Как бороться с провалами напряжения

Провалы напряжения: введение

Под провалом напряжения понимается кратковременное снижение или полная потеря RMS напряжения 1 . Параметрами провала напряжения являются его длительность и значение самой малой величины остаточного напряжения, обычно выражаемое в процентах от номинального RMS напряжения. Провал напряжения означает, что требуемая энергия не поступает к нагрузке, и последствия этого могут быть весьма серьезными в зависимости от назначения и характера такой нагрузки.

При этом падение напряжения – относительно длительное по времени снижение напряжения, обычно осознанное мероприятие со стороны поставщика энергии с целью снижения нагрузки в период пика потребления или из-за необычного снижения возможного наличия энергии в сравнении со спросом на нее.

Электродвигатели, включая изделия с регулируемым приводом, особенно уязвимы перед провалами напряжения, поскольку нагрузка все еще требует энергии, которой, за исключением инерции движущихся частей, уже недостаточно. В системах с несколькими электроприводами управляющие элементы определив снижение напряжения могут подать сигнал на отключение двигателя при разных фактических значениях уменьшенного напряжения и применить различные величины замедления по сравнению друг с другом, что приведет к полной потере контроля за таким скоротечным процессом.

Оборудование для обработки цифровых данных также крайне чувствительно к провалам напряжения, поскольку это событие может привести и к потере данных, и снижает общую эффективность системы обработки цифровых данных. Цена последствий может быть весьма существенна и подробно рассматривается в Разделе 2.

Существуют две основных причины провалов напряжения: подключение значительных нагрузок потребителем или неисправности на смежных электрически связанных участках цепи.

Провалы, вызванные большими нагрузками

При включении больших нагрузок, как например, мощных электродвигателей, пусковые токи могут в разы превышать номинальные. А если цепи и кабельное хозяйство рассчитаны только на номинальные значения тока, пусковые токи вызовут снижение напряжения как в питающей сети, так и на стороне нагрузки. Масштаб явления связан с общим запасом сети по мощности, полным сопротивлением в точке общего подключения (PCC) и полным сопротивлением кабелей. Провалам, вызванным пусковыми токами электродвигателей, свойственны не слишком высокие значения уменьшения напряжения, но бо’льшая длительность, чем у тех, которые вызваны проблемами распределительной сети и длятся от одной до нескольких десятков секунд.

Проблемы у потребителя, вызванные сопротивлением кабелей, решаются относительно легко. Большие нагрузки можно напрямую подсоединить к источнику через точки общего присоединения (PCC) или вторичной обмотке питающего силового трансформатора. Если проблема вызвана полным сопротивлением в точки общего присоединения, т. е. недостаточной мощностью на стороне питания, то требуется принятие мер. Одним из решений может быть применение устройств «мягкого пуска», которые позволяют снизить абсолютные величины провалов напряжения, распределив дополнительную нагрузку во времени. Другим решением может быть устройство по согласованию с компанией-поставщиком питающих цепей с меньшим полным сопротивлением, хотя такое решение может оказаться весьма затратным. Если причину провалов напряжения устранить не удается, то необходимо оборудование, позволяющее компенсировать это явление. К числу таких устройств относятся традиционные механические стабилизаторы с сервоуправлением, электронные регуляторы напряжения и системы динамического восстановления напряжения (DVR).

Эти виды оборудования подробнее рассматриваются в Разделе 5.3.

Провалы сетевого происхождения

Распределительные сети очень сложны. Степень влияния повреждения на одном участке сети на другие ее части, именно величина провала напряжения и длительность, напрямую зависит от топологии сети, относительного значения полного сопротивления на проблемном участке, нагрузки и генератора в точке общего присоединения.

На рис. 1 представлен пример. Повреждение в точке F3 вызвало провал напряжения 0 % на нагрузке 3, провал 64 % на нагрузке 2 и провал 98 % на нагрузке 1.

Проиcхождение провалов напряжения

Проблема в точке F1 приведет к провалу напряжения у всех потребителей с величиной 0 % на нагрузке 1 и до 50 % на всех других. Обратите внимание, что повреждение на уровне 1 окажет большее влияние на большее число потребителей, чем повреждение на уровне 3. Нагрузки уровня 3, вероятно, будут подвержены большему числу провалов напряжения, чем нагрузки уровня 1, поскольку число участков с возможными проблемами больше – именно на уровнях 1 и 2.

Нагрузки на уровне 2 и 1 соответственно менее зависимы от проблем на уровне 3. Чем ближе нагрузка к источнику питания, тем меньше будут провалы напряжения.

Длительность провала напряжения зависит от времени реакции защиты на обнаружение и изолирование повреждения и составляет, обычно, несколько миллисекунд. Некоторые повреждения могут быть случайными, например, упавшее на воздушную линию дерево – такие проблемы устраняются быстро.

Если участок отключается на длительное время защитной автоматикой, то все потребители на нем обесточиваются до устранения проблемы, проверки и повторного подключения такого участка. Устройства автоматического повторного включения (АПВ) могут несколько облегчить ситуацию, но также могут привести и к учащению числа провалов напряжения. АПВ пытается восстановить питание в течение примерно одной секунды после срабатывания защитной автоматики. Если повреждение устранено, повторное включение завершится успешно, и питание аварийного участка будет восстановлено. Для такого участка в период между срабатыванием защиты и повторным включением величина провала напряжения составит 100 %, в то время как нагрузки на других участках испытают провал меньшей величины и длительности. В случае если повреждение к моменту повторного включения еще не устранено, то защитная автоматика сработает снова и это процесс будет продолжаться в соответствии с числом попыток, предусмотренных программой конкретного АПВ. Но при каждой попытке повторного включения на прочих участках вновь происходит провал напряжения, т. е. прочие потребители будут подвержены целой серии провалов. Оценка качества энергии от поставщика на нерегулируемых государством рынках частично, а в некоторых странах, как, например, в Великобритании, полностью осуществляется по среднему значению отсутствия питания у потребителя в минутах, причем в расчет обычно берутся перерывы только свыше одной минуты. Это послужило широкому распространению устройств АВП и, как следствие, увеличило вероятность провалов напряжения. Иначе говоря, снижение суммарного статистического времени перерыва подачи энергии осуществлено за счет ее качества.

