Чем опасно импульсное напряжение
Импульсные перенапряжения — кратковременное увеличение напряжения в точке электросети сверх допустимого значения (в данном случае интересуют многократное превышение номинального значения, приводящие к повреждению или сбою аппаратуры).
Основные причины импульсных перенапряжений:
1.Удар молнии недалеко от электрооборудования или линии электропередачи.
2. Коммутационные импульсные помехи. Основным источником возникновения коммутационных импульсных помех являются переходные процессы при коммутации мощных нагрузок (особенно реактивных). Изменение (коммутация, обрыв, срабатывание защиты) в системе может вызвать затухающие колебания с высокой амплитудой и частотой. Величина коммутационных перенапряжений зависит от многих параметров, таких как тип цепи, вид коммутации (включение, отключение, повторное включение), характера нагрузки, типа выключателя или предохранителя. Типичные примеры нагрузок, коммутация которых может вызвать значительные (свыше 1 кВ) импульсные перенапряжения: трансформаторы, дроссели, электродвигатели, электросварочные аппараты и установки. Срабатывание защиты может быть вызвано коротким замыканием, одновременным включением множества мощных потребителей.
3. Периодические импульсные помехи, связанные с работой люминесцентных ламп, тиристорных и транзисторных преобразователей, импульсных блоков питания и т.д. Данный тип помех обычно достигает амплитуды до 1 кВ.
4. Взаимной индукции между высоковольтной линией электропередачи и воздушными участками низковольтных линий электропередач (получается подобие трансформатора), а также возможность непосредственного контакта между линиями с разными напряжениями, вызванного обрывом проводов.
Чем ближе оборудование расположено к подстанции, тем выше могут быть перенапряжения.
Импульсные перенапряжения
Молния может стать причиной пожаров, сильных разрушений, взрывов, травмирования людей и животных, в том числе и смертельных случаев. Специалисты различают первичные и вторичные воздействия удара молнии. Первые возникают при прямом ее попадании в объекты. Непосредственное попадание атмосферного электричества в жилые и промышленные постройки может полностью разрушить их, убить человека или привести к техногенным авариям.
Вторичное воздействие молнии (электромагнитная или электростатическая индукция) вызывается близким с объектом разрядом молнии или заносом высоких потенциалов внутрь построек по подземным или наружным металлическим конструкциям, коммуникациям, воздушным линиям электропередач и проводам другого назначения, а также трубопроводам или кабелям.
Вторичное воздействие разрядов молнии негативно влияет на телефонию, электробытовые сети 220/380 В, системы мобильной связи, а также передачи информации и данных, спутникового и телевизионного вещания. Выход из строя даже на короткое время вышеперечисленных систем может привести к непоправимым последствиям, поэтому современные системы молниезащиты объектов включают защиту и от непосредственных ударов молнии, и от вторичных ее проявлений.
Что это такое импульсные перенапряжения
Кратковременный, но значительный скачок напряжения, а также появление на металлических конструкциях электродвижущей силы – называется импульсным перенапряжением. Специалисты обычно различают проявления электромагнитной и электростатической индукции, занос внутрь объекта высоких потенциалов, а также коммутационное перенапряжение.
Импульсное перенапряжение коммутационного происхождения связано с внезапной сменой режима работы в системе электроснабжения, при коротком замыкании, включении и отключении трансформаторов, включении резервного питания и т.д. При развитии данного типа перенапряжения накопленная в элементах сети энергия из-за резкой смены параметров режима работы приводит к развитию переходного процесса со значительным скачком напряжения.
Повышение напряжений в некоторых случаях может достигать значений в сотни раз выше, чем их нормальные эксплуатационные параметры. Это приводит не только к выходу из строя электрических и электронных устройств и приборов, систем электроснабжения, телекоммуникаций и связи, контроля и управления, но и может являться причиной пожара и даже смерти людей.
Причины импульсных перенапряжений
Причиной появления высоких напряжений обычно является разряд молнии, коммутационные процессы в системах электроснабжения, а также электромагнитные помехи, вызываемые мощными промышленными электроустановками. Различают перенапряжения:
- коммутаций;
- непосредственного разряда (при разряде во внешнюю молниезащиту или воздушные ЛЭП);
- индуцированные (при разряде рядом со зданием или в близстоящие объекты).
Электромагнитная индукция после разряда молнии характеризуется образованием магнитного поля в контурах металлических коммуникациях различной формы с переменными во времени параметрами. При этом значение электродвижущей силы зависит от амплитуды и крутизны тока молнии, а также размеров и формы самого контура.
Индукция электростатической природы провоцируется скоплением под кучевыми облаками с определенным электрическим потенциалом зарядов с противоположным знаком. Но в земле и на проводящих конструкциях наземных промышленных или жилых объектов это накопление приводит к тому, что за время разряда молнии заряды не успевают стечь в землю и становятся причиной появления импульсного перенапряжения. Чаще всего разность потенциалов появляется между металлическими трубами (водопроводными или канализационными), электропроводкой расположенными в постройке и металлической крышей. При этом, чем выше постройка, тем больше значения накопленных потенциалов.
Читайте также: Сделай сам вольтметр переменного напряжения
Примеры повреждений, вызванных вторичными воздействиями молнии
Разрушение телефонного аппарата и временнного вводного щита электроустановки
Характеристики импульсного перенапряжения
Энергонасыщенность современных промышленных и жилых объектов, наличие разветвленной электрической сети от проектировщиков систем защиты требует грамотного выбора устройств защиты от импульсных перенапряжений (УЗИП). Для этого необходимо разобраться в основных параметрах, характеризующих возникающие импульсы перенапряжения, а именно:
- форму волны тока (характеризуется временем нарастания и спада);
- амплитуда тока.
