутреннему сопротивлению источника (или элемента схемы) на котором нужно измерить напряжение, тем показания прибора будут достовернее.

В технической документации входное сопротивление вольтметров (или универсальных приборов при измерении напряжения) обычно указывается в Ом/В.

Это значит, что чтобы узнать фактическое входное сопротивление прибора на каком-то пределе измерения, нужно указанное сопротивление умножить на выбранный предел измерения.

Допустим, в паспорте мультиметра указано входное сопротивление равно 300 кОм/В. Это значит, если мультиметр переключить, например, на предел «20V», его входное сопротивление составит шесть мегаом (300кОм * 20В = 6000кОм).

Измерение переменного напряжения

Практически все выше сказанное об измерении постоянного напряжения остается в силе и при измерении переменного. Но есть и существенные отличия.

Например, точность измерения переменного напряжения сильно зависит от частоты переменного тока, напряжение которого измеряют.

Большинство мультиметров откалиброваны на переменное напряжение 50 Гц (или 60 Гц), поэтому, при измерении напряжения более высокой, например, звуковой частоты их показания могут значительно отличаться.

В паспортах некоторых мультиметров указывается погрешность при измерении на разных частотах, например, 50 Гц и 1000 Гц или 50 Гц, 1000 Гц и 10000 Гц.

Другая интересная деталь — одни приборы, в режиме измерения переменного напряжения, никак не реагируют на постоянное напряжение, а другие при наличии постоянного напряжения в измеряемой цепи показывают какие-то ошибочные числа.

Например, если мультиметр М-838, переключенный на измерение переменного напряжения (АСV) подключить к источнику постоянного напряжения, он покажет число, примерно в полтора раза больше постоянного напряжения этого источника. А вот более дорогой мультиметр, — DT9206 при измерении переменного напряжения на постоянное не реагирует никак (показывает нули).

Дело в том, что в одних приборах, таких как DT9206, есть разделительный конденсатор, который при измерении переменного напряжения включается на входе прибора и не пропускает постоянное напряжение на его схему. В М-838 такого конденсатора нет.

Это обязательно нужно знать, когда измеряете переменное напряжение в цепи, где есть постоянная составляющая. На рисунке 5 показана схема выходной части усилительного каскада. Обратите внимание, — на коллекторе транзистора присутствует постоянное напряжение 50V и переменное 20V.

Чтобы измерить переменное напряжение таким прибором, как М-838 (без разделительного конденсатора на входе), его нужно подключить через конденсатор (Сх). А вот прибор типа DT9206 можно подключать непосредственно, на его показания постоянная составляющая не влияет.

Схема выходной части усилительного каскада

Рис. 5. Схема выходной части усилительного каскада.

Измерение силы тока

Чтобы измерить силу тока (или просто, — измерить ток) амперметр (или комбинированный прибор, измеряющий силу тока) включают в электрическую цепь последовательно (рис. 6). Иначе говоря, в разрыв цепи, так, чтобы через прибор протекал весь ток, силу которого нужно измерить.

На рис. 6 показано как включают прибор при измерении тока потребления усилительным каскадом, а на рисунке 7, — тока коллектора транзистора.

Включение амперметра при измерении тока потребления усилительным каскадом

Рис. 6. Включение амперметра при измерении тока потребления усилительным каскадом.

На результат измерения силы тока оказывает влияние сопротивление измерительного прибора. Но это влияние обратно тому, что оказывает вольтметр на измеряемое напряжение. Амперметр включается цепь последовательно, и его сопротивление складывается с сопротивлением цепи.

Общее сопротивление цепи увеличивается, а сила тока уменьшается. Поэтому сопротивление прибора, измеряющего силу тока должно быть минимальным. Измеряя силу тока мультиметр переключают в положение «DCA».

При измерении слабых токов щупы прибора устанавливают в те же гнезда, что и при измерении напряжения. Для измерения силы тока более 200мА (0,2А), до 10А мультиметры имеют дополнительное гнездо с предохранителем.