Чувствительность оборудования

Компьютеры стали неотъемлемым элементом любого хозяйственного процесса независимо от их вида – рабочие станции, серверы или управляющие модули. Они незаменимы в обработке потоков данных, системах связи различного типа. Именно повсеместное внедрение компьютерной техники высветило проблему провалов напряжения (и заодно почти все проблемы КЭ), и на заре компьютерной эры установки требовали больших усилий по обеспечению их непрерывного функционирования из-за тогда необъяснимого множества случайных отказов. Методом проб и ошибок были созданы так называемые кривые CBEMA (Computer and Business Equipment Manufacturers Association) (рис. 2), ныне известные как кривые ITIC (Information Technology Industry Council) (рис. 3), а ее варианты включены в стандарты IEEE 446 ANSI (рис. 4).

Интервал длительности события в части отклонения значения напряжения от номинала двумя сходящимися кривыми образует сегмент, в пределах которого при соответствующих отклонениях от номинального напряжения в течение определенного интервала времени компьютерное оборудование должно функционировать непрерывно и без потери данных. Применительно к провалам напряжения интерес представляет нижняя кривая. Эта линия и является границей между допустимыми и недопустимыми провалами напряжения по величине и длительности с точки зрения компьютерного оборудования.

В идеальном мире скорее такие кривые должны были бы описывать фактические показатели сети, а производители компьютерной техники подстраиваться под такие фактические данные. Проблема в том, что, если оборудование большинства производителей действительно укладывается в требования упомянутого стандарта, подобное нельзя сказать о фактических показателях электросетей.

Характеристики чувствительности оборудования

Блоки питания электронных приборов, компьютеров, например, имеют накопительный конденсатор для сглаживания двухполупериодных выпрямленных сигналов, поэтому они по определению устойчивы к провалам напряжения малой длительности. Чем больше емкость конденсатора и разница напряжения конденсатора и минимально необходимого для нормальной работы преобразователя напряжения, тем выше такая устойчивость. Конструкторы, тем не менее, стремятся снизить емкость такого конденсатора, поскольку нацелены на снижение размеров и веса изделия, полагаясь на минимально необходимые значения емкости и напряжения исходя из возможной комбинации максимума по нагрузке и минимума по напряжению на питании. Однако для действительно полноценной защиты от провалов напряжения требуется конденсатор с как минимум двойным запасом по емкости, чтобы выдержать один цикл провала и как минимум 100-кратным запасом для провала длительностью в одну секунду. Другой стратегией могут быть схемотехнические решения, рассчитанные на как можно меньшие допустимые значения напряжения по питанию. Соответственно запас «прочности» у оборудования, рассчитанного на 230 В больше, чем у оборудования, рассчитанного на 110 В. По умолчанию этот принцип применяется для оборудования, рассчитанного на эксплуатацию при различных номиналах напряжения. В принципе, не существует технических преград для создания блоков питания, устойчивых к провалам напряжения, просто потребители не поставили соответствующий вопрос перед производителями, и, разумеется, у таких решений есть своя цена. Тем не менее, затраты на защиту от провалов напряжения в этом направлении несоизмеримо меньше, чем затраты на предотвращение провалов напряжения на питающей сети.

Регулируемый электропривод может быть поврежден провалами напряжения, и изделия обычно снабжены детекторами напряжения с порогами срабатывания при 15–30 % падении напряжения. Регулируемый электропривод с улучшенными эксплуатационными свойствами будет предметом обсуждения в следующих Разделах настоящего Пособия.

Индукционные двигатели обладают инерцией, что помогает при провалах напряжения малой длительности, по сути возвращая в этом момент энергию. Однако при повторном разгоне энергию придется возместить, и если скорость вращения упала до 95 % от номинальной или ниже, то для разгона потребуется ток, почти равный пусковому. А поскольку в процесс вовлечены все двигатели одновременно, ситуация может усугубиться.

Реле и контакторы чувствительны к провалам напряжения и могут стать слабым звеном в цепи. Установлено, что устройство может разомкнуть цепь даже в случае, когда напряжение еще не снизилось до пороговой величины. Здесь имеет значение не только величина падения напряжения и интервал длительности, но и участок синусоиды в момент провала – наименьшая устойчивость наблюдается на гребне.

Ртутные источники света также уязвимы перед провалами напряжения. Так, разогретой лампе требуется более высокое значение стартового разряда, чем холодной, поэтому после провала напряжения погасшая лампа может не включиться. Значение критического провала напряжения для новой лампы может быть 45 %, а для старой – даже 2 %.

Большинство приборов и систем включают в себя один и более из упомянутых устройств, т. е. имеют определенную уязвимость перед провалами напряжения. На рис. 5 иллюстрируется, что дешевле и надежнее улучшать устойчивость к провалам напряжения соответствующего уязвимого оборудования, чем поступать также применительно ко всему процессу, всей электроустановке завода или распределительной сети. Как здесь видно, цена решения стремительно растет по мере удаления от оконечного оборудования и приближения к инфраструктуре сети.

Характеристики провалов происхождения по питанию

Как уже указывалось, вероятность возникновения провалов напряжения, их величина и длительность зависит от топологии сети в районе объекта. Хотя некоторые исследования на эту тему велись во многих странах, сегодня будет верным утверждение, что достоверной статистики для конкретных участков не существует. Это затрудняет выбор места для важных и критически важных объектов. Остается рассчитывать на общие принципы: так, расположение объекта ближе к генерационным мощностям с соединением подземными силовыми линиями среднего напряжения будет лучшим решением, чем удаленное от генерации расположение с воздушной линией. Вопрос только о количественной мере такого преимущества. Несложно оценить качество транспортной составляющей, например, и на самом деле это фактор становится решающим. А вот качество инфраструктуры энергоснабжения оценить куда сложнее. Также сложно решить вопрос оценки в «чистом поле», поскольку отсутствуют объекты сравнения. При этом именно в «чистом поле» и можно сразу создать действительно качественную инфраструктуру энергоснабжения, с «чистого листа», если, конечно, поставщик энергии настроен на конструктивное сотрудничество за ваш счет!

При этом даже те малые исследования, которые проводились, дают основание заключить, что провалы напряжения по причинам на стороне питания, как правило, имеют большие интервалы длительности и выходят за пределы упомянутых кривых.

На рис. 6 показана вероятная длительность и величина провала типичной распределительной сети. На том же рисунке для сравнения нанесены кривые ITIC.

Из схемы явно видно, что современному компьютерному оборудованию следовало бы быть в 100 раз качественнее, чем предполагается кривыми ITIC. А до тех пор, наверное, было бы правильно полагать, что такого действительно устойчивого к провалам напряжения компьютерного оборудования пока не производится.