Для описания токов разряда молнии применяют 2 вида формы волн: удлиненную (10/350 мксек) и короткую (8/20 мксек). Первая соответствует непосредственному (прямому) попаданию разряда молнии и показывает нарастание тока за 10 мксек до максимального импульсного значения (I imp) и снижению его показания в 2 раза за 350 мсек. Короткая волна наблюдается при удаленном разряде молнии и при коммутационных процессах. Она характеризует нарастание тока за 8 мксек до максимума (I max) и спад до половины значения за 20 мксек. Импульс 10/350 мксек воздействует на электросеть в десятки раз дольше, чем 8/20 мксек, поэтому он более опасен для защищаемых объектов.
Виды УЗИП
УЗИП имеют корпус из негорючего пластика и в большинстве случаев представляют собой разрядники или варисторы самых разных конфигураций. Сегодня ограничители импульсных перенапряжений имеют индикатор выхода из строя. Данные устройства необходимы для создания надежной и эффективной системы внутренней молниезащиты.
Разрядник обычно представляет собой электроприбор (открытого воздушного или закрытого типа) с двумя электродами. На них при увеличении напряжения до определенного значения они пробиваются, тем самым снимая импульс перенапряжения. Варистор является полупроводниковым устройством, имеющим симметричную крутую вольт-амперную характеристику. Принцип его действия заключатся в том, что при достижении на его контактах определенной величины напряжения, он быстро и значительно понижает значение своего сопротивления и пропускает ток.
Ограничители импульсных перенапряжений характеризуются параметрами номинального, импульсного напряжения и временного перенапряжения. В зависимости от мощности импульса, которое УЗИП может рассеять и в соответствии с ГОСТом Р 1992-2002 (МЭК 61643-1-98) выделяют 3 класса ограничителей:
- I B (амплитуда 25-100 кА; для волны 10/350 мксек) – применяется в распределительных щитках;
- II C (амплитуда 10-40 кА; для волны 8/20 мкс) — применяется в вводах электропитающих устройств, щитках помещений;
- III D (амплитуда до 10 кА; для волны 8/20 мкс) – обычно устройства этого класса уже встроены в электроприборы.
Импульсные перенапряжения в электросетях
Что такое импульсное перенапряжение в электросети
Попробуем разобраться с явлением, доставляющим столь много неприятностей владельцам электротехники. Перенапряжением называется кратковременный импульс напряжения сверх допустимых параметров на определенном участке электросети. Вслед за скачком, напряжение восстанавливается до допустимых значений. Уровень всплеска называется показателем импульсного напряжения.
Так, как правило, в квартиру поступает напряжение величиной в 220 вольт. Однако не исключены ситуации, когда по ряду причин, которые мы рассмотрим ниже, в сети могут возникать импульсные перенапряжения продолжительностью в миллисекунды. При этом пиковые значения перенапряжений могут достигать до 10 тысяч вольт.
К каким последствиям для электротехники может привести импульсное перенапряжение?
Все компоненты электроприборов оснащены изоляцией, рассчитанной на определенные параметры напряжения. В большинстве электроприборов, питающихся напряжением от 220 до 380 вольт, изоляция может выдерживать перенапряжение до 1000 вольт. В случаях если импульс перенапряжения в сети превосходит расчетный уровень, пробой изоляции и выход из строя прибора становится неизбежным. Перенапряжение приводит к возникновению искры, провоцирующей короткое замыкание в цепи и пожар.
Отметим, что перенапряжение угрожает не только подключенным к сети электроприборам. Электропроводка, розетки и распределительные щитки постоянно находятся под напряжением, и высокий импульс перенапряжения может привести к пробою изоляции проводов, что полностью или частично выведет из строя систему электроснабжения дома или квартиры.
Причины возникновения импульсного перенапряжения
Средства защиты сети от импульсных перенапряжений
Исключить возникновение импульсных перенапряжений практически невозможно, однако вполне возможно обезопасить электросеть своей квартиры от неприятностей посредством специальных устройств, снижающих значения импульсных перенапряжений до приемлемых величин.
Читайте также: Тушение пожара электроустановок не находящихся под напряжением допускается
Для решения этой задачи применяются устройства как стабилизаторы напряжения уже со встроенной защитой от импульсных перенапряжений (УЗИП), которые способны обеспечивать частичную или полную защиту сети.
Негативные явления в электросети — их влияние на нагрузку и способы борьбы
В данной статье будут рассмотрены общие принципы функционирования электросети, негативные процессы, происходящие на линиях электроснабжения и различные методы защиты оконечного оборудования.
Единая энергосистема
Почти все электростанции России объединены в единую федеральную энергосистему, которая является источником электрической энергии для большинства потребителей. Важнейшим и обязательным компонентом любой электростанции является трехфазный турбогенератор переменного тока. Три силовые обмотки генератора индуцируют линейное напряжение. Обмотки симметрично расположены по окружности генератора. Ротор генератора вращается со скоростью 3000 оборотов в минуту, а линейные напряжения сдвинуты относительно друг друга по фазе. Фазовый сдвиг постоянен и равен 120 градусам. Частота переменного тока на выходе генератора зависит скорости вращения ротора, и в номинале составляет 50 Гц.