Измерение тока коллектора транзистора

Рис. 7. Измерение тока коллектора транзистора.

Серьезный недостаток непосредственного измерения силы тока в том, что для подключения прибора нужно сделать разрыв в цепи. Особенно это неудобно при измерении больших и очень больших токов.

Поэтому, для измерения больших токов используют приборы с так называемыми «токовыми клещами», которые представляют собой датчик тока, определяющий силу тока по магнитному полю, создаваемому током.

Внешне токовые клещи, действительно похожи на клещи или прищепку, которую надевают на проводник с измеряемым током. Еще одно достоинство токовых клещей в том, что измерительный прибор оказывается полностью изолированным от измеряемой цепи.

Измерение сопротивления

Для измерения сопротивления омметр (или мультиметр, в режиме измерения сопротивлений) пропускает через измеряемое сопротивление ток. Сопротивление определяется соответственно Закону Ома R = U / I. Если поддерживать постоянной величину напряжения, приложенного к цепи, сопротивление которой нужно измерить, то ток в цепи будет в обратной зависимости от сопротивления.

Именно поэтому шкалы стрелочных омметров максимальное сопротивление показывают при минимальном отклонении стрелки, а при минимальном сопротивлении стрелка максимально отклоняется. Цифровые приборы сопротивление определяют по напряжению на цепи, сопротивление которой нужно измерить, придерживая ток в цепи стабильным.

В этом случае, напряжение будет в прямой зависимости от измеряемого сопротивления, а показания прибора будут в прямой зависимости от измеряемого сопротивления. Как бы не была построена схема измерительного прибора, сопротивление он всегда измеряет сопротивление пропуская через объект измерения ток.

А это значит, что схема, в которой нужно измерить сопротивление должна быть полностью обесточена, выключена. Иначе, ток, имеющийся в схеме будет взаимодействовать с током, пропускаемым омметром через измеряемое сопротивление, и результат измерения будет ошибочным. Более того, ток, имеющийся в измеряемой цепи, может вывести прибор из строя.

Поэтому, всегда отключайте цепь от источника питания, перед тем как начнете измерять в ней сопротивление. И еще один важный момент, — измеряя сопротивление какой-то детали или части схемы, необходимо эту деталь отключить от схемы, чтобы на показания прибора не оказывали влияния другие детали схемы, обладающие собственными сопротивлениями.

Например, если вы захотите измерить сопротивление резистора, установленного на плате, необходимо хотя бы один из его выводов выпаять из платы. Иначе омметр покажет не сопротивление этого резистора, а результирующее сопротивление всей схемы имеющейся между точками подключения выводов этого резистора.

  • PCBWay — всего $5 за 10 печатных плат, первый заказ для новых клиентов БЕСПЛАТЕН.
  • Сборка печатных плат от $30 + БЕСПЛАТНАЯ доставка по всему миру + трафарет.
  • Проекты с открытым исходным кодом — доступ к тысячам открытых проектов в сообществе PCBWay!

Как проверять транзисторы тестером – отвечаем

Перед использованием транзистора всегда рекомендуют проверять его исправность. Для этого применяют различные приборы, но наиболее удобный и точный – мультиметр, о котором мы подробно рассказали в одном из предыдущих материалов. А сейчас расскажем, как правильно проверять мультиметром транзисторы разных типов.