Типичная характеристика провала и кривая ITIC

Сужая разрыв

Очевидно, что в бизнесе потребитель вправе ожидать достаточной устойчивости оборудования к типичным и характерным проблемам, но применительно к типичному ассортименту товаров это не относится. Как видно из рис. 5, стоимость коррекции свойств оборудования гораздо ниже, если реализуется на этапе проектирования и разработки изделия. А такой подход требует понимания природы явления и вероятности повреждения. А таковые знания зачастую отсутствуют. Но, повторим, это самый экономичный и рациональный путь.

Справедливости ради следует заметить, что отдельные производители все-таки признают проблему, но жестокая конкуренция, в первую очередь ценовая, вынуждает их прислушиваться к сформулированным требованиям потребителя. До тех пор, пока потребитель не сформулирует для себя уровень соответствующих требования, маловероятно ожидать предложения таких решения со стороны производителей. Исключения составляют производители регулируемого электропривода с улучшенной стойкостью к провалам напряжения.

Традиционным подходом является предложение дополнительного оборудования для поддержания мощности во время провала напряжения – о таком оборудовании мы расскажем в последующих Разделах. В случае маломощных нагрузок распространения получили ИБП как средство защиты от провалов, так и перерывов в энергоснабжении. Резервным источником питания обычно является химический источник тока, аккумулятор, в силу чего длительного эффективного резервирования от ИБП ожидать не приходится.

Обычно ИБП обеспечивает необходимое для аварийного, но штатного сворачивания текущих процессов, защищая таким образом данные. Но для повторного включения все равно потребуется значительное время. Иногда ИБП обеспечивает переключение питания аварийного генератора.

Для незначительных по величине потерь напряжения провалов применяются автоматические регуляторы напряжения (АРН), в том числе электромеханические и электромагнитные. Поскольку в этих устройствах нет необходимости применения запасания энергии, они могут быть эффективны в течение длительных интервалов как при провалах, так и при перенапряжении. АРН рассматриваются в Разделе 5.3.1.

Для значительных нагрузок или больших величинах провалов напряжения хорошо зарекомендовали себя системы динамического восстановления напряжения (DVR). Такие устройства соединены с нагрузкой и восполняют недостающую часть питания: при падении напряжения до 70 % DVR обеспечивает недостающие 30 %. DVR обеспечивают компенсацию в течение непродолжительного интервала, для чего используется запасенная энергия от мощных батарей, суперконденсаторов и даже маховиков. Эти устройства не могут использоваться для длительных периодов провалов или перенапряжения.

Заключение

Улучшение качественных характеристик сети с целью устранения провалов напряжения крайне затратно и практически неосуществимо. В некоторых случаях, где цель оправдывает затраты, организуют дублирования энергоснабжения от достаточно удаленных друг от друга участков сети, чтобы условно считать их электрически не связанными.

В большинстве же случаев требуется специальное оборудование, выбор которого велик в зависимости от вида нагрузки.

Самым экономичным способом противостоять провалам напряжения является выбор оборудования, устойчивого к провалам в силу своей конструкции, но такой способ не активно поддержан производителем.

Перепечатано с сокращениями из издания Европейского института меди

«Прикладное руководство по качеству электроэнергии»

Перевод с английского Е. В. Мельниковой, Редактор перевода В. С. Ионов

1 ГОСТ 13109-97 «Нормы качества электрической энергии в системах электроснабжения общего назначения» дает следующее определение провалу напряжения: «…Внезапное понижение напряжения в точке электрической сети ниже 0,9 Uном, за которым следует восстановление напряжения до первоначального или близкого к нему уровня через промежуток времени от десяти миллисекунд до нескольких десятков секунд».

Поделиться статьей в социальных сетях:

Все иллюстрации приобретены на фотобанке Depositphotos или предоставлены авторами публикаций.

Подпишитесь на наши статьи и вы будете узнавать свежие новости и получать новые статьи одним из первых!

Статья опубликована в журнале “Энергосбережение” за №4’2005

распечатать статью

распечатать статью —>

Обсудить на форуме

Обсудить на форуме

Предыдущая статья

Следующая статья

Защита от провалов напряжения

Рассмотрим различные системы, защищающие промышленное производство от провалов напряжения (маховик, статический источник бесперебойного питания (ИБП), динамический компенсатор искажений напряжения, статический компенсатор (СТАТКОМ), параллельно соединенный СД, повышающий преобразователь, активный фильтр и бестрансформаторный последовательный усилитель).

Провалы напряжения являются одним из наиболее дорогостоящих явлений в промышленности. Самый легкий способ защитить чувствительные процессы от всех провалов — это установка ИБП . Однако из-за большой стоимости их закупки и обслуживания ИБП устанавливают только на основных структурных объектах, в местах, где повреждения, вызванные проблемами с электропитанием, могут причинить значительные повреждения, например в больницах, при производстве компьютеров, в финансовых учреждениях.

При решении вопроса об установке защитного оборудования должен быть проведен технико-экономический расчет, показывающий обоснованность установки ИБП для того или иного производственного процесса.

Проблема защиты электродвигателей с различными скоростями в промышленном производстве от провалов напряжения на данный момент решена. Из-за широкого разнообразия торговых марок таких систем найти оптимальное технико-экономическое решение этой проблемы не очень просто.

Типы корректирующего оборудования

Маховик вместе с двигатель-генератором (Д-Г) может защитить критические процессы нарушения производства от всех падений напряжения в энергосистеме С. Когда происходят падения напряжения, то снижение напряжения у нагрузки замедляется маховиком. Различные схемы соединения маховика с двигатель-генератором похожи на ту, которая изображена на 1.

Рис. 1. Схема использования маховика для компенсации провалов напряжения

Основные компоненты независимого статического ИБП представлены на рис. 2, батареи (конденсаторы) которого запасают энергию только на защиту от провалов напряжения на короткое время. Если произошел провал напряжения, нагрузка питается от батареи через преобразователь напряжения постоянного — переменного тока.

Рис. 2. Схема использования ИБП для компенсации провалов напряжения

Динамический компенсатор искажений напряжения в течение провала напряжения остается подсоединенным к электрической сети 1 через трансформатор 2 и определяет отсутствующую часть напряжения (рис. 3). Он добавляет эту отсутствующую часть напряжения через первичную 4 и вторичную 3 обмотки автотрансформатора, соединенного последовательно с нагрузкой 7. В зависимости от назначения энергия для питания нагрузки 7 через преобразователь напряжения 5 в течение провала напряжения может забираться из сети или от дополнительного источника энергии (в основном от конденсаторов в).