Напряжение между линейными проводами трехфазной системы переменного тока называется линейным. Напряжение между нейтралью и любым из линейных проводов называется фазным. Оно в корень из трех раз меньше линейного. Именно такое напряжение (фазное 220 В) подается в жилой сектор. Линейное напряжение 380 В используется для питания мощного промышленного оборудования. Генератор выдает напряжение в несколько десятков киловольт. Для передачи электроэнергии, с целью уменьшения потерь, напряжение повышают на трансформаторных подстанциях и подают в Линии Электропередачи (далее ЛЭП). Напряжение в ЛЭП составляет от 35 кВ для линий малой протяженности, до 1200 кВ на линиях протяженностью свыше 1000 км. Напряжение повышают с целью уменьшения потерь, которые напрямую зависят от силы тока. С другой стороны, напряжение ограничивается возможностью изоляции воздуха для ЛЭП и диэлектрика кабеля для кабельных линий. Достигнув крупного потребителя (завод, населенный пункт) электроэнергия опять попадает на трансформаторную подстанцию, где трансформируется в 6–10 кВ, которые уже пригодны для передачи по подземным кабелям. У каждого многоквартирного жилого дома, или административного здания стоит трансформаторная подстанция, которая выдает на выходе предназначенные для потребителя 380 В линейного напряжения и, соответственно, 220 В фазного. В подстанцию типично заводят два или три высоковольтных кабеля, что позволяет оперативно восстановить электроснабжение, в случае повреждений на высоковольтном участке трассы. В зависимости от вида подстанции, это может происходить автоматически, полуавтоматически — по команде диспетчера с центрального пульта, и вручную — приезжает аварийка и электрик переключает рубильник. Подстанция также может выполнять функцию регулятора напряжения, переключая обмотки трансформатора, в зависимости от нагрузки. В России на подстанциях применяют схему с заземленной нейтралью, то есть нейтральный (часто называемый нулевым) провод заземлен. По зданию разводка кабеля происходит пофазно, как с целью распараллеливания нагрузки, так и с целью удешевления оборудования (счетчиков, автоматов защиты). Подстанция в сельской местности и для небольших домов представляет собой обычно трансформаторную будку или просто трансформатор внешнего исполнения. Именно поэтому, на исправление аварии в таком месте отводятся сутки. Автоматической регулировки напряжения такие подстанции не имеют, и выдают номинал обычно в часы минимальных нагрузок, в остальное время занижая напряжение.
Нормы качества для электросетей
Документом, устанавливающим нормы качества электроэнергии в России, является ГОСТ 13109-97 принятый 1 Января 1999г. В частности, в нем установлены следующие «нормы качества электрической энергии в системах электроснабжения общего назначения«.
Параметр | Номинал | Предельно |
Напряжение, V | 220V ±5% | 220V ±10% |
Частота, Hz | 50 ±0,2 | 50 ±0,4 |
Искажения, % | 8 | 12 |
Провалы, сек | 3 | 30 |
Перенапряжения, V | 280 | 380 |
Таким образом, даже при нормальном функционировании электросети использование устройств ИБП для компьютерной техники является обязательным, как для защиты целостности данных, так и для обеспечения исправности оборудования. С точки зрения электроснабжения, все потребители делятся на три категории. Для наиболее массовой категории наших читателей, проживающих в домах с числом квартир более восьми или работающих в офисных зданиях с числом сотрудников более 50 актуальна вторая категория. Это означает максимальное время устранения аварии один час и надежность 0,9999. Третья категория характеризуется временем устранения аварии 24 часа и надежностью 0,9973. Первая категория требует надежности 1 и временем устранения аварии 0.
Читайте также: При каком расстоянии от контактной сети находящейся под напряжением
Виды негативных воздействий в электросети
Все негативные воздействия в электросети делятся на провалы и перенапряжения.
Импульсные провалы обычно вызываются перегрузкой оконечных линий. Включение мощного потребителя, такого как кондиционер, холодильник, сварочный аппарат, вызывает кратковременную (до 1-2 с) просадку питающего напряжения на 10–20%. Короткое замыкание в соседнем офисе или квартире может вызвать импульсный провал, в случае, если вы подключены к одной фазе. Импульсные провалы не компенсируются подстанцией и могут вызывать сбои и перезагрузки компьютерной и другой насыщенной электроникой техники.
Постоянный провал, то есть постоянно или циклично низкое напряжение обычно вызвано перегрузкой линии от подстанции до потребителя, плохим состоянием трансформатора подстанции или соединительных кабелей. Низкое напряжение негативно отражается на работе такого оборудования как кондиционеры, лазерные принтеры и копиры, микроволновые печи.
Полный провал (блекаут), это пропадание напряжения в сети. Пропадание до одного полупериода (10 мс) должно по стандарту выдерживать любое оборудование без нарушения работоспособности. На подстанциях старого образца переключения регулятора напряжения или резерва могут достигать нескольких секунд. Подобный провал выглядит как «свет мигнул». В подобной ситуации все незащищенное компьютерное оборудование «перезагрузится» или «зависнет».
Перенапряжения постоянные — завышенное или циклично завышенное напряжение. Обычно является следствием так называемого «перекоса фаз» — неравномерной нагрузки на разные фазы трансформатора подстанции. В этом случае на нагруженной фазе происходит постоянный провал, а на двух других постоянное перенапряжение. Перенапряжение сильно сокращает срок службы самого разного оборудования, начиная от лампочек накаливания… Вероятность выхода из строя сложного оборудования при включении значительно увеличивается. Самое неприятное постоянное перенапряжение — отгорание нейтрального провода, нуля. В этом случае напряжение на оборудовании может достигать 380 В, и это практически гарантирует выход его из строя.
Временное перенапряжение бывает импульсным и высокочастотным.
Импульсное перенапряжение может происходить при замыкании фазовых жил силового кабеля друг на друга и на нейтраль, при обрыве нейтрали, при пробое высоковольтной части трансформатора подстанции на низковольтную (до 10 кВ), при попадании молнии в кабель, подстанцию или рядом с ними. Наиболее опасны импульсные перенапряжения для электронной аппаратуры.
Высокочастотное перенапряжение характеризуется наличием в силовом кабеле паразитных колебаний высокой частоты. Может нарушить работу высокочувствительной измерительной и звукозаписывающей аппаратуры.
Способы противодействия негативным воздействиям
В нижеприведенную таблицу сведены все виды негативных воздействий в электросети и технические методы борьбы с ними.