транзисторы

Что такое транзистор и зачем его проверять

Транзисторы – важные элементы электрических схем и плат приборов, потребляющих ток. Эта радиоэлектронная конструкция позволяет управлять потоком электричества в сети. Технически она представляет собой полупроводниковый триод с тремя контактами. Регулирующее действие прибора основано на переходе «электрон-дырка». В зависимости от конструкции и соответствующего принципа работы различают два типа транзисторов:

  • Биполярный. Основан на двух каналах движения частиц, а области чередующейся проводимости могут располагаться двумя способами: «дырка – электрон – дырка» (PNP) или «электрон – дырка – электрон» (NPN). Различают также аналоговые (для обычной электротехники), цифровые (для электроники) и гибридные (для силовых систем, поэтому их также называют силовыми) модели биполярных транзисторов. Они имеют три вывода: коллектор, эмиттер и базу, представляющие собой длинные тонкие штыри, торчащие из корпуса устройства. Их обозначают буквами «К», «Б» и «Э» соответственно.
  • Униполярный. Его также называют полевым. Это более простая конструкция, в которой ток проходит только через один узкий канал. Измерение основано не на паре «электрон-дырка», а только на одном элементе из этой пары. Во время прозвона прибора внутри этого канала изменяется напряжение. Разница между входным и выходным значением характеризует состояние устройства. Устройство также имеет три вывода-штыря: сток (обозначается буквой «С» и соответствует в схемах прозвонки коллектору биполярной модели), исток («И», соответствует эмиттеру) и затвор («З», соответствует базе).

Проверять транзистор лучше всякий раз перед тем, как встроить его в плату или схему. Это намного проще, удобнее и безопаснее, чем потом пытаться найти и устранить поломку в готовой, собранной электрической цепи или электронике. Прозвонить нужно и новые, только что купленные устройства, и изделия, извлеченные из оборудования или найденные среди старых запасов. Вполне реальны ситуации, когда в партии триодов, поставленной в магазин с завода электроники, имеется значительный процент брака.

устройство транзистора

Как проверить мультиметром биполярный транзистор

Биполярные транзисторы распространены больше полевых, поэтому особенно важно знать, как правильно проверить их перед эксплуатацией. Алгоритм прозвона устройств PNP-типа, представленных здесь как встречно подключенные диоды, следующий:

  1. Подключаем к мультиметру щупы. Для прозвона черный щуп нужно вставить в разъем COM (отрицательный полюс), а красный – в разъем «VΩmA» (положительный полюс). Выставляем регулятор на передней панели прибора в режим прозвонки или измерения сопротивления в пределах 2 кОм.
  2. Подносим черный щуп к выводу «Б», красный – к ножке «Э» транзистора. Если транзистор исправен, сопротивление перехода будет находиться в пределах от 0,6 до 1,3 кОм. Точно так же замеряем выводы «Б» (черный щуп) и «К» (красный щуп). Нормальный диапазон сопротивления перехода для этой пары тоже 0,6–1,3 кОм.
  3. Если хотя бы в одном из этих двух замеров указанная величина будет меньше 0,6 кОм, транзистор неисправен. Тогда меняем щупы местами: красный вставляем в разъем COM, а черный – в «VΩmA» и повторяем замеры выводов транзистора. Если прибор исправен, сопротивление будет минимально.
  4. Иначе на дисплее будет единица. Это значит, что прибор не может измерить значения такого уровня. В этом случае транзистор неисправен, применять его в текущем состоянии нельзя, он требует замены или, по возможности, ремонта.

Аналогичным способом проверяют биполярные транзисторы NPN-типа, представленные здесь как обратно подключенные диоды. Важное отличие – только в подключении щупов. Сначала черный щуп подключают к разъему COM, а красный – к «VΩmA», черный щуп подносят к выводу «Э», а красный – к выводу «К». Затем меняют местами гнезда на мультиметре, подносят красный щуп к ножке «К», а черный – к ножке «Б». В обоих случаях об исправности триода говорит сопротивление в интервале от 0,6 до 1,3 кОм.

npn pnp транзисторы

Как проверить мультиметром униполярный транзистор

Униполярные (полевые) транзисторы встречаются реже биполярных, но все равно полезно знать, как проверять их исправность. Для элементов, основанных на n-канале (электрон), применяют следующий алгоритм тестирования:

  1. Нужно подключить щупы, вставив их в разъемы мультиметра аналогично тому, как это описано для прозвона биполярного транзистора. Затем так же нужно выбрать режим прозвонки (только прозвонки, режим измерения сопротивления здесь не подойдет), повернув колесо регулятора на передней панели мультиметра.
  2. Черный провод подносят к ножке «С», а красный – к выводу «И» на транзисторе. Следует зафиксировать полученное показание. Затем красным щупом касаются вывода «З» (так мы частично открываем канал, по которому проходит ток), при этом в норме получается значение меньше, чем в первом случае.
  3. Далее проход необходимо закрыть. Для этого черным щупом касаются ножки «З», красным – вывода «И». Если транзистор исправен, мультиметр покажет исходное значение, зафиксированное после первого измерения. Если прибор сломан, второе значение будет таким же, как первое, или больше (частичного открытия не вышло), или третье будет отличаться в ту или иную сторону от первого (канал не закрылся).

Этот же алгоритм используют, чтобы проверить полевые транзисторы, основанные на p-канале (дырка). Единственная разница в том, что в самом начале щупы на мультиметре нужно подключить наоборот: черный вставить в разъем «VΩmA», красный – в COM.

Часто спрашивают, как проверить мультиметром IGBT-транзистор. Это другое название смешанной модели – разновидности биполярных устройств, сочетающих элементы аналоговых и цифровых конструкций. Для них актуален алгоритм полевых моделей, нужно только учитывать, что коллектору соответствует вывод «С» (сток), а эмиттеру – вывод «И» (исток). PNP-типы тестируют по схеме для n-канала, NPN-модели – как для p-канала.

проверка транзистора

Часто задаваемые вопросы

Как проверить транзистор на плате без выпаивания?

Теоретически – по тем же алгоритмам, что и транзисторы, не включенные в схему или плату. Однако на практике без выпаивания прозвонить устройство очень трудно. Для полевых моделей такой возможности нет вообще – касаться прибора щупами вы можете, но показания будут некорректны. Биполярные транзисторы без выпаивания дают более адекватные значения, но и они нередко далеки от отражающих настоящее состояние прибора. Поэтому выпаивать транзистор, скорее всего, придется. Так что проверяйте исправность элементов до того, как вы встроите их в электрические схемы или платы.

Как проверить транзистор большой мощности?

Транзисторы большой мощности – как правило, биполярные гибридные (силовые). Их коллектор рассчитан на ток до 100 ампер, мощность таких устройств может достигать 100 ватт. Но в плане проверки исправности действует общий алгоритм для всех моделей биполярной конструкции, приведенный выше. Если вы ставите мультиметр в режим прозвонки, отличий нет никаких; если выбираете режим проверки сопротивления, следует выставить соответствующий максимальный уровень этого параметра, указанный в технической документации проверяемого транзистора.

Как проверить строчный транзистор?

Строчный транзистор (строчной развертки) – один из важнейших элементов телевизоров, обеспечивающий формирование качественного изображения на экране. Технически это, как правило, биполярные конструкции PNP-типа, поэтому для их проверки подходит соответствующий алгоритм. Основная проблема в том, что строчный элемент обычно на момент поломки уже впаян в плату. Если выпаивать его очень не хочется, попробуйте прозвонить, как есть – возможно, значения все-таки окажутся корректными. В противном случае придется выпаивать транзистор строчной развертки из платы телевизора.

Как проверить составной транзистор?

Составная модель также называется транзистором Дарлингтона. Она состоит из двух элементов в общем корпусе. Мультиметром такую конструкцию проверить невозможно – вы можете касаться выводов щупами, но корректных значений вы не получите. Для прозвона составных транзисторов придется собрать простую электросхему из резистора, лампочки и самого проверяемого устройства. Если оно исправно, при подключении к базе положительного полюса лампочка загорится, если подключить отрицательный полюс – погаснет. Если что-то идет не по этому алгоритму, транзистор нуждается в замене.