Рассмотрим две модификации различных производителей. Первая (далее ДКИН-1) не содержит источников энергии и постоянно подключена. Этот вариант экономически целесообразен для повышения напряжения до 50 %. Существует модификация устройства ДКИН со способностью к подъему напряжения на 30 %. Считается, что начиная с этой модификации устройства ДКИН (30 %) целесообразно их применение в производстве.

Рис. 3. Схема использования ДКИН для компенсации провалов напряжения

Вторая модификация (ДКИН-2) содержит источник энергии, рассчитанный на большую нагрузку. Двухмегаваттное устройство способно поднять напряжение нагрузки мощностью 4 МВт на 50 % или мощностью 8 МВт на 23 %. В отличие от большинства других устройств, мощность источника энергии способна выдержать длительные провалы.

Статический компенсатор (СТАТКОМ) — это устройство компенсации провалов напряжения, подсоединенное параллельно нагрузке (рис. 4). Устройство СТАТКОМ может снижать провалы напряжения путем изменения реактивной нагрузки в узле подключения.

Способность снижать провалы может быть расширена путем добавления дополнительного источника энергии, такого как сверхпроводящий магнитный источник энергии. Хотя компенсаторы СТАТКОМ (рис. 4) способны поглощать и возвращать реактивную мощность Q статком их применение обычно ограничивается статической компенсацией по причинам экономического характера.

Система СТАТКОМ в режиме снижения напряжения переходит в режим постоянного источника тока. Напряжение на выводах конденсатора может поддерживаться постоянным.

Рис. 4. Статический компенсатор

Параллельно подсоединенный синхронный двигатель (СД) несколько напоминает СТАТКОМ, но не содержит силовой электроники (рис. 5). Способность синхронного двигателя обеспечить большую реактивную нагрузку позволяет такой системе восполнять провалы напряжения глубиной до 60 % на протяжении 6 с. Вместе с этим маленький маховик защищает нагрузку против полного отключения электроэнергии на время 100 мс.

Рис. 5. Параллельно подсоединенный СД и маховик: 1 — энергосистема; 2 — трансформатор; 3 — выключатель

Повышающий конвертор — это преобразователь постоянного тока, повышающий напряжение шин постоянного напряжения (например, двигателя переменной частоты) до номинального уровня (рис. 6).

Наибольший провал напряжения, который может быть компенсирован, зависит от номинального тока повышающего конвертора. Повышающий конвертор начинает работать, как только провал напряжения будет зафиксирован на шинах постоянного тока прибора. Наряду со способностью обеспечить компенсацию симметричного провала напряжения вплоть до 50 % повышающий конвертор имеет возможность компенсировать глубокие несимметричные провалы, такие как полный выход из строя одной из фаз. Для защиты против полного отключения электроэнергии повышающий конвертор может быть дополнен батареями.

Активный фильтр ( рис. 7) — это преобразователь, который работает как выпрямитель при использовании IGBT-тиристоров вместо диодов.

Активный фильтр может постоянно поддерживать напряжение в течение всего провала напряжения. Номинальный ток активного фильтра определяет максимальное значение корректировки провала напряжения.

Читайте также: Безободковые унитазы подвесные отзывы

Рис. 7. Активный фильтр

В случае возникновения провала напряжения бестрансформаторная схема компенсации провала напряжения (рис. 8) открывается и нагрузка питается через инвертор. Энергия на шинах постоянного напряжения инвертора поддерживается двумя заряженными последовательно соединенными конденсаторами.

Рис. 8. Бестрансформаторная последовательная компенсация провала напряжения

Для остаточного напряжения равного 50 % может быть обеспечен номинальный уровень напряжения. В данном устройстве необязательные источники питания (конденсаторы) могут смягчить полное отключение электроэнергии на ограниченный период времени. Устройство обеспечивает возможность восстановления напряжения и при несимметричных провалах напряжения.

Рассмотрим различные системы, защищающие промышленное производство от провалов напряжения (маховик, статический источник бесперебойного питания (ИБП), динамический компенсатор искажений напряжения, статический компенсатор (СТАТКОМ), параллельно соединенный СД, повышающий преобразователь, активный фильтр и бестрансформаторный последовательный усилитель).

Провалы напряжения являются одним из наиболее дорогостоящих явлений в промышленности. Самый легкий способ защитить чувствительные процессы от всех провалов — это установка ИБП . Однако из-за большой стоимости их закупки и обслуживания ИБП устанавливают только на основных структурных объектах, в местах, где повреждения, вызванные проблемами с электропитанием, могут причинить значительные повреждения, например в больницах, при производстве компьютеров, в финансовых учреждениях.

При решении вопроса об установке защитного оборудования должен быть проведен технико-экономический расчет, показывающий обоснованность установки ИБП для того или иного производственного процесса.

Проблема защиты электродвигателей с различными скоростями в промышленном производстве от провалов напряжения на данный момент решена. Из-за широкого разнообразия торговых марок таких систем найти оптимальное технико-экономическое решение этой проблемы не очень просто.

Типы корректирующего оборудования

Маховик вместе с двигатель-генератором (Д-Г) может защитить критические процессы нарушения производства от всех падений напряжения в энергосистеме С. Когда происходят падения напряжения, то снижение напряжения у нагрузки замедляется маховиком. Различные схемы соединения маховика с двигатель-генератором похожи на ту, которая изображена на 1.

Рис. 1. Схема использования маховика для компенсации провалов напряжения

Основные компоненты независимого статического ИБП представлены на рис. 2, батареи (конденсаторы) которого запасают энергию только на защиту от провалов напряжения на короткое время. Если произошел провал напряжения, нагрузка питается от батареи через преобразователь напряжения постоянного — переменного тока.

Рис. 2. Схема использования ИБП для компенсации провалов напряжения

Динамический компенсатор искажений напряжения в течение провала напряжения остается подсоединенным к электрической сети 1 через трансформатор 2 и определяет отсутствующую часть напряжения (рис. 3). Он добавляет эту отсутствующую часть напряжения через первичную 4 и вторичную 3 обмотки автотрансформатора, соединенного последовательно с нагрузкой 7. В зависимости от назначения энергия для питания нагрузки 7 через преобразователь напряжения 5 в течение провала напряжения может забираться из сети или от дополнительного источника энергии (в основном от конденсаторов в).

Рассмотрим две модификации различных производителей. Первая (далее ДКИН-1) не содержит источников энергии и постоянно подключена. Этот вариант экономически целесообразен для повышения напряжения до 50 %. Существует модификация устройства ДКИН со способностью к подъему напряжения на 30 %. Считается, что начиная с этой модификации устройства ДКИН (30 %) целесообразно их применение в производстве.

