Изолятор напряжения 110 кв

Изоляторы

Различают изоляторы следующих видов: опорные, проходные и подвесные. Изоляторы должны отвечать ряду требований, определяющих их электрические и механические характеристики, в соответствии с назначением и номинальным напряжением, а также загрязненностью воздуха в районе установки.

К электрическим характеристикам относятся: номинальное напряжение, пробивное напряжение, разрядные и выдерживаемые напряжения промышленной частоты в сухом состоянии и под дождем, импульсные 50%-ные разрядные напряжения обеих полярностей. Основной механической характеристикой является минимальная разрушающая нагрузка, Н, приложенная к головке изолятора в направлении, перпендикулярном оси, а также жесткость или отношение силы, приложенной к головке изолятора в направлении. перпендикулярном оси, к отклонению головки от вертикали, Н/мм.

Жесткость опорных изоляторов зависит от их конструкции и номинального напряжения. Изоляторы для напряжения до 35 кВ включительно обладают очень большой жесткостью, поскольку высота их относительно мала. Изоляторы для более высоких напряжений имеют большую высоту и меньшую жесткость. Она составляет в зависимости от конструкции от 300 до 2000 Н/мм для изоляторов 110 кВ и 150-200 Н/мм для изоляторов 220 кВ. Это означает, что при КЗ головки изоляторов заметно отклоняются от своего нормального положения под действием электродинамических сил на проводники. Однако изоляторы не разрушаются при условии, что нагрузка на головку не превышает минимальной разрушающей нагрузки.

Опорные изоляторы предназначены для изоляции и крепления шин или токоведущих частей аппаратов на заземленных металлических или бетонных конструкциях, а также для крепления проводов воздушных линий на опорах. Их можно разделить на стержневые и штыревые.

Опорные стержневые изоляторы для внутренней установки

Опорный стержневой изолятор для внутренней установки серии ИО 10 кВ с квадратным фланцем и колпаком

Рис.1. Опорный стержневой изолятор для внутренней установки
серии ИО 10 кВ с квадратным фланцем и колпаком

Опорные стержневые изоляторы для внутренней установки серии ИО изготовляют для номинальных напряжений от 6 до 35 кВ. Они имеют фарфоровое коническое тело с одним небольшим ребром (рис.1). Снизу и сверху предусмотрены металлические детали (армировка) для крепления изолятора на основании и крепления проводника на изоляторе.

Высота фарфорового тела определяется номинальным напряжением. Диаметр тела и вид армировки определяются минимальной разрушающей нагрузкой: чем больше последняя, тем прочнее должен быть укреплен изолятор на основании. Изоляторы, рассчитанные на значительную механическую нагрузку, имеют снизу квадратные фланцы с отверстиями для болтов, а сверху — металлические колпаки с нарезными отверстиями для крепления шинодержателя и проводника. Элементы арматуры охватывают тело изолятора и соединены с фарфором цементным составом.

Изоляторы серии ИО изготовляют с минимальной разрушающей нагрузкой от 3,75 до 30 кН.

Опорные стержневые изоляторы для наружной установки

Опорный стержневой изолятор для наружной установки серии ИОС 110 кВ

Рис.2. Опорный стержневой изолятор для наружной установки серии ИОС 110 кВ

Опорные стержневые изоляторы для наружной установки серии ИОС (рис.2) отличаются от изоляторов описанной выше конструкции более развитыми ребрами, благодаря которым увеличивается разрядное напряжение под дождем. Их изготовляют для номинальных напряжений от 10 до 110 кВ. Минимальная разрушающая нагрузка находится в пределах от 3 до 20 кН.

Опорные штыревые изоляторы

Опорный многоэлементный изолятор (мультикон) 245 кВ

Рис.3. Опорный многоэлементный изолятор (мультикон) 245 кВ

Опорные штыревые изоляторы серии ОНШ также предназначены для наружной установки. Они имеют фарфоровое тело с далеко выступающими ребрами (крыльями) для защиты от дождя. Длина пути тока утечки по поверхности диэлектрика значительно больше соответствующего пути тока утечки по изолятору, предназначенному для внутренней установки. Изолятор укрепляется на основании с помощью чугунного штыря с фланцем.