Дополнительное видео по теме:

Проверка исправности биполярного транзистора мультиметром

Ни одна современная схема не обходится без полупроводниковых приборов. Самый распространённый из них — транзистор и именно он часто выходит из строя. Тому причиной — перепады напряжения, которые есть в наших сетях, нагрузки и т. д. Рассмотрим два способа позволяющие проверить исправность транзистора при помощи мультиметра.

Необходимый минимум сведений

Чтобы понять исправен биполярный транзистор или нет, нам необходимо знать хотя бы в самых общих чертах, как он устроен и работает. Это активный электронный компонент, который является полупроводниковым прибором. Есть два основных вида — NPN и PNP. Каждый из них имеет три электрода: база, эмиттер и коллектор.

Виды транзисторов и принцип работы

Виды транзисторов и принцип работы

Коротко сформулировать принцип работы транзисторов можно таким образом, это управляемый электронный ключ. Он пропускает ток по направлению от коллектора к эмиттеру в случае NPN типа и от эмиттера к коллектору у PNP, при наличии напряжения на базе. Причём изменяя потенциал на базе, меняем степень «открытости» перехода, регулируя величину пропускаемого тока. То есть, если на базу подавать больший ток, имеем больший ток коллектор-эмиттер, уменьшим потенциал на базе, снизим ток, протекающий через транзистор.

Ещё важно знать, это то, что в обратном направлении ток течь не может. И неважно, есть потенциал на базе или нет. Он всегда течёт в направлении, на схеме указанном стрелкой. Собственно, это вся информация, которая нам нужна, чтобы знать как работает транзистор.

Цоколевка

У биполярных транзисторов средней и большой мощности цоколевка одинаковая в основном, слева направо — эмиттер, коллектор, база. У транзисторов малой мощности лучше проверять. Это важно, так как при определении работоспособности, эта информация нам понадобится.

Внешний вид биполярного транзистора и его цоколевка

Внешний вид биполярного транзистора средней мощности и его цоколевка

То есть, если вам необходимо определить рабочий или нет биполярный транзистор, нужно искать его цоколевку. Хотите убедиться или не знаете, где «лицо», то ищите информацию в справочнике или наберите на компьютере «имя» вашего полупроводникового прибора и добавьте слово «даташит». Это транслитерация с английского Datasheet, что переводится как «технические данные». По этому запросу вам в выдаче будет перечень характеристик прибора и его цоколёвка.

Как проверить транзистор мультиметром со встроенной функцией

Начнём с того, что есть мультиметры с функцией проверки работоспособности транзистора и определения коэффициента усиления. Их можно опознать по наличию характерного блока на лицевой панели. В ней есть гнездо под установку транзистора, круглая цветная пластиковая вставка с отверстиями под ножки полупроводникового прибора. Цвет вставки может быть любым, но обычно, он выделяется.

Первым делом переводим переключатель диапазонов (большую ручку) в соответствующее положение. Опознать режим можно по надписи — hFE. Перед тем как проверить транзистор мультиметром, определяемся с типом NPN или PNP.

Мультиметр с функцией проверки транзисторов

Мультиметр с функцией проверки транзисторов

Далее рассматриваем разъёмы, в которые надо вставлять электроды. Они подписаны латинскими буквами: E — эмиттер, B — база, C — коллектор. В соответствии с надписями, ставим выводы полупроводникового элемента в гнёзда. Через несколько мгновений на экране высвечивается результат измерений, это коэффициент усиления транзистора. Если прибор неисправен, показаний не будет, транзистор неисправен.

Как видите, проверить рабочий транзистор или нет мультиметром со встроенной функцией проверки просто. Вот только в гнёзда нормально вставляются далеко не все электроды. Удобно устанавливать транзисторы с тонкими выводами S9014, S8550, КТ3107, КТ3102. У больших, надо пинцетом или плоскогубцами менять форму выводов, ну а транзистор на плате так не проверишь. В некоторых случаях проще проверить переходы транзистора в режиме прозвонки и определить его исправность.