Вид негативного воздействия | Следствие негативного воздействия | Рекомендуемые меры защиты |
Импульсный провал напряжения | Нарушение в работе оборудования содержащего микропроцессоры. Потеря данных в компьютерных системах. | Качественные блоки питания. Онлайн ИБП |
Постоянный провал (занижение) напряжения | Перегрузка оборудования содержащего электромоторы. Неэффективность электрического отопления и освещения. | Автотрансформаторные регуляторы напряжения. Импульсные блоки питания. |
Пропадание напряжения | Выключение оборудования. Потеря данных в компьютерных системах. | Батарейные ИБП любого типа, для предотвращения потерь данных. Автономные генераторы, при необходимости обеспечения бесперебойности работы оборудования. |
Завышенное напряжение | Перегрузка оборудования. Увеличение вероятности выхода из строя. | Автотрансформаторные регуляторы напряжения. Сетевые фильтры с автоматом защиты от перенапряжения. |
Импульсные перенапряжения | Нарушение в работе оборудования содержащего микропроцессоры. Потеря данных в компьютерных системах. Выход оборудования из строя. | Сетевые фильтры с автоматом защиты от перенапряжения. |
Высокочастотные перенапряжения. | Нарушения в работе высокочувствительной измерительной и звукозаписывающей аппаратуры. | Сетевые фильтры с ФНЧ. Развязывающие трансформаторы. |
Перекос фаз (разница фазного напряжения) | Перегрузка трехфазного оборудования. | Выравнивания нагрузки по фазам. Содержание в исправности силовой кабельной сети. |
Отклонение частоты сети | Нарушение работы оборудования с синхронными двигателями и изделий зависящих от частоты сети. | Онлайн ИБП. Замена устаревшего оборудования. |
Следует отметить, что современные качественные ИБП имеют в своем составе сетевой фильтр и ограничитель напряжения. Время реакции и переключения на батарею достаточно мало для обеспечения надежной бесперебойной работы любых электронных устройств. Использование отдельных стабилизаторов может быть оправданно при большом количестве оборудования, так как цена стабилизатора на 10 КВт примерно равна цене ИБП на 1КВт. Использование отдельного сетевого фильтра гораздо менее оправданно. ИБП не предназначены для систем, требующих непрерывного функционирования. Если мощность такого оборудования превышает 1 КВт, оптимальным решением будет использование автономного дизельного генератора.
- Напряжение
- Реле
- Трансформатор
- Что такое рекуперация на электровозе
- Чем отличается электровоз от тепловоза
- Чем глушитель отличается от резонатора
- Стойки стабилизатора как определить неисправность
- Стабилизатор поперечной устойчивости как работает
Как найти импульсное напряжение
Импульсные напряжения — это резкое изменение напряжения в точке электрической сети рис. 1.4, за которым следует восстановление напряжения до первоначального или близ кого к нему уровня за промежуток времени до нескольких миллисекунд (то есть меньше полупериода).
Импульсное напряжение характеризуют следующие величины:
Рекомендуемые файлы
— амплитуда импульса — максимальное мгновенное значение импульса напряжения;
— длительность импульса — интервал времени между начальным моментом импульса напряжения и моментом восстановления мгновенного значения напряжения до первоначального или близкого к нему уровня; часто длительность импульса оценивается по уровню 0,5 его амплитуды Dtимп0,5.
В электрическую сеть напряжением 220. 380 В может проникать импульсное напряжение до 3. 6 кВ. Наиболее чувствительны к импульсным напряжениям электронные и микропроцессорные элементы систем управления и защиты, компьютеры, серверы и компьютерные станции.
Основным способом защиты от импульсных напряжений является использование ограничителей перенапряжения (ОПН) на основе металлооксидных соединений.
Временное перенапряжение — это повышение напряжения в точке электрической сети выше 1,1·Uном продолжительностью более Юме, возникающее в системах электроснабжения при коммутациях или коротких замыканиях.
Коэффициент временного перенапряжения КперU — величина, равная отношению максимального значения огибающей амплитудных значений напряжения за время существования временного перенапряжения к амплитуде номинального напряжения сети.
Длительность временного перенапряжения DtперU — интервал времени между начальным моментом возникновения временного перенапряжения и моментом его исчезновения.
Расчетные значения грозовых (табл. 1.3) и коммутационных импульсных напряжений (табл. 1.4) в точках присоединения электрической сети общего назначения (рис. 1.4) приведены для фазных номинальных напряжений сети и справедливы при условии, что распределительные устройства и линии электропередачи в электрических сетях энергоснабжающей организации и потребителей выполнены в соответствии с Правилами устройства электроустановок.
Формы грозовых импульсов, характерные для данных то чек, указаны на рис. 1.5-1.7 грозовых импульсных напряжений в электрической сети потребителя могут превышать указанные в табл. 1.3 значения за счет грозовых поражений в самой сети потребителя за счет отражений и преломлений грозовых импульсов в сети потребителя и частично — за счет разброса параметров грозовых импульсов.
Таблица 1.3 Грозовые импульсные напряжения, кВ
Импульсные блоки питания: принципы работы для новичков — обзор 7 правил построения схемы
Домашний мастер часто сталкивается с поломками сложной бытовой техники из-за отказов ее электрической схемы. Не всегда удается сразу выполнить такой ремонт. Часто требуются знания про импульсные блоки питания, принципы работы их составных частей.
Такие работники популярны, всегда востребованы, заслуживают уважения. Однако не все так сложно в этом вопросе, как кажется на первый взгляд.
Я выделил 7 правил, по которым работает любой ИБП, постарался объяснить их простыми словами для новичков. А что получилось — оценивайте сами.
Блоки питания — это электротехнические устройства, которые изменяют характеристики промышленной электроэнергии до уровня параметров, необходимых для работы конечных механизмов.
Они подразделяются на трансформаторные и импульсные изделия.
Силовой трансформатор понижает входное напряжение и одновременно обеспечивает гальваническую развязку между электрической энергией первичной и вторичной цепи.
Трансформаторные модули тратят значительную часть мощности на электромагнитные преобразования и нагрев, имеют повышенные габариты, вес.
Импульсные блоки питания: как работает структурная схема и взаимодействуют ее части — краткое пояснение
За счет этого снижаются потери и общий вес всех элементов, но усложняется технология. Принципы работы импульсного блока питания помогает понять его структурная схема.
Показываю ее составные части прямоугольниками, связи стрелками, а форму выходного сигнала из каждого блока — мнемонической фигурой преобразованного напряжения (темно синий цвет сверху).
Сетевой фильтр пропускает через себя промышленную синусоиду. Одновременно он отделяет из нее все посторонние помехи.