Для крепления токоведущих частей предусмотрен чугунный колпак с нарезными отверстиями. Штыревые изоляторы изготовляют для номинальных напряжений от 10 до 35 кВ и минимальной разрушающей нагрузки от 5 до 20 кН. Изолятор, показанный на рис.3, рассчитан на номинальное напряжение 35 кВ. Штыревые изоляторы 110-220 кВ представляют собой колонки из нескольких изоляторов 35 кВ.

Опорный штыревой изолятор для наружной установки серии ОНШ 35 кВ

Рис.4. Опорный штыревой изолятор для наружной установки серии ОНШ 35 кВ

В Англии, Франции и других странах строят опорно-штыревые изоляторы (рис.4), составленные из большого числа фарфоровых элементов 2, соединенных между собой цементной связкой 3, получившие название «мультикон». Вверху изолятора крепится колпак 1, а внизу — металлический фланец. Высота изолятора для напряжения 245 кВ составляет 2300 мм. Такие изоляторы, собранные в одиночные колонки, используются в РУ до 765 кВ. Они обладают малой жесткостью и в то же время высокой прочностью на изгиб.

Проходные изоляторы

Проходные изоляторы предназначены для проведения проводника сквозь заземленные кожухи трансформаторов и аппаратов, стены и перекрытия зданий.

Проходные изоляторы для внутренней установки до 35 кВ включительно имеют полый фарфоровый корпус без наполнителя с небольшими ребрами. Для крепления изолятора в стене, перекрытии предусмотрен фланец, а для крепления проводника — металлические колпаки. Длина фарфорового корпуса определяется номинальным напряжением, а диаметр внутренней полости — сечением токоведущих стержней, следовательно, номинальным током.

Проходной изолятор для внутренней установки 10 кВ, 250-630 А

Рис.5. Проходной изолятор для внутренней установки 10 кВ, 250-630 А

Проходной изолятор для внутренней установки 20 кВ, 8000-12500 А

Рис.6. Проходной изолятор для внутренней установки 20 кВ, 8000-12500 А

Изоляторы с номинальным током до 2000 А (рис.5) снабжены алюминиевыми стержнями прямоугольного сечения. Изоляторы с номинальным током свыше 2000 А (рис.6) поставляются без токоведущих стержней. Размеры внутренней полости выбраны здесь достаточными, чтобы пропустить через изолятор шину или пакет шин прямоугольного сечения, а при очень большом токе — трубу круглого сечения.

Фланцы и колпаки, в особенности у изоляторов с большим номинальным током, изготовляют из немагнитных материалов (специальных марок чугуна, а также силумина — сплава на основе алюминия и кремния) во избежание дополнительных потерь мощности от индуктированных токов. У изоляторов, предназначенных для ввода жестких и гибких шин в здания РУ или шкафы КРУ наружной установки, часть фарфорового корпуса, обращенная наружу, имеет развитые ребра (рис.7) для увеличения разрядного напряжения под дождем.

Проходной изолятор наружно-внутренней установки 35 кВ, 400-630 А

Рис.7. Проходной изолятор наружно-внутренней установки 35 кВ, 400-630 А

Проходные изоляторы 110 кВ и выше в зависимости от назначения получили названия линейных или аппаратных вводов. Кроме фарфоровой они имеют бумажно-масляную изоляцию. На токоведущий стержень наложены слои кабельной бумаги с проводящими прокладками между ними. Размеры слоев бумаги и прокладок выбраны так, чтобы обеспечить равномерное распределение потенциала как вдоль оси, так и в радиальном направлении.