Проверка на плате

Чтобы проверить транзистор мультиметром не выпаивая или нужен мультиметр с функцией прозвонки диодов. Переключатель переводим в это положение, подключение щупов стандартное: чёрный в общее звено (COM или со значком земли), красный — в среднее (гнездо для измерения сопротивления, тока, напряжения).

Как проверить транзистор мультиметром не выпаивая: готовим мультиметр

Как проверить транзистор мультиметром не выпаивая

Чтобы понять принцип проверки, надо вспомнить структуру биполярных транзисторов. Как уже говорили, они бывают двух типов: PNP и NPN. То есть это три последовательные области с двумя переходами, объединёнными общей областью — базой.

Строение биполярного транзистора и как его можно представить чтобы понять как его будем проверять

Строение биполярного транзистора и как его можно представить, чтобы понять как его будем проверять

Условно, мы можем представить этот прибор как два диода. В случае с PNP типом они включены навстречу друг другу, у NPN — в зеркальном отражении. Это представление на картинке в правом столбике и ни в коем случае не отображает устройство этого полупроводникового прибора, но поясняет, что мы должны увидеть при прозвонке.

Проверка биполярного транзистора PNP типа

Итак, начнём с проверки биполярника PNP типа. Вот что у нас должно получиться:

  • Если подать на базу плюс (красный щуп), на эмиттер или коллектор — минус (чёрный щуп), должно быть бесконечно большое сопротивление. В этом случае диоды закрыты (смотрим на эквивалентной схеме).
  • Если подаём на базу минус (чёрный щуп), а на эмиттер или коллектор плюс (красный щуп), видим ток от 600 до 800 мВ. В этом случае получается, что переход открыт.

Проверка биполярного PNP транзистора мультиметром

Проверка биполярного PNP транзистора мультиметром

Итак, PNP транзистор будет открыт только тогда, когда плюс подаётся на эмиттер или коллектор. Если во время испытаний есть хоть какие-то отклонения, элемент неработоспособен.

Тестируем исправность NPN транзистор

Как видим, в NPN приборе ситуация будет другой. Практически она диаметрально противоположна:

  • Если подать на базу плюс (красный щуп), а на эмиттер или коллектор минус, переход будет открыт, на экране высветятся показания — от 600 до 800 мВ.
  • Если поменять местами щупы: плюс на коллектор или эмиттер, минус на базу — переходы заперты, тока нет.
  • При прикосновении щупами к эмиттеру и коллектору тока по-прежнему быть не должно.

Проверка работоспособности биполярного NPN транзистора мультиметром

Проверка работоспособности биполярного NPN транзистора мультиметром

Как видим, этот прибор работает в противоположном направлении. Для того чтобы понять, рабочий транзистор или нет, необходимо знать его тип. Только так можем проверить транзистор мультиметром не выпаивая его с платы.

И ещё раз обращаем ваше внимание, картинки с диодами никак не отображают устройство этого полупроводникового прибора. Они нужны только для понимания того, что мы должны увидеть при проверке переходов. Так проще запомнить, и понимать показания на экране мультиметра.

Как определить базу, коллектор и эмиттер

Иногда бывают ситуации, когда нет под рукой справочника и возможности найти цоколёвку в интернете, а надпись на корпусе транзистора стала нечитаемой. Тогда, пользуясь схемами с диодами, можно опытным путём найти базу и определить тип прибора.

Строение биполярного транзистора и как его можно представить чтобы понять как его будем проверять

Строение биполярного транзистора и как его можно представить чтобы понять как его будем проверять

Путём перебора ищем положение щупов, при котором «звонятся» все три электрода. Тот вывод, относительно которого появляются показания на двух других и будет базой. Потому, плюс или минус подан на базу определяем тип, PNP или NPN. Если на базу подаём плюс — это NPN тип, если минус — это PNP.

Чтобы определить, где эмиттер,а где коллектор, надо сравнить показания мультиметра при измерении. На эмиттере ток всегда больше. Так и найдём опытным путём базу, эмиттер и коллектор.