Очищенная от помех синусоида поступает на выпрямитель со сглаживающим фильтром. Он превращает полученную гармонику в сигнал напряжения строго постоянной формы действующей величины.
Читайте также: Электричество сила тока напряжение мощность
Следующим этапом начинается работа инвертора. Он из постоянного стабилизированного сигнала формирует высокочастотные колебания уже не синусоидальной, а практически строго прямоугольной формы.
Преобразованная в подобный вид электрическая энергия поступает на силовой высокочастотный трансформатор, который, как и обычный аналоговый, видоизменяет ее на пониженное напряжение с увеличенным током.
После силового трансформатора наступает очередь работы выходного выпрямителя.
Заключительным звеном работает сглаживающий выходной фильтр. После него на блок управления бытового прибора поступает стабилизированное напряжение постоянной величины.
Качество работы импульсного блока поддерживается за счет создания в рабочем состоянии обратной связи, реализованной в блоке управления инвертора. Она компенсирует все посадки и броски напряжения, вызываемые колебаниями входной величины или коммутациями нагрузок.
Пример монтажа деталей показан на фотографии платы импульсного блока питания ниже.
Сетевой выпрямитель имеет в своем составе предохранитель на основе плавкой вставки, диодный мост, электромеханический фильтр, набор дросселей, конденсаторы развязки со статикой.
Накопительная емкость сглаживает пульсации.
Генератор инвертора на основе силового ключевого транзистора
в комплекте с импульсным трансформатором выдает напряжение на выходной
выпрямитель с диодами, конденсаторами и дросселями.
Оптопара в узле обратной связи обеспечивает оптическую развязку электрических сигналов.
Разберем все эти части подробнее.
Схемы сетевых фильтров импульсных и высокочастотных помех: 4 типа конструкций
Важно понимать, что импульсы высокой частоты играют двоякую роль:
- в/ч помехи могут приходить из бытовой сети в блок питания;
- импульсы высокочастотного тока генерируются встроенным преобразователем и выходят из него в домашнюю проводку.
Причины появления помех в бытовой сети:
- апериодические составляющие переходных процессов, возникающие от коммутации мощных нагрузок;
- работы близкорасположенных приборов с сильными электромагнитными полями, например, сварочных аппаратов, мощных тяговых электродвигателей, силовых трансформаторов;
- последствия погашенных импульсов атмосферных разрядов и других факторов, включая наложение высокочастотных гармоник.
Помехи ухудшают работу радиоэлектронной аппаратуры, мобильных устройств и цифровых гаджетов. Их необходимо подавлять и блокировать внутри конструкции импульсного блока питания.
Основу фильтра составляет дроссель, выполненный двумя обмотками на одном сердечнике.
Дроссели могут быть выполнены разными габаритами, намотаны толстой или тонкой проволокой на больших или маленьких сердечниках.
Начинающему мастеру достаточно запомнить простое правило: лучше работает фильтр с дросселем большого магнитопровода, увеличенным числом витков и поперечным сечением проволоки. (Принцип: чем больше — тем и лучше.)
Дроссель обладает индуктивным сопротивлением, которое резко ограничивает высокочастотный сигнал, протекающий по проводу фазы или нуля. В то же время оно не оказывает особого влияния на ток бытовой сети.
Работу дросселя эффективно дополняют емкостные сопротивления.
Конденсаторы подобраны так, что закорачивают ослабленные дросселем в/ч сигналы помех, направляя их на потенциал земли.
Принцип работы фильтра в/ч помех от проникновения на блок питания входных сигналов показан на картинке ниже.
Между потенциалами земли с нулем и фазой устанавливают Y конденсаторы. Их конструктивная особенность — они при пробое не способны создать внутреннее короткое замыкание и подать 220 вольт на корпус прибора.
Между цепями фазы и нуля ставят конденсаторы, способные выдерживать 400 вольт, а лучше — 630. Они обычно имеют форму параллепипеда.
Однако следует хорошо представлять, что ИБП в преобразователе напряжения сами выправляют сигнал и помехи им практически не мешают. Поэтому такая система актуальна для обычных аналоговых блоков со стабилизацией выходного сигнала.
У импульсного блока питания важно предотвратить выход в/ч помех в бытовую сеть. Эту возможность реализует другое решение.
Как видите, принцип тот же. Просто емкостные сопротивления всегда располагаются по пути движения помехи за дросселем.
Третья схема в/ч фильтра считается универсальной. Она объединила элементы первых двух. Y конденсаторы в ней просто работают с двух сторон каждого дросселя.
У самых дорогих и надежных устройств используется сложный фильтр с дополнительно подключенными дросселями и конденсаторами.
Сразу же показываю схему расположения фильтров на всех цепочках блока питания: входе и выходе.
Читайте также: Связь нагрузки с напряжением
Обратите внимание, что на кабель, выходящий из ИБП и подключаемый к электронному прибору, может быть дополнительно установлен ферритовый фильтр, состоящий из двух разъемных полуцилиндров или выполненный цельной конструкцией.
Примером его использования является импульсный блок питания ноутбука. Это уже четвертый вариант применения фильтра.
Сетевой выпрямитель напряжения: самая популярная конструкция
В ходе электрического преобразования форма синусоиды, состоящая из полуволн противоположных знаков, вначале меняется на сигнал положительного направления после диодной сборки, а затем эти пульсации сглаживаются до практически постоянной амплитудной величины 311 вольт.
Такой сетевой выпрямитель напряжения заложен в работу всех блоков питания.
Преобразователь импульсного напряжения: объяснение простыми словами с поясняющими картинками
Силовой ключ выполняется первичной обмоткой высокочастотного трансформатора. Для эффективной трансформации в/ч импульсов до 100 килогерц конструкцию магнитопровода делают из альсифера или ферритов.
На обмотку трансформатора от цепей управления через в/ч транзистор поступают импульсы сигналов в несколько десятков килогерц.
Прямоугольные импульсы тока подаются по времени, чередуются с паузами, обозначаются единицей (1) и нулем (0).