Герметизированный бумажно-масляный ввод 500 кВ с выносным бачком давления

Рис.8. Герметизированный бумажно-масляный ввод 500 кВ с выносным бачком давления

Ввод (рис.8) состоит из следующих частей: металлической соединительной втулки 1, предназначенной для закрепления ввода в кожухе аппарата или в проеме стены, верхней 2 и нижней 3 фарфоровых покрышек, защищающих внутреннюю изоляцию от атмосферной влаги и служащих одновременно резервуаром для масла, заполняющего ввод. Вводы, предназначенные для аппаратов с маслом, имеют укороченную нижнюю часть; это объясняется более высоким разрядным напряжением по поверхности фарфора в масле сравнительно с разрядным напряжением в воздухе.

Вводы обычно герметизированы. Для компенсации температурных изменений в объеме масла предусмотрены компенсаторы давления, встроенные в верхнюю часть ввода или помещенные в особый бачок давления 4, соединенный с вводом гибким трубопроводом. Вводы имеют измерительное устройство, которое служит для контроля давления в системе ввод-бак.

Подвесные изоляторы

Подвесные изоляторы предназначены для крепления многопроволочных проводов к опорам воздушных линий и РУ. Их конструируют так, чтобы они могли противостоять растяжению.

Подвесной тарельчатый изолятор

Рис.9. Подвесной тарельчатый изолятор

Тарельчатый изолятор (рис.9) имеет фарфоровый или стеклянный корпус в виде диска с шарообразной головкой. Нижняя поверхность диска выполнена ребристой для увеличения разрядного напряжения под дождем, а верхняя поверхность диска — гладкой, с небольшим уклоном для стекания дождя. Внутри фарфоровой (стеклянной) головки цементом закреплен стальной оцинкованный стержень. Сверху фарфоровую головку охватывает колпак из чугуна с гнездом для введения в него стержня другого изолятора или ушка для крепления гирлянды к опоре. Число изоляторов в гирлянде выбирают в соответствии с номинальным напряжением.

Внутренней и наружной поверхностям фарфоровой головки придана такая форма, чтобы при тяжении провода фарфор испытывал только сжатие (как известно, прочность фарфора при сжатии значительно больше, чем при растяжении). Так обеспечивают высокую механическую прочность тарельчатых изоляторов. Они способны выдерживать тяжения порядка 10 4 -10 5 Н. Механическую прочность подвесных изоляторов характеризуют испытательной нагрузкой, которую изоляторы должны выдерживать в течение 1 ч без повреждений.

Расчетную нагрузку на тарельчатые изоляторы принимают равной половине часовой испытательной.

В местностях, прилегающих к химическим, металлургическим, цементным заводам, воздух содержит значительное количество пыли, серы и других веществ, которые образуют на поверхности изоляторов вредный осадок, снижающий их электрическую прочность. Вблизи моря и соленых озер воздух имеет большую влажность и содержит значительное количество соли, которая также образует вредный осадок.

Нормальные изоляторы, используемые в районах, удаленных от источников загрязнения, имеют отношение длины пути утечки к наибольшему рабочему напряжению около 1,5 см/кВ. Для РУ, подверженных загрязнению, применяют изоляторы особой конструкции или увеличивают число изоляторов в гирляндах. Прибегают также к периодической обмывке или обтирке изоляторов.

Подвесной изолятор для местностей с загрязненным воздухом

Рис.10. Подвесной изолятор для местностей с загрязненным воздухом

Тарельчатые изоляторы, предназначенные для местностей с загрязненным воздухом (рис.10), имеют увеличенную длину пути тока утечки и выполнены так, чтобы поверхность их была в наибольшей мере доступна очищающему действию дождя и ветра.

При одинаковой степени загрязнения и увлажнения разрядные напряжения у изоляторов особой конструкции приблизительно в 1,5 раза выше, чем у изоляторов обычного исполнения.

АО «НПО»ИЗОЛЯТОР» — ВЫСОКОВОЛЬТНЫЕ ПОЛИМЕРНЫЕ ИЗОЛЯТОРЫ от производителя

Поддерживающие и натяжные гирлянды изоляторов

Строй-бетон

В подвесных гирляндах провод только поддерживается с помощью зажимов, в натяжных – закрепляется наглухо.