Рис. 3. Схема использования ДКИН для компенсации провалов напряжения

Вторая модификация (ДКИН-2) содержит источник энергии, рассчитанный на большую нагрузку. Двухмегаваттное устройство способно поднять напряжение нагрузки мощностью 4 МВт на 50 % или мощностью 8 МВт на 23 %. В отличие от большинства других устройств, мощность источника энергии способна выдержать длительные провалы.

Статический компенсатор (СТАТКОМ) — это устройство компенсации провалов напряжения, подсоединенное параллельно нагрузке (рис. 4). Устройство СТАТКОМ может снижать провалы напряжения путем изменения реактивной нагрузки в узле подключения.

Способность снижать провалы может быть расширена путем добавления дополнительного источника энергии, такого как сверхпроводящий магнитный источник энергии. Хотя компенсаторы СТАТКОМ (рис. 4) способны поглощать и возвращать реактивную мощность Q статком их применение обычно ограничивается статической компенсацией по причинам экономического характера.

Система СТАТКОМ в режиме снижения напряжения переходит в режим постоянного источника тока. Напряжение на выводах конденсатора может поддерживаться постоянным.

Рис. 4. Статический компенсатор

Параллельно подсоединенный синхронный двигатель (СД) несколько напоминает СТАТКОМ, но не содержит силовой электроники (рис. 5). Способность синхронного двигателя обеспечить большую реактивную нагрузку позволяет такой системе восполнять провалы напряжения глубиной до 60 % на протяжении 6 с. Вместе с этим маленький маховик защищает нагрузку против полного отключения электроэнергии на время 100 мс.

Рис. 5. Параллельно подсоединенный СД и маховик: 1 — энергосистема; 2 — трансформатор; 3 — выключатель

Повышающий конвертор — это преобразователь постоянного тока, повышающий напряжение шин постоянного напряжения (например, двигателя переменной частоты) до номинального уровня (рис. 6).

Наибольший провал напряжения, который может быть компенсирован, зависит от номинального тока повышающего конвертора. Повышающий конвертор начинает работать, как только провал напряжения будет зафиксирован на шинах постоянного тока прибора. Наряду со способностью обеспечить компенсацию симметричного провала напряжения вплоть до 50 % повышающий конвертор имеет возможность компенсировать глубокие несимметричные провалы, такие как полный выход из строя одной из фаз. Для защиты против полного отключения электроэнергии повышающий конвертор может быть дополнен батареями.

Читайте также: Гжельский изоляторный завод официальный сайт

Активный фильтр ( рис. 7) — это преобразователь, который работает как выпрямитель при использовании IGBT-тиристоров вместо диодов.

Активный фильтр может постоянно поддерживать напряжение в течение всего провала напряжения. Номинальный ток активного фильтра определяет максимальное значение корректировки провала напряжения.

Рис. 7. Активный фильтр

В случае возникновения провала напряжения бестрансформаторная схема компенсации провала напряжения (рис. 8) открывается и нагрузка питается через инвертор. Энергия на шинах постоянного напряжения инвертора поддерживается двумя заряженными последовательно соединенными конденсаторами.

Рис. 8. Бестрансформаторная последовательная компенсация провала напряжения

Для остаточного напряжения равного 50 % может быть обеспечен номинальный уровень напряжения. В данном устройстве необязательные источники питания (конденсаторы) могут смягчить полное отключение электроэнергии на ограниченный период времени. Устройство обеспечивает возможность восстановления напряжения и при несимметричных провалах напряжения.

Обеспечение качества электроэнергии, отвечающего нормам ГОСТ 13109-97, является основной задачей при электроснабжении потребителей. Отклонения от номинальных значений, в частности, провалы напряжения, отрицательно отражаются на работе электрооборудования и могут стать причиной серьезного материального ущерба. В данной статье мы ответим на ключевые вопросы, связанные с кратковременным понижением напряжения, рассмотрим природу этого явления и причины его проявления.

Что такое провал напряжения?

В соответствии с определением, приведенным в ГОСТ 13109-97, под данным явлением подразумевается внезапное понижение амплитуды напряжения с последующим динамическим восстановлением питания в пределах номинального значения. Пример осцилограммы падения напряжения представлен ниже.

Осцилограмма провала напряжения

Характеризующие показатели

Для описания понижения амплитуды напряжения используются следующие показатели:

δUп – глубина провалов, для вычисления применяется следующая формула: δUп = (Uном — Uмин) / Uном , где Uном – номинальная величина амплитуды питающего напряжения, Uмин – значение остаточного напряжения;

∆t – длительность, данная величина определяется как разность между моментом восстановления напряжения к номинальному значению tк и временным параметром фиксации начальной стадии отклонения tн. Формула расчета длительности будет иметь следующий вид: ∆t = tк — tн

Fп – частотность повторений (частота возникновения провалов), приведем формулу, используемую для расчета этого параметра: Fп= 100% * m * (δUп* ∆tп) / M, где числитель дроби описывает количество отклонений, определенной глубины и длительности, произошедших в течение измеряемого периода. Знаменатель – общее количество отклонений, обнаруженных в ходе измерений.

Основные показатели провала напряжения

Приведенные выше показатели используются для определения качества электроэнергии в той или иной системе электроснабжения.

Причины появления провалов

Несмотря на то, что проявления отклонения напряжения имеют случайный характер, вероятность этого события зависит от вполне определенных причин. К таковым относятся:

  1. Пусковые токи.
  2. Колебания напряжения при коротком замыкании.
  3. Внезапное значительное увеличение нагрузки.
  4. Другие причины сетевого происхождения.

Рассмотрим подробно каждый из перечисленных факторов.

Токи включения

Образование токов включения, например, при старте мощных электродвигателей или другого устройства — самая распространенная причина подобных провалов. На рисунке ниже представлен пример, когда мощный двигатель подключен к единому вводу питания с другими потребителями.

Образование провала напряжения при запуске электродвигателя

Обозначения:

  • Т1 – Понижающий трансформатор.
  • RZ – Полное сопротивление на вводе питания.
  • RZ1-RZ3 — Полные сопротивления цепей потребителей.
  • М – мощный асинхронный двигатель.

С включением двигателя М образуется пусковой ток Iпуск, величина которого превышает номинальный по значению (Iпуск > Iном). Это приводит к образованию зоны провала c существенным понижением напряжения в цепи RZ1 и незначительным отклонениям на главном распределителе остальных цепей потребителей.