Продолжительность протекания импульса или его ширина в каждый момент низкочастотного синусоидального напряжения соответствует его амплитуде: чем она больше, тем шире ШИМ. И наоборот.
ШИМ контроллер отслеживает величину подключенной нагрузки на выходе импульсного блока питания. По ее значению он вырабатывает импульсы, кратковременно открывающие силовой транзистор.
Если подключенная к ИБП мощность начинает возрастать, то схема управления увеличивает длительность импульсов управления, а когда она снижается, то — уменьшает.
За счет работы этой конструкции производится стабилизация напряжения на выходе блока в строго определенном диапазоне.
Импульсный трансформатор: принцип работы одного импульса в 2 такта
Во время преобразования электрической энергии в магнитную и обратно в электрическую с пониженным напряжением обеспечивается гальваническое разделение первичных входных цепей с вторичной выходной схемой.
Каждый ШИМ импульс тока, поступающий при кратковременном открытии силового транзистора, протекает по замкнутой цепи первичной обмотки трансформатора.
- вначале на намагничивание сердечника магнитопровода;
- затем на его размагничивание с протеканием тока по вторичной обмотке и дополнительной подзарядкой конденсатора.
По этому принципу каждый ШИМ импульс из первичной сети подзаряжает накопительный конденсатор.
Генераторы ИБП могут работать по простой однотактной или более сложной двухтактной технологии построения.
Однотактная схема импульсного блока питания: состав и принцип работы
На стороне 220 расположены: предохранитель, выпрямительный диодный мост, сглаживающий конденсатор, биполярный транзистор, цепочки колебательного контура и коллекторного тока, а также обмотки импульсного трансформатора.
Однотактная схема импульсного блока питания создается для передачи мощности 10÷50 ватт, не более. По ней изготавливают зарядные устройства мобильных телефонов, планшетов и других цифровых гаджетов.
В выходной цепочке трансформатора используется выпрямительный диод Д7. Он может быть включен в прямом направлении, как показано на картинке, или обратно, что важно учитывать.
При прямом включении импульсный трансформатор накапливает индуктивную энергию и передает ее в выходную цепь к подключенной нагрузке с задержкой по времени.
Если диод включен обратно, то трансформация энергии из первичной схемы во вторичную цепь происходит во время закрытого состояния транзистора.
Однотактная схема ИБП отмечается простотой конструкции, но большими амплитудами напряжения, приложенными к виткам первичной обмотки импульсного трансформатора.
Их защита осуществляется дополнительными цепочками из
резисторов R2÷R4 и конденсаторов С2, С3.
Двухтактная схема импульсного блока питания: 3 варианта исполнения
Более высокий КПД и пониженные потери мощности являются неоспоримыми преимуществами этих ИБП по сравнению с однотактными моделями.
Простейший вариант исполнения двухполупериодной методики показан на картинке.
Если в нее дополнительно подключить два диода и один сглаживающий конденсатор, то на этом же трансформаторе получается двухполярная схема.
Она распространена в усилителях мощности, работает по обратноходовому принципу. В ней через каждую емкость протекают меньшие токи, обеспечивающие повышенный ресурс конденсаторов при эксплуатации.
Читайте также: Sea pro 20 4 такта как проверить регулятор напряжения
Прямоходовая схема блока питания имеет в своей конструкции дроссель, который выполняет функцию накопления энергии. Для этого два диода направляют поступающие импульсы ШИМ на его вход в одной полярности.
Дроссель этих устройств изготавливается большими габаритами и устанавливается отдельно внутри платы ИБП. Он дополняет работу накопительного конденсатора.
Это наглядно видно по верхней форме сигнала, показанного осциллограммой выпрямления одного и того же блока без дросселя и с ним.
Прямоходовая схема используется в мощных блоках питания, например, внутри компьютера.
В ней выпрямлением тока занимаются диоды Шоттки. Их применяют за счет:
- уменьшенного падения напряжения на прямом включении;
- и повышенного быстродействия во время обработки высокочастотных импульсов.
3 схемы силовых каскадов двухтактных ИБП
По порядку сложности их исполнения генераторы выполняют по:
- полумостовому;
- мостовому;
- или пушпульному принципу построения выходного каскада.
Полумостовая схема импульсного блока питания: обзор
Конденсаторы С1, С2 собраны последовательно емкостным делителем. На него и переходы коллектор-эмиттер транзисторов Т1, Т2 подается напряжение постоянного питания.
К средней точке емкостного делителя и транзисторов подключена первичная обмотка трансформатора Тр2. С ее вторичной обмотки снимается выходное напряжение генератора, которое пропорционально входному сигналу ТР1, трансформируемому на базы Т1 и Т2.
Полумостовая схема ИБП работает для нагрузок от нескольких ватт до киловатт. Ее недостатком является возможность повреждения элементов при перегрузках, что требует использования сложных защит.
Мостовая схема импульсного блока питания: краткое пояснение
Вместо емкостного делителя предыдущей технологии здесь работают транзисторы T3 и T4. Они попарно открываются совместно с Т1 и Т2: (пара Т1-Т4), (пара Т2-Т3).
Напряжение переходов эмиттер-коллектор у закрытых транзисторов не выше величины питающего напряжения, а на обмотке w1 ТР3 оно возрастает до значения U пит. За счет этого увеличивается величина КПД.
Мостовая схема сложна в наладке из-за трудностей с настройкой цепей управления транзисторов Т1÷Т4.
Пушпульная схема: важные особенности
Первичная обмотка выходного ТР2 имеет средний вывод, на который подается плюсовой потенциал источника питания, а его минус — на среднюю точку вторичной обмотки Т1.
Во время прохождения одного полупериода колебания работает один из транзисторов Т1 или Т2 и соответствующая ему часть полуобмотки трансформатора.
Здесь создается самый высокий КПД, малые пульсации и низкие помехи. Амплитудное значение импульсного напряжения на любой половине обмотки w1 ТР2 достигает величины U пит.
К напряжению перехода коллектор-эмиттер каждого транзистора добавляется ЭДС самоиндукции, и оно возрастает до 2U пит. Поэтому Т1 и Т2 надо подбирать на 600÷700 вольт.