Читайте также: Электромагнитные реле времени постоянного тока

Поддерживающие и натяжные гирлянды изоляторов закрепляются на траверсе промежуточной опоры при помощи серьги 1. Серьга 1 с одной стороны соединяется со скобой или с деталью на траверсе, а с другой стороны вставляется в шапку верхнего изолятора 2. К нижнему изолятору гирлянды за ушко 3 прикреплён поддерживающий зажим 4, в котором помещён провод 5.

Изоляторы опорные стержневые полимерные

. Научно-производственное предприятие «Элизор», г. Екатеринбург, наладил выпуск изоляторов нового поколения. Они предназначены для изоляции и крепления токоведущих частей в электрических аппаратах переменного напряжения 110 кВ, в частности в разъединителях, в качестве шинных опор, рис. 3.

Рис. 3. Изолятор опорный стержневой полимерный

Изоляторы предназначены для работы в любых климатических условиях по ГОСТ 15543-85 и соответствуют требованиям МЭК 273/1979.

Изоляторы имеют следующие преимущества перед фарфоровыми:

— минимальное разрушающее усилие на изгиб больше в 4-5 раз;

— срок службы больше в 7-10 раз из-за высокопрочной армировки фланцев с изолятором;

— непредсказуемая аварийность меньше благодаря отсутствию хрупкого излома изолятора;

— масса изолятора меньше в 2-2,5 раза.

Вводы с литой полимерной трекингостойкой изоляцией

для высоковольтных выключателей на напряжение 35 кВ (С-35, ВВС-35, МКП-35 и др.), рис. 4.

Рис. 4. Ввод с литой полимерной изоляцией для высоковольтных выключателей

Вводы имеют преимущества перед традиционными вводами с фарфоровой покрышкой на всех этапах эксплуатационного цикла:

транспортировка

Читайте также: маркировка автоматических выключателей

– повышенная стойкость полимерной изоляции к механическим воздействиям упрощает транспортировку и снижает затраты на неё (допускается транспортировка навалом в грузовой машине или контейнере);

– низкая масса ввода (16 кг) позволяет производить монтаж и демонтаж одному человеку без применения грузоподъёмных средств.

Срок эксплуатации ввода значительно выше фарфорового, так как в их конструкции отсутствуют рыхлая бумажно-бакелитовая изоляция и фарфоровая покрышка. Благодаря этому срок службы ввода может превышать срок службы выключателя.

Надёжность вводов значительно повышена вследствие отсутствия дефектов в изоляции, характерных для традиционных вводов.

Вводы прошли сертификационные испытания в составе выключателя ВВС-35 (выключатель вакуумный северный на напряжение 35 кВ), выпускаемого Карпинским электромеханическим заводом.

Изоляторы проходные и опорные фирмы ФЕНИКС-88

Проходные изоляторы выпускаются на напряжения 6, 10 и 20 кВ для внутренней и наружно-внутренней установки.

Опорные изоляторы выпускаются на напряжения 6 и 10 кВ для внутренней установки.

Опорные стержневые изоляторы выпускаются на напряжения 10, 35 и 110 кВ.

Проходные и опорные изоляторы внутренней установки выполнены из органических материалов на основе эпоксидной смолы и кварцевого наполнителя и имеют по сравнению с керамическими изоляторами боле высокие механические и электроизоляционные характеристики при меньшем весе.

Проходные изоляторы наружно-внутренней установки и опорные стержневые наружной установки выполнены на основе высокопрочной стеклопластиковой трубы. Поверх трубы надевается ребристый чехол из кремнийорганической резины. Для крепления оборудования предусмотрены фланцы, соединение которых со стеклопластиковой трубой позволяет обеспечить механическую прочность конструкции и устойчивость к климатическим воздействиям окружающей среды.