Короткие замыкания

Возникновение в электросети токов коротких замыканий также вызывают отклонения напряжения от нормы. Рассмотрим, как протекает и определяется процесс в сетях с различным классом напряжения.

КЗ в сетях с низким напряжением.

Пример такой ситуации проиллюстрирован на рисунке ниже. В данном случае на величину тока КЗ влияют полные сопротивления RZ и RZ2.

Образование провала вследствие КЗ в цепи потребителя 2

Исходя из этого, можно сказать, что чем больше будет величина полного сопротивления в сети низкого напряжения, тем меньшим будет значение тока КЗ.

На практике, в случае КЗ в цепи потребителя 2 должно произойти срабатывание защиты этой группы. Например, если отключение цепи произойдет через 50 мс, то на главном распределителе образуется зона провала длительностью 50 мс. То есть, данный параметр зависит от скорости срабатывания защиты. При этом глубина провала будет уменьшаться по мере удаления от поврежденного участка, соответственно, чем ближе нагрузка, тем большее отклонение. Эти правила работают как в сетях с низким, среднем и высоким напряжением.

КЗ в сетях с напряжением среднего класса.

Больше всего проблем возникает, когда КЗ происходит в трехфазных сетях среднего класса напряжения. Несмотря на случайный характер этого явления, вероятность возникновения аварийной ситуации довольно велика, поскольку нельзя исключать влияние сторонних факторов. К таковым можно отнести:

  • Различные виды земляных работ, в ходе которых может быть нанесено повреждение кабельной линии.
  • Пробои в местах соединений.
  • Старение изоляционного покрытия.
  • Воздействие природных и техногенных факторов.

При образовании тока КЗ он будет протекать, пока устройства автоматического защитного отключения на распределительной подстанции не изолирует аварийный участок. Пока этого не произойдет, в сети распределительной подстанции будет наблюдаться значительное снижение линейных напряжений.

Читайте также: Гриб пористый снизу желтый

КЗ в высоковольтных линиях.

В большинстве случаев замыкания в ВЛ происходят вследствие воздействия природных факторов (грозовые разряды, ураган и т.д.) или по причине ошибочных коммутаций и ложных срабатываний автоматической защиты.

Большие нагрузки

При подключении к электросети большой нагрузки, может привести к образованию пусковых токов, превышающих номинальные в несколько раз. В тех случаях, когда электроцепь рассчитана под номинальный ток, превышение этого параметра станет причиной снижения амплитуды источника питания. Масштабность данного проявления напрямую зависит от запаса мощности электрической сети и величины полного сопротивления.

Провалы сетевого происхождения

Учитывая сложность распределительных цепей, следует принять во внимание, что при повреждении одного из участков цепи будет оказываться влияние на остальные части. При этом на глубину и продолжительность провалов будет оказывать влияние следующие факторы:

  • топология цепи;
  • величина полного сопротивления проблемного участка;
  • текущая мощность нагрузки и источника электрической энергии (генератора).

Для более детального представления, рассмотрим пример, представленный на рисунке ниже.

Провалы сетевого происхождения

Допустим, произошло фазное замыкание в точке Р2, это приведет к тому, что у потребителя 1 отклонения напряжения наблюдаться не будут, у потребителя 2 глубина провала составит 63%, а у потребителя 3 – 97%.

Если однофазное замыкание возникнет в точке Р1, то глубина провала будет 50% от номинала у всех потребителей, за исключением потребителя 1. То есть, как мы видим, чем выше уровень топологии, где произошло повреждение, тем большее число потребителей попадает в зону провала напряжения. Соответственно, у потребителей, подключенных к уровню 3 риск появления провала значительно выше, чем у потребителей, запитанных от первого и второго уровня.

Допустимые провалы напряжения по ГОСТ

Согласно ГОСТ 32144 2013 для определения показателей качества электроэнергии провалы следует классифицировать по двум критериям:

  1. Величина остаточного напряжения.
  2. Длительность.

Поскольку появление провалов носит случайный характер, для представленных выше критериев не установлены численные значения. Тем не менее, измерения амплитуды и длительности должны проводиться с целью создания статистического массива, позволяющего установить вероятность случайного события для определенной электросети, с целью характеризовать КЭ.

Что касается «допустимых по ГОСТу провалов», то данное словосочетание не имеет смысла, поскольку под провалом подразумевается отклонение от установленной ГОСТом нормы (0,9Uном). Если быть точным, то можно назвать нормированием допустимую длительность провала (30 с), при превышении которого отклонение считается пониженным напряжением.

Влияние провалов на работу электрооборудования

Данное явление считается менее опасным отклонения частоты и импульсов напряжения, но, тем не менее, провалы могут привести к следующим последствиям:

  • Понижению интенсивности светового потока, производимого источниками с нитью накала.
  • Снижению чувствительности радио- и телеприемников.
  • Нестабильности работы рентгеновских установок.
  • Ложным срабатываниям электронных систем управления.
  • Понижение уровня постоянного тока в контактной сети электротранспорта негативно отражается на работе подвижного состава.
  • Изменению характеристик преобразователей напряжения.
  • Падение мощности электродвигателей, что приводит к электропотерям и износу.

Глубина провала более 10% от допустимого отклонения с большой вероятностью вызовет отключение газоразрядных источников освещения. При низком напряжении, более 15% от допустимой нормы, произойдет размыкание пускателей, что вызовет отключение электрооборудования и, как следствие, приведет к нарушению техпроцесса.

Характерно, что на дуговую электросварку провалы не оказывают серьезного влияния ввиду большой термической инерционности процесса, в то время как качество точечной сварки существенно снижается.

Финансовая сторона вопроса

Говоря о влиянии провалов на электрооборудование, мы упустили из виду финансовые потери, которые складываются из следующих составляющих:

  • Упущенная прибыль из-за простоя оборудования и потери времени на возобновление технологического цикла.
  • Ремонт вышедшего из строя оборудования.
  • Потери сырья и т.д.

Как бороться с провалами напряжения?

Как мы выяснили, провалы являются случайным явлением, длительность которого зависит от срабатывания защитных систем, а глубина – удаленностью от проблемного участка. Поскольку изменить вероятность проявления не представляется возможным, то остается только влияние на масштаб провала и устранение последствий.

Сделать это можно путем оптимизации сети, чтобы производилась компенсация провалов при резких изменениях нагрузки, а также установки специальных приборов для контроля фазных напряжений на соответствие номинальному уровню и исключению несимметрии. Не менее эффективно действует стабилизирующее оборудование, установленное у потребителя электроэнергии. Более серьезные приборы могут выступать в роли регулятора напряжения и преобразователя основной частоты.