Пушпульная схема ключевого каскада пользуется большей популярностью. Она применяется в наиболее мощных преобразователях.
Выходной выпрямитель: самое популярное устройство
Простейшая схема выпрямителя, состоящая из диода и накапливающего конденсатора, показана картинкой ниже.
Она может дорабатываться подключением дополнительных конденсаторов, дросселей, элементов фильтров.
Схема стабилизации напряжения: как работает
Самая примитивная схема стабилизации выходного напряжения создается на дополнительной обмотке импульсного трансформатора.
С нее снимается напряжение и подается для корректировки величины сигнала первичной обмотки.
Лучшая стабилизация создается за счет контроля выходного сигнала с вторичной обмотки и отделения его гальванической связи через оптопару.
В ней используется светодиод, через который проходит ток, пропорциональный значению выходного напряжения. Его свечение воспринимается фототранзистором, который посылает соответствующий электрический сигнал на схему управления генератора ключевого каскада.
Повысить качество стабилизации выходного напряжения позволяет последовательное дополнение к оптопаре стабилитрона, как показано на примере микросхемы TL431 на картинке ниже.
Для закрепления материала в памяти рекомендую посмотреть видеоролик владельца Паяльник TV, который хорошо объясняет информацию про импульсные блоки питания: принципы работы на примере конкретной модели.
Надеюсь, что моя статья поможет вам выполнить ремонт ИБП своими руками за 7 шагов, которые я изложил в другой статье.
Задавайте возникшие вопросы в разделе комментариев, высказывайте свое мнение. Его будет полезно знать другим людям.
- Напряжение
- Реле
- Трансформатор
- Что такое рекуперация на электровозе
- Чем отличается электровоз от тепловоза
- Чем глушитель отличается от резонатора
- Стойки стабилизатора как определить неисправность
- Стабилизатор поперечной устойчивости как работает
Импульсные перенапряжения
Молния может стать причиной пожаров, сильных разрушений, взрывов, травмирования людей и животных, в том числе и смертельных случаев. Специалисты различают первичные и вторичные воздействия удара молнии. Первые возникают при прямом ее попадании в объекты. Непосредственное попадание атмосферного электричества в жилые и промышленные постройки может полностью разрушить их, убить человека или привести к техногенным авариям.
Вторичное воздействие молнии (электромагнитная или электростатическая индукция) вызывается близким с объектом разрядом молнии или заносом высоких потенциалов внутрь построек по подземным или наружным металлическим конструкциям, коммуникациям, воздушным линиям электропередач и проводам другого назначения, а также трубопроводам или кабелям.
Вторичное воздействие разрядов молнии негативно влияет на телефонию, электробытовые сети 220/380 В, системы мобильной связи, а также передачи информации и данных, спутникового и телевизионного вещания. Выход из строя даже на короткое время вышеперечисленных систем может привести к непоправимым последствиям, поэтому современные системы молниезащиты объектов включают защиту и от непосредственных ударов молнии, и от вторичных ее проявлений.
Что это такое импульсные перенапряжения
Кратковременный, но значительный скачок напряжения, а также появление на металлических конструкциях электродвижущей силы – называется импульсным перенапряжением. Специалисты обычно различают проявления электромагнитной и электростатической индукции, занос внутрь объекта высоких потенциалов, а также коммутационное перенапряжение.
Импульсное перенапряжение коммутационного происхождения связано с внезапной сменой режима работы в системе электроснабжения, при коротком замыкании, включении и отключении трансформаторов, включении резервного питания и т.д. При развитии данного типа перенапряжения накопленная в элементах сети энергия из-за резкой смены параметров режима работы приводит к развитию переходного процесса со значительным скачком напряжения.
Повышение напряжений в некоторых случаях может достигать значений в сотни раз выше, чем их нормальные эксплуатационные параметры. Это приводит не только к выходу из строя электрических и электронных устройств и приборов, систем электроснабжения, телекоммуникаций и связи, контроля и управления, но и может являться причиной пожара и даже смерти людей.
Причины импульсных перенапряжений
Причиной появления высоких напряжений обычно является разряд молнии, коммутационные процессы в системах электроснабжения, а также электромагнитные помехи, вызываемые мощными промышленными электроустановками. Различают перенапряжения:
- коммутаций;
- непосредственного разряда (при разряде во внешнюю молниезащиту или воздушные ЛЭП);
- индуцированные (при разряде рядом со зданием или в близстоящие объекты).
Электромагнитная индукция после разряда молнии характеризуется образованием магнитного поля в контурах металлических коммуникациях различной формы с переменными во времени параметрами. При этом значение электродвижущей силы зависит от амплитуды и крутизны тока молнии, а также размеров и формы самого контура.
Индукция электростатической природы провоцируется скоплением под кучевыми облаками с определенным электрическим потенциалом зарядов с противоположным знаком. Но в земле и на проводящих конструкциях наземных промышленных или жилых объектов это накопление приводит к тому, что за время разряда молнии заряды не успевают стечь в землю и становятся причиной появления импульсного перенапряжения. Чаще всего разность потенциалов появляется между металлическими трубами (водопроводными или канализационными), электропроводкой расположенными в постройке и металлической крышей. При этом, чем выше постройка, тем больше значения накопленных потенциалов.
Примеры повреждений, вызванных вторичными воздействиями молнии
Разрушение телефонного аппарата и временнного вводного щита электроустановки
Характеристики импульсного перенапряжения
Энергонасыщенность современных промышленных и жилых объектов, наличие разветвленной электрической сети от проектировщиков систем защиты требует грамотного выбора устройств защиты от импульсных перенапряжений (УЗИП). Для этого необходимо разобраться в основных параметрах, характеризующих возникающие импульсы перенапряжения, а именно:
- форму волны тока (характеризуется временем нарастания и спада);
- амплитуда тока.