Изолятор под дождем Перекрытие изолятора Размеры изолятора ОЛСК

Стеклянные изоляторы, типы, разновидности, эксплуатация

Стеклянные подвесные изоляторы служат для изоляции проводов от опор высоковольтных линий электропередач. Они изготавливаются из отоженного или закаленного стекла и устанавливаются на линиях электропередач 6 кВ и более. Термообработка (закалка) гарантирует такому изолятору увеличенную механическую, электрическую прочность, а также хорошую термостойкость. От фарфоровых изоляторов они выгодно отличаются меньшими габаритными размерами и более высокой механической прочностью.
Эксплуатация стеклянных изоляторов также выявила ряд достоинств:

— контроль целостности стеклянных изоляторов в ходе производства и эксплуатации значительно проще;

Читайте также: Подсветка потолка по периметру своими руками

— технологический процесс производства стеклянных изоляционных изделий в большей степени поддается автоматизации, что сводит к минимуму участие человеческого фактора;

— сырье, применяющееся в ходе изготовления стеклянных изоляторов, отличается более однородными характеристиками;

— электромеханические свойства закаленного стекла значительно более высокие, чем фарфоровых, что предоставляет возможность выпускать изделия с высокой механической прочностью, габаритные размеры и вес которых ниже, чем у подобных изделий из фарфора.

Все заводы-изготовители производят различные типы стеклянных изоляторов, механическая нагрузка на которые может изменяться в пределах 40…300кН.

Стеклянные изоляторы по типу установки классифицируют на:

Стеклянные штыревые линейные изоляторы служат для крепления, изоляции проводов ЛЭП переменного или постоянного тока напряжением 6-1150 кВ.

Стеклянные подвесные изоляторы считаются основным и наиболее широко применяемым типом изоляционных конструкций для ЛЭП всех уровней напряжений. Конструктивное исполнение, конфигурация и свойства таких типов изоляторов изменяются в широком диапазоне, что позволяет их использовать на ЛЭП с номинальным напряжением 6-1150 кВ.

Технологическая схема изготовления

Все этапы изготовления объединены в одну технологическую цепочку и на сегодняшний день на большинстве предприятий полностью автоматизированы.

Стеклянные изоляторы 3

Сам процесс изготовления состоит из 6-ти основных этапов:

— обработка и подготовка сырьевых материалов, дозирование компонентов, приготовление шихтовой массы;

— процесс варки стекла;

— сборка изолятора (сборка стеклодеталей с шапкой и стержнем);

— проведение необходимых испытаний;

— упаковка готовых изделий.

Испытания готовых изоляторов выполняются согласно положений ГОСТ 6490-93 и МЭК 60383 на соответствующем испытательном оборудовании.

Характеристики изоляторов

Электрический изолятор – это изделие, предназначенное для крепления провода, кабеля или шины на несущей конструкции линии электропередач и предотвращения её пробоя на землю. Они бывают разных видов и изготавливаются из диэлектрических материалов – фарфора, стекла и полимеров.

Так как электрическое предназначение изоляторов – обеспечить изоляцию проводника от несущей конструкции, то основными характеристиками являются:

  • Сухоразрядное напряжение – напряжение, при котором наступает искровой разряд по поверхности в сухом её состоянии при нормальных условиях окружающей среды.
  • Мокроразрядное напряжение – то же самое, но под дождем, если его струи попадают на изолятор под углом в 45 градусов. Сила дождя при этом равна 5 мм/мин, удельное объемное сопротивление воды — 9500-10500 Ом*см (при 20°С). Так как вода проводит электрический ток – мокроразрядное напряжение всегда ниже сухоразрядного.
  • Пробивное напряжение – напряжение, при котором наступает пробой тела изолятора между стержнем и шапкой (для подвесных изделий). Стержень и шапка при этом являются электродами.

Производитель

Читайте также: Откатные ворота своими руками

ООО «Полимеризолятор» разрабатывает и выпускает опорные полимерные изоляторы на классы напряжения 10, 35 и 110 кВ и линейные на 35 кВ, которые приняты межведомственной комиссией ОАО «ФСК ЕЭС». Опорные изоляторы на основе полимерных композиционных материалов с гарантированной прочностью и стойкостью на весь срок службы, не требующих специальных средств диагностики механического состояния, являются альтернативой традиционно сложившимся конструкциям опорностержневых фарфоровых изоляторов.

Смотрите также компании в каталоге, рубрика «Опорные изоляторы»

Персональная лента новостей Яндекс.Дзен от Elec.ru Актуальные новости, обзоры и публикации портала в удобном формате.

Основные характеристики

Ко всем изоляторам, независимо от их назначения, предъявляются общие требования. Они должны обеспечивать достаточный уровень электрической прочности. Этот показатель зависит от значения напряженности электрического поля, при котором изоляционный материал начинает терять свои диэлектрические свойства.

Изоляторы электрические

Каждый изолятор должен иметь достаточную механическую прочность, обеспечивающую устойчивость к динамическим воздействиям, возникающим при коротких замыканиях между токоведущими частями. Свойства изоляторов сохраняются неизменными, несмотря на дождь, снегопад и прочие агрессивные воздействия окружающей среды. Теплостойкость изолирующих устройств обеспечивает сохранение их свойств при перепадах температур в определенных пределах. Поверхность изоляторов должна быть устойчивой к действию электрических разрядов.

Основными электрическими характеристиками являются следующие:

  • Номинальное и пробивное напряжения. Пробивным считается минимальное значение напряжения, вызывающее пробой изолятора.
  • Значения разрядных и выдерживаемых напряжений, при которых изолятор сохраняет работоспособность в сухом и мокром состоянии.
  • Импульсные разрядные напряжения с различными полярностями.

Механическими характеристиками изоляторов считаются их вес и размеры, а также минимальное значение номинальной разрушающей нагрузки, измеряемой в ньютонах. Данная нагрузка воздействует на головку изолятора перпендикулярно оси.

Изоляторы ОСК, ИОСК 3 – 110 кВ опорные НАРУЖНОЙ установки стержневые

Изоляторы ОСК, ИОСК

Изоляторы ОСК, ИОСК 3 – 110 кВ (3, 10, 20, 35, 110 кВ) — Опорные изоляторы полимерные наружной установки стержневые

Опорные изоляторы применяются в распределительных и электрических устройствах, где требуется необходимость в изоляции или закреплении токоведущих частей конструкции. При этом, напряжение в сети может достигать предельно высоких показателей.

Современные полимерные опорные стержневые изоляторы ОСК изготавливаются из кремнийорганического композита, а более старые фарфоровые изоляторы на сегодняшний день практически не используются.

Опорные полимерные изоляторы используются часто в местах с повышенной влажностью и в районах с загрязненной атмосферой, благодаря их гидростойкости и пыленепроницаемости.

Пример условного обозначения опорных стержневых полимерных изоляторов ОСК, выпущенных после 2004 г.

ОСК 12,5-35-А-3 УХЛ1 — изолятор опорный стержневой полимерный с защитной оболочкой из кремнийорганической резины с нормированной разрушающей нагрузкой на изгиб 12,5 кН на номинальное напряжение 35 кВ для эксплуатации в районах до 3I степени загрязнения включительно по ГОСТ 9920, климатического исполнения УХЛ, Категории размещения 1 — на открытом воздухе.

Пример условного обозначения опорных стержневых полимерных изоляторов ИОСК, выпущенных до 2004 г.

ИОСК 8/35-II УХЛ1 — изолятор опорный стержневой полимерный с защитной оболочкой из кремнийорганической резины с нормированной разрушающей нагрузкой на изгиб 8 кН на номинальное напряжение 35 кВ для эксплуатации в районах до II степени загрязнения включительно по ГОСТ 9920, климатического исполнения УХЛ, Категории размещения 1 — на открытом воздухе.

Номенклатура опорных полимерных изоляторов ОСК, ИОСК наружной установки

Обозначение изолятора

Номинальное
напряжение, кВ

Взаимозаменяемые
фарфоровые
изоляторы

Код
СК МТР