Если проблема вызывается замыканиями, то установка системы АПВ, а при критических провалах и АВР, может сократить предельно допустимую длительность отклонения до короткого прерывания. То есть, автоматическая система произведет повторное включение и если это не даст результата, произойдет ввод резерва.

Советуем ознакомиться и прочитать:

Понравилась статья? Поделись с друзьями!

Провалы напряжения в сети — причины возникновения и меры защиты

В данной статье будут рассмотрены общие принципы функционирования электросети, негативные процессы, происходящие на линиях электроснабжения и различные методы защиты оконечного оборудования.

Блок: 1/5 | Кол-во символов: 190
Источник: https://www.ixbt.com/power/ups/electric_power.shtml

Что такое провал напряжения?

В соответствии с определением, приведенным в ГОСТ 13109-97, под данным явлением подразумевается внезапное понижение амплитуды напряжения с последующим динамическим восстановлением питания в пределах номинального значения. Пример осцилограммы падения напряжения представлен ниже.

Осцилограмма провала напряжения

Блок: 2/8 | Кол-во символов: 339
Источник: https://www.asutpp.ru/provaly-naprjazhenija-v-seti.html

Провалы напряжения

Описание:

Под провалом напряжения понимается кратковременное снижение или полная потеря RMS напряжения. Параметрами провала напряжения являются его длительность и значение самой малой величины остаточного напряжения, обычно выражаемое в процентах от номинального RMS напряжения. Провал напряжения означает, что требуемая энергия не поступает к нагрузке, и последствия этого могут быть весьма серьезными в зависимости от назначения и характера такой нагрузки.

Блок: 2/3 | Кол-во символов: 528
Источник: https://www.abok.ru/for_spec/articles.php?nid=2957

Характеризующие показатели

Для описания понижения амплитуды напряжения используются следующие показатели:

δUп – глубина провалов, для вычисления применяется следующая формула: δUп = (Uном — Uмин) / Uном , где Uном – номинальная величина амплитуды питающего напряжения, Uмин – значение остаточного напряжения;

∆t – длительность, данная величина определяется как разность между моментом восстановления напряжения к номинальному значению tк и временным параметром фиксации начальной стадии отклонения tн. Формула расчета длительности будет иметь следующий вид: ∆t = tк — tн

Fп – частотность повторений (частота возникновения провалов), приведем формулу, используемую для расчета этого параметра: Fп= 100% * m * (δUп* ∆tп) / M, где числитель дроби описывает количество отклонений, определенной глубины и длительности, произошедших в течение измеряемого периода. Знаменатель – общее количество отклонений, обнаруженных в ходе измерений.

Основные показатели провала напряжения

Приведенные выше показатели используются для определения качества электроэнергии в той или иной системе электроснабжения.

Блок: 3/8 | Кол-во символов: 1092
Источник: https://www.asutpp.ru/provaly-naprjazhenija-v-seti.html

Нормы качества для электросетей

Документом, устанавливающим нормы качества электроэнергии в России, является ГОСТ 13109-97 принятый 1 Января 1999г. В частности, в нем установлены следующие «нормы качества электрической энергии в системах электроснабжения общего назначения«.

Параметр Номинал Предельно
Напряжение, V 220V ±5% 220V ±10%
Частота, Hz 50 ±0,2 50 ±0,4
Искажения, % 8 12
Провалы, сек 3 30
Перенапряжения, V 280 380

Таким образом, даже при нормальном функционировании электросети использование устройств ИБП для компьютерной техники является обязательным, как для защиты целостности данных, так и для обеспечения исправности оборудования. С точки зрения электроснабжения, все потребители делятся на три категории. Для наиболее массовой категории наших читателей, проживающих в домах с числом квартир более восьми или работающих в офисных зданиях с числом сотрудников более 50 актуальна вторая категория. Это означает максимальное время устранения аварии один час и надежность 0,9999. Третья категория характеризуется временем устранения аварии 24 часа и надежностью 0,9973. Первая категория требует надежности 1 и временем устранения аварии 0.

Блок: 3/5 | Кол-во символов: 1138
Источник: https://www.ixbt.com/power/ups/electric_power.shtml

Как бороться со скачками напряжения в сети

Важность защиты электрической сети и приборов в электрической сети от воздействия больших скачков напряжения трудно переоценить. Защита от скачков напряжения в электрической сети может строиться на применении специальных устройств для защиты от скачков напряжения, сетевых фильтров. Для защиты сети и потребителей от скачков могут использоваться и стабилизаторы напряжения со встроенной защитой от скачков напряжения. Устройства защиты от скачков напряжения могут монтироваться в коммутационные электрические шкафы или включаться непосредственно в розетку. Отдельным способом защиты от скачков является использование устройства защиты от скачков, монтируемых внутри электрического прибора.

Как защитить свой дом от скачков напряжения, смотрите в разделах Защита от скачков напряжения и Стабилизаторы напряжения.

по теме:

Блок: 4/4 | Кол-во символов: 931
Источник: https://teplo.bast.ru/articles/skachki-napryazheniya-seti

Виды негативных воздействий в электросети

Все негативные воздействия в электросети делятся на провалы и перенапряжения.

Импульсные провалы обычно вызываются перегрузкой оконечных линий. Включение мощного потребителя, такого как кондиционер, холодильник, сварочный аппарат, вызывает кратковременную (до 1-2 с) просадку питающего напряжения на 10–20%. Короткое замыкание в соседнем офисе или квартире может вызвать импульсный провал, в случае, если вы подключены к одной фазе. Импульсные провалы не компенсируются подстанцией и могут вызывать сбои и перезагрузки компьютерной и другой насыщенной электроникой техники.

Постоянный провал, то есть постоянно или циклично низкое напряжение обычно вызвано перегрузкой линии от подстанции до потребителя, плохим состоянием трансформатора подстанции или соединительных кабелей. Низкое напряжение негативно отражается на работе такого оборудования как кондиционеры, лазерные принтеры и копиры, микроволновые печи.

Полный провал (блекаут), это пропадание напряжения в сети. Пропадание до одного полупериода (10 мс) должно по стандарту выдерживать любое оборудование без нарушения работоспособности. На подстанциях старого образца переключения регулятора напряжения или резерва могут достигать нескольких секунд. Подобный провал выглядит как «свет мигнул». В подобной ситуации все незащищенное компьютерное оборудование «перезагрузится» или «зависнет».