Для описания токов разряда молнии применяют 2 вида формы волн: удлиненную (10/350 мксек) и короткую (8/20 мксек). Первая соответствует непосредственному (прямому) попаданию разряда молнии и показывает нарастание тока за 10 мксек до максимального импульсного значения (I imp) и снижению его показания в 2 раза за 350 мсек. Короткая волна наблюдается при удаленном разряде молнии и при коммутационных процессах. Она характеризует нарастание тока за 8 мксек до максимума (I max) и спад до половины значения за 20 мксек. Импульс 10/350 мксек воздействует на электросеть в десятки раз дольше, чем 8/20 мксек, поэтому он более опасен для защищаемых объектов.
Виды УЗИП
УЗИП имеют корпус из негорючего пластика и в большинстве случаев представляют собой разрядники или варисторы самых разных конфигураций. Сегодня ограничители импульсных перенапряжений имеют индикатор выхода из строя. Данные устройства необходимы для создания надежной и эффективной системы внутренней молниезащиты.
Разрядник обычно представляет собой электроприбор (открытого воздушного или закрытого типа) с двумя электродами. На них при увеличении напряжения до определенного значения они пробиваются, тем самым снимая импульс перенапряжения. Варистор является полупроводниковым устройством, имеющим симметричную крутую вольт-амперную характеристику. Принцип его действия заключатся в том, что при достижении на его контактах определенной величины напряжения, он быстро и значительно понижает значение своего сопротивления и пропускает ток.
Ограничители импульсных перенапряжений характеризуются параметрами номинального, импульсного напряжения и временного перенапряжения. В зависимости от мощности импульса, которое УЗИП может рассеять и в соответствии с ГОСТом Р 1992-2002 (МЭК 61643-1-98) выделяют 3 класса ограничителей:
- I B (амплитуда 25-100 кА; для волны 10/350 мксек) – применяется в распределительных щитках;
- II C (амплитуда 10-40 кА; для волны 8/20 мкс) — применяется в вводах электропитающих устройств, щитках помещений;
- III D (амплитуда до 10 кА; для волны 8/20 мкс) – обычно устройства этого класса уже встроены в электроприборы.
Цены на УЗИП и разрядники напряжения
Системы молниезащиты
- Что такое молниезащита?
- Громоотвод
- Молниеотвод
- Молниеприемник
- Токоотвод
- Заземление
- Устройства защиты от перенапряжений
- Активная система молниезащиты
- Зонная концепция молниезащиты
- Система уравнивания потенциалов
Московский международный Дом Музыки Адрес объекта:г. Москва, Космодамианская наб., д. 52, стр. 8 Вид работ: монтаж системы обогрева лотка поверхностного водосбора и участков сливов на балконах 2-го и 3-го этажей Нагревательный элемент: саморегулирующийся нагревательный кабель Thermon RGS-2-60-PU. Производимые работы: Ревизия электрической системы водостоков: замер сопротивления изоляции силовых и нагревательных кабелей; проверка состояния распределительных коробок; проверка работоспособности шкафов управления. Изготовление и монтаж электрической системы обогрева: применялись регуляторы ETR и ETV фирмы OJ, автоматические выключатели и контакторы ABB, кабель нагревательный саморегулирующийся Thermon.
Здание Макдональдса Адрес объекта: Московская обл., г. Домодедово, трасса М4-Дон Вид работ: Изготовление и монтаж системы внешней молниезащиты. Комплектующие: производство фирмы J.Propster. Состав комплекта: молниепримная сетка из проводника Rd8, 50 кв.мм, СГЦ; алюминиевые молниеприемные стержни Rd16 L=2000 мм; универсальные соединители Rd8-10/Rd8-10, СГЦ; промежуточные соединители Rd8-10/Rd16, Al; стеновые держатели Rd8-10, СГЦ; клеммы конечные, СГЦ; пластиковые держатели на плоской кровле с крышкой (с бетоном) для оцинкованного проводника Rd8; изолированные штанги d=16 L=500 мм.
Частный дом, Икша Адрес объекта: Московская обл., поселок Икша Вид работ: Проектирование и монтаж систем внешней молниезащиты, заземления и уравнивания потенциалов. Комплектующие: B-S-Technic, Citel. Внешняя молниезащита: молниеприемные стержни из меди, медный проводник общей длиной 250 м, кровельные и фасадные держатели, соединительные элементы. Внутренняя молниезащита: Разрядник DUT250VG-300/G TNC, производство CITEL GmbH. Заземление: стержни заземления из оцинкованной стали Rd20 12 шт. с наконечниками, стальная полоса Fl30 общей длиной 65 м, крестовые соединители.
Индивидуальный жилой дом, д. Лупаново Адрес объекта: Московская область, Дмитровский район, дер. Лупаново Вид работ: Проектирование и монтаж системы внешней молниезащиты.
Административно-офисное здание, г. Москва. Адрес объекта: г. Москва, Борисоглебский переулок. Вид работ: изготовление и монтаж системы внешней, внутренней молниезащиты и заземления. Комплектующие: DEHN+SOHNE Gmbh, J. Propster. Система внешней молниезащиты: комбинированная в виде молниеприемной сетки из медного проводника Rd8 с шагом ячейки 10х10 м и двух стержневых алюминиевых молниеприемников Rd16 длиной 2,5 м; молниеприемный проводник уложен на держатели для мягкой кровли из пластика с бетонным утяжелением. В качестве элементов крепления и соединения использованы биметаллические универсальные соединители Cu/Al Rd8-10/Rd8-10 и стеновые держатели из меди Rd8-10. Внутренняя молниезащита: 4-х полюсный разрядник перенапряжения компании J. Propster, тип сети TNS, 12.5 кА. Заземление: выполнено в виде отдельных очагов с применением глубинных заземлителей из оцинкованной стали Rd20, полосы заземления сечением 40х4 мм, соединителей Rd20хFl40/Rd8-10 и изолированного проводника Rd10/13.
Окончание монтажа молниезащиты и заземления торгово-офисного комплекса «Мельница»
Завершен монтаж системы внешней молниезащиты и заземления торгово-офисного складского комплекса «Мельница» в г. Лобня