Перенапряжения постоянные — завышенное или циклично завышенное напряжение. Обычно является следствием так называемого «перекоса фаз» — неравномерной нагрузки на разные фазы трансформатора подстанции. В этом случае на нагруженной фазе происходит постоянный провал, а на двух других постоянное перенапряжение. Перенапряжение сильно сокращает срок службы самого разного оборудования, начиная от лампочек накаливания… Вероятность выхода из строя сложного оборудования при включении значительно увеличивается. Самое неприятное постоянное перенапряжение — отгорание нейтрального провода, нуля. В этом случае напряжение на оборудовании может достигать 380 В, и это практически гарантирует выход его из строя.

Временное перенапряжение бывает импульсным и высокочастотным.

Импульсное перенапряжение может происходить при замыкании фазовых жил силового кабеля друг на друга и на нейтраль, при обрыве нейтрали, при пробое высоковольтной части трансформатора подстанции на низковольтную (до 10 кВ), при попадании молнии в кабель, подстанцию или рядом с ними. Наиболее опасны импульсные перенапряжения для электронной аппаратуры.

Высокочастотное перенапряжение характеризуется наличием в силовом кабеле паразитных колебаний высокой частоты. Может нарушить работу высокочувствительной измерительной и звукозаписывающей аппаратуры.

Блок: 4/5 | Кол-во символов: 2701
Источник: https://www.ixbt.com/power/ups/electric_power.shtml

Способы противодействия негативным воздействиям

В нижеприведенную таблицу сведены все виды негативных воздействий в электросети и технические методы борьбы с ними.

Вид негативного воздействия Следствие негативного воздействия Рекомендуемые меры защиты
Импульсный провал напряжения Нарушение в работе оборудования содержащего микропроцессоры. Потеря данных в компьютерных системах. Качественные блоки питания. Онлайн ИБП
Постоянный провал (занижение) напряжения Перегрузка оборудования содержащего электромоторы. Неэффективность электрического отопления и освещения. Автотрансформаторные регуляторы напряжения. Импульсные блоки питания.
Пропадание напряжения Выключение оборудования. Потеря данных в компьютерных системах. Батарейные ИБП любого типа, для предотвращения потерь данных. Автономные генераторы, при необходимости обеспечения бесперебойности работы оборудования.
Завышенное напряжение Перегрузка оборудования. Увеличение вероятности выхода из строя. Автотрансформаторные регуляторы напряжения. Сетевые фильтры с автоматом защиты от перенапряжения.
Импульсные перенапряжения Нарушение в работе оборудования содержащего микропроцессоры. Потеря данных в компьютерных системах. Выход оборудования из строя. Сетевые фильтры с автоматом защиты от перенапряжения.
Высокочастотные перенапряжения. Нарушения в работе высокочувствительной измерительной и звукозаписывающей аппаратуры. Сетевые фильтры с ФНЧ. Развязывающие трансформаторы.
Перекос фаз (разница фазного напряжения) Перегрузка трехфазного оборудования. Выравнивания нагрузки по фазам. Содержание в исправности силовой кабельной сети.
Отклонение частоты сети Нарушение работы оборудования с синхронными двигателями и изделий зависящих от частоты сети. Онлайн ИБП. Замена устаревшего оборудования.

Следует отметить, что современные качественные ИБП имеют в своем составе сетевой фильтр и ограничитель напряжения. Время реакции и переключения на батарею достаточно мало для обеспечения надежной бесперебойной работы любых электронных устройств. Использование отдельных стабилизаторов может быть оправданно при большом количестве оборудования, так как цена стабилизатора на 10 КВт примерно равна цене ИБП на 1КВт. Использование отдельного сетевого фильтра гораздо менее оправданно. ИБП не предназначены для систем, требующих непрерывного функционирования. Если мощность такого оборудования превышает 1 КВт, оптимальным решением будет использование автономного дизельного генератора.

Блок: 5/5 | Кол-во символов: 2432
Источник: https://www.ixbt.com/power/ups/electric_power.shtml

Влияние провалов на работу электрооборудования

Данное явление считается менее опасным отклонения частоты и импульсов напряжения, но, тем не менее, провалы могут привести к следующим последствиям:

  • Понижению интенсивности светового потока, производимого источниками с нитью накала.
  • Снижению чувствительности радио- и телеприемников.
  • Нестабильности работы рентгеновских установок.
  • Ложным срабатываниям электронных систем управления.
  • Понижение уровня постоянного тока в контактной сети электротранспорта негативно отражается на работе подвижного состава.
  • Изменению характеристик преобразователей напряжения.
  • Падение мощности электродвигателей, что приводит к электропотерям и износу.

Глубина провала более 10% от допустимого отклонения с большой вероятностью вызовет отключение газоразрядных источников освещения. При низком напряжении, более 15% от допустимой нормы, произойдет размыкание пускателей, что вызовет отключение электрооборудования и, как следствие, приведет к нарушению техпроцесса.

Характерно, что на дуговую электросварку провалы не оказывают серьезного влияния ввиду большой термической инерционности процесса, в то время как качество точечной сварки существенно снижается.

Блок: 6/8 | Кол-во символов: 1187
Источник: https://www.asutpp.ru/provaly-naprjazhenija-v-seti.html

Финансовая сторона вопроса

Говоря о влиянии провалов на электрооборудование, мы упустили из виду финансовые потери, которые складываются из следующих составляющих:

  • Упущенная прибыль из-за простоя оборудования и потери времени на возобновление технологического цикла.
  • Ремонт вышедшего из строя оборудования.
  • Потери сырья и т.д.

Блок: 7/8 | Кол-во символов: 327
Источник: https://www.asutpp.ru/provaly-naprjazhenija-v-seti.html

Кол-во блоков: 13 | Общее кол-во символов: 14058
Количество использованных доноров: 4
Информация по каждому донору:

  1. https://www.asutpp.ru/provaly-naprjazhenija-v-seti.html: использовано 4 блоков из 8, кол-во символов 2945 (21%)
  2. https://teplo.bast.ru/articles/skachki-napryazheniya-seti: использовано 1 блоков из 4, кол-во символов 931 (7%)
  3. https://www.ixbt.com/power/ups/electric_power.shtml: использовано 5 блоков из 5, кол-во символов 9654 (69%)
  4. https://www.abok.ru/for_spec/articles.php?nid=2957: использовано 1 блоков из 3, кол-во символов 528 (4%)

Поделитесь в соц.сетях: