Как найти напряжение через индуктивность

Катушка индуктивности в цепи постоянного и переменного тока

Как ведет себя катушка индуктивности в цепи постоянного и переменного тока?

Катушка индуктивности в цепи постоянного тока

Итак, для этого опыта нам понадобится блок питания, который выдает постоянное напряжение, лампочка накаливания и собственно сама катушка индуктивности.

Чтобы сделать катушку индуктивности с хорошей индуктивностью, нам надо взять ферритовый сердечник:

феррит

Намотать на него лакированного медного провода и зачистить выводы:

самодельная катушка индуктивности

Замеряем индуктивность нашей катушки с помощью LC метра:

как замерить индуктивность катушки

Теперь собираем все это вот по такой схеме:

L — катушка индуктивности

La — лампочка накаливания на напряжение 12 Вольт

Bat — блок питания, с выставленным напряжением 12 Вольт

катушка индуктивности в цепи постоянного тока

Как вы помните из прошлой статьи, конденсатор у нас не пропускал постоянный электрический ток:

конденсатор в цепи постоянного тока

Делаем вывод: постоянный электрический ток почти беспрепятственно течет через катушку индуктивности. Сопротивлением обладает только сам провод, из которого намотана катушка.

Катушка индуктивности в цепи переменного тока

Для того, чтобы узнать, как ведет себя катушка индуктивности в цепи переменного тока, нам понадобится осциллограф, генератор частоты, собственно сама катушка индуктивности и резистор на 100 Ом. Чем больше сопротивление, тем меньше будет проседать напряжение с моего генератора частоты, поэтому я взял резистор на 100 Ом.Он у меня будет в качестве шунта. Падение напряжения на этом резисторе будет зависеть от тока, протекающего через него

Собираем все это дело по такой схеме:

Получилось как то так:

Катушка индуктивности в цепи постоянного и переменного тока

Сразу договоримся, что у нас первый канал будет красным цветом, а второй канал — желтым. Следовательно, красная синусоида — это частота, которую нам выдает генератор частоты, а желтая синусоида — это сигнал, который снимается с резистора.

Мы с вами узнали, что при нулевой частоте (постоянный ток), катушка почти беспрепятственно пропускает через себя электрический ток. В нашем опыте мы будем подавать с генератора частоты синусоидальный сигнал с разной частотой и смотреть, меняется ли напряжение на резисторе.

Опыт N1

Для начала подаем сигнал с частотой в 1 Килогерц.

Давайте разберемся, что есть что. В зеленой рамочке я вывел автоматические замеры, которые делает осциллограф

Красный кружок с цифрой «1» — это замеры «красного»канала. Как мы видим, F (частота) =1 Килогерц, а Ма (амплитуда) = 1,96 Вольт. Ну грубо скажем 2 Вольта. Смотрим на кружочек с цифрой «2». F=1 Килогерц, а Ма=1,96 Вольт. То есть можно сказать, что сигнал на выходе точно такой же, как и на входе.

Увеличиваем частоту до 10 Килогерц

Амплитуда не уменьшилась. Сигнал какой есть, такой и остался.

Увеличиваем до 100 Килогерц

Заметили разницу? Амплитуда желтого сигнала стала меньше, да еще и график желтого сигнала сдвигается вправо, то есть запаздывает, или научным языком, появляется сдвиг фаз. Красный сигнал никуда не сдвигается, запаздывает именно желтый. Это имейте ввиду.

Сдвиг фаз — это разность между начальными фазами двух измеряемых величин. В данном случае напряжения. Для того, чтобы произвести замер сдвига фаз, должно быть условие, что у этих сигналов одна и та же частота. Амплитуда может быть любой. Ниже на рисунке приведен этот самый сдвиг фаз или, как еще его называют, разность фаз:

Катушка индуктивности в цепи постоянного и переменного тока

Увеличиваем частоту до 200 Килогерц

На частоте 200 Килогерц амплитуда упала вдвое, да и разность фаз стала больше.

Увеличиваем частоту до 300 Килогерц.

Амплитуда желтого сигнала упала уже до 720 милливольт. Разность фаз стала еще больше.

Увеличиваем частоту до 500 Килогерц

Амплитуда уменьшилась до 480 милливольт.

Добавляем еще частоту до 1 Мегагерц

Амплитуда желтого канала стала 280 милливольт.

Ну и добавляем частоту до предела, который позволяет выдать генератор частоты: 2 Мегагерца

Амплитуда «желтого» сигнала стала настолько маленькой, что мне пришлось ее даже увеличить в 5 раз.

И можно сказать, что сдвиг фаз стал почти 90 градусов или π/2.

Но станет ли сдвиг фаз больше, чем 90 градусов, если подать очень-очень большую частоту? Эксперименты говорят, что нет. Если сказать просто, то при бесконечной частоте сдвиг фаз будет равняться 90 градусов. Если совместить наши графики на бесконечной частоте, то можно увидеть примерно вот такой рисунок:

Так какой вывод можно сделать?

С увеличением частоты сопротивление катушки растет, а также увеличивается сдвиг фаз. И чем больше частота, тем больше будет сдвиг фазы, но не более, чем 90 градусов.

Опыт N2

Давайте же уменьшим индуктивность катушки. Прогоним еще раз по тем же самым частотам. Я убрал половину витков и сделал витки на край феррита, тем самым уменьшил индуктивность до 33 микрогенри.

Катушка индуктивности в цепи постоянного и переменного тока

Итак, прогоняем все по тем же значениям частоты

При частоте в 1 Килогерц у нас значение почти не изменилось.

Здесь тоже ничего не изменилось.

Тоже почти ничего не изменилось, кроме того, что желтый сигнал стал тихонько сдвигаться.

Здесь уже видим, что амплитуда на желтом сигнале начинает проседать и сдвиг фаз наращивает обороты.

Сдвиг фаз стал больше и амплитуда просела еще больше

Сдвиг стал еще больше и амплитуда желтого сигнала тоже просела.

Амплитуда желтого сигнала падает, сдвиг фаз прибавляется. 😉

2 Мегагерца, предел моего генератор частоты

Сдвиг фаз стал почти равен 90 градусов, а амплитуда стала даже меньше, чем пол Вольта.

Обратите внимание на амплитуду в Вольтах на тех же самых частотах. В первом случае у нас индуктивность была больше, чем во втором случае, но амплитуда желтого сигнала во втором случае больше, чем в первом.

Отсюда вывод напрашивается сам собой:

При уменьшении индуктивности, сопротивление катушки индуктивности также уменьшается.

Реактивное сопротивление катушки индуктивности

С помощью нехитрых умозаключений, физиками была выведена формула:

П — постоянная и равна приблизительно 3,14

В данном опыте мы с вами получили фильтр низких частот (ФНЧ). Как вы видели сами, на низких частотах катушка индуктивности почти не оказывает сопротивление напряжению, следовательно амплитуда и мощность на выходе такого фильтра будет почти такой же, как и на входе. Но с увеличением частоты у нас амплитуда гасится. Применив такой фильтр на динамик, можно с уверенностью сказать, что будет усиливаться только бас, то есть низкая частота звука.

Видео про катушку индуктивности:

Заключение

Постоянный ток протекает через катушку индуктивности без каких-либо проблем. Сопротивлением обладает только сам провод, из которого намотана катушка.

Сопротивление катушки зависит от частоты протекающего через нее тока и выражается формулой:

Что такое индуктивное сопротивление

В электрических цепях существует три вида сопротивления. Это активное, которое действует как при постоянном, так и при переменном токе, а также два вида реактивного — индуктивное и емкостное сопротивление. Умея их определять, можно посчитать полное сопротивление, которое также называют импедансом. От чего зависит индуктивное сопротивление и по какой формуле рассчитывается, будет рассмотрено в статье.

Сопротивление электрической цепи

Виды сопротивления в электрической цепи

Если используется постоянный ток, то рассматривается только обычное сопротивление, которое также называется активным или омическим. При переменном существует не только активное, но и реактивное сопротивление. Последнее бывает индуктивным и емкостным. Его величина определяется по соответствующим формулам. Сопротивление называется реактивным потому что не вызывает безвозвратных потерь энергии.

В цепях переменного тока полное сопротивление представляет собой сумму омического, индуктивного и емкостного сопротивлений. Определить его можно по правилам векторного сложения слагаемых. Если рассматривать цепь, которая не содержит конденсаторов, то основную роль будет играть реактивное сопротивление катушки индуктивности.

Магнитное поле провода

Что такое индуктивное сопротивление

Когда по цепи течёт ток, то движущиеся заряды создают магнитное поле. При постоянном токе оно не будет меняться во времени. Если же происходит уменьшение или увеличение тока, то возникает явление самоиндукции. Она тормозит изменение электротока, тем самым уменьшая его. При этом сопротивление выражается через индуктивность.

Если имеется катушка, то индуктивное сопротивление в цепи создает она. Его значение зависит от частоты тока. Чем она больше, тем выше индуктивное сопротивление катушки.

Ещё одной особенностью является сдвиг фазы. Активное сопротивление не имеет смещения по отношению к питающему напряжению, емкостное запаздывает на 90 градусов, а индуктивное опережает напряжение на эту же величину.

Магнитное поле катушки

Катушка индуктивности

Эта деталь обычно имеет сердечник цилиндрической или тороидальной формы, на который многократно намотан провод. Основной характеристикой катушки является индуктивность.

Как известно, магнитное поле создаётся движущимися электрическими зарядами. Даже если постоянный ток идёт по проводу, вокруг него создаётся магнитное поле. Оно создаёт препятствия для изменения тока в те моменты, когда меняется само, чему можно не удивляться, зная о существовании индуктивного сопротивления. Для постоянного тока это происходит в моменты включения и выключения.

Если питающее напряжение переменное, то изменения происходят непрерывно. Основная задача катушки индуктивности — увеличивать напряженность магнитного поля. Она имеет не только индуктивное, но и обычное сопротивление. Однако при расчётах его считают пренебрежимо малым.

Катушки с разными сердечниками

Формула индуктивного сопротивления

Рассматриваемое сопротивление тем больше, чем выше частота тока и индуктивность. Эту зависимость легко объяснить. Большая частота подразумевает высокую скорость изменения магнитного поля, которая усиливает эффект самоиндукции. Увеличение индуктивности соответствует более сильному магнитному полю.

Индуктивное сопротивление обозначается как XL. Обозначение буквой Х используется для любого реактивного сопротивления. То, что оно индуктивное подтверждает буква L. Его единица измерения — Ом. Чтобы рассчитать значение, понадобится формула индуктивного сопротивления:

Формула индуктивного сопротивления

В этой формуле буквами F и L обозначаются частота переменного тока и индуктивность катушки соответственно. Индуктивность измеряется в Генри, сокращенно Гн.

Чтобы найти полное сопротивление в контуре, состоящем из резисторов и катушки, необходимо сложить активную и реактивную составляющую, воспользовавшись правилом прямоугольного треугольника. Один катет такого треугольника соответствует активному сопротивлению, а второй — реактивному. Гипотенуза — это полное сопротивление или импеданс. Его значение рассчитывается по теореме Пифагора.

Формула полного сопротивления для катушки

  • XL — это индуктивное сопротивление, которое определяется формулой, приведённой выше.
  • R — активное сопротивление. Для его вычисления следует воспользоваться законом Ома.

Произведение 2πF в формуле сопротивления называют также круговой частотой. Ее обозначают буквой ω. С учетом этого формулу для определения индуктивного сопротивления можно записать так: XL = ω×L.

Катушка индуктивности в цепи переменного тока

Практическое использование

Одним из распространённых применений индуктивного сопротивления катушки является создание фильтров. В сложных системах могут возникать шумы на высоких частотах, которые снижают качество передачи сигнала. Это может быть актуально, например, для акустических систем, зависящих от качества воспроизведения звуковых сигналов. В этом случае выручает то, что индуктивное сопротивление определяется частотой тока.

Электротоки разной частоты, проходящие через катушку, вызывают в ней разное индуктивное сопротивление. Оно тем больше, чем выше частота переменного тока. При нулевой частоте, то есть, установившемся постоянном ток, индуктивное сопротивление также равно нулю.

Зависимость индуктивного сопротивления от частоты тока

Сигналы пропускают через фильтр с индуктивным сопротивлением, препятствующим прохождению сигналов нежелательной частоты. Чтобы преградить путь низкочастотным звуковым сигналам, используют катушки со стальными сердечниками, высокочастотным — без сердечников. Такие катушки называются дросселями, соответственно, низкой и высокой частоты.

В рассматриваемой ситуации удобно одновременно использовать еще и ёмкостное сопротивление, зависящее также от частоты тока. Но оно с ее увеличением уменьшается. Таким образом, с помощью фильтров можно избавляться от нежелательных шумовых сигналов.

Принцип работы трансформатора

Ещё одно важное применение рассматриваемого явления — трансформатор. Та самая самоиндукция, которая тормозит прохождение тока, благодаря создаваемому сопротивлению в этом устройстве играет положительную роль.

В трансформаторе используется сердечник и две обмотки. На первичную обмотку поступает переменное напряжение питания, а на вторичной генерируется индукционный ток. Наличие индукционных токов определенной величины необходимо для работы многих электроприборов.

С помощью трансформатора можно, например, преобразовать 220 В сетевого питания в 12 В, которые необходимы для электропитания стереосистемы. Такая подстройка определяется соотношением количества витков на первичной и вторичной обмотках.

Катушка представляет собой источник ЭДС. Эту ее особенность используют в индукционных плитах. Электромагнитные волны, создаваемые катушкой, нагревают кухонную посуду и их содержимое. По такому же принципу работают и печи на сталелитейных заводах.

Зная, что собой представляет такое явление, как индуктивное сопротивление, его можно использовать для расчета параметров различного электротехнического и энергетического оборудования.

Видео по теме

Элементы электрической цепи – резистор, конденсатор, катушка индуктивности (УГО, единицы измерения, комплексное и операторное сопротивление).

Строй-бетон

Реальная катушка в отличии от идеальной имеет не только индуктивность, но и активное сопротивление, поэтому при протекании переменного тока в ней сопровождается не только изменением энергии в магнитном поле, но и преобразованием электрической энергии в другой вид. В частности, в проводе катушки электрическая энергия преобразуется в тепло в соответствии с законом Ленца — Джоуля.

Ранее было выяснено, что в цепи переменного тока процесс преобразования электрической энергии в другой вид характеризуется активной мощностью цепи Р, а изменение энергии в магнитном поле — реактивной мощностью Q.

В реальной катушке имеют место оба процесса, т. е. ее активная и реактивная мощности отличны от нуля. Поэтому одна реальная катушка в схеме замещения должна быть представлена активным и реактивным элементами.

Читайте также: Полная мощность силового трансформатора формула

Схема замещения катушки с последовательным соединением элементов

В схеме с последовательным соединением элементов реальная катушка характеризуется активным сопротивлением R и индуктивностью L.

Активное сопротивление определяется величиной мощности потерь

R = P/I2

а индуктивность — конструкцией катушки. Предположим, что ток в катушке (рис. 13.9, а) выражается уравнением i = Imsinωt. Требуется определить напряжение в цепи и мощность. При переменном токе в катушке возникает э. д. с. самоиндукции eL поэтому ток зависит от действия приложенного напряжения и эдс eL. Уравнение электрического равновесия цепи, составленное по второму закону Кирхгофа, имеет вид:

Приложенное к катушке напряжение состоит из двух слагаемых,одно из которых uR равно падению напряжения в активном сопротивлении, а другое uL уравновешивает эдс самоиндукции.

В соответствии с этим катушку в схеме замещения можно представить активным и индуктивным сопротивлениями, соединенными последовательно (рис. 13.9, б). Дополнительно заметим, что оба слагаемых в правой части равенства (13.12) являются синусоидальными функциями времени. Согласно выводам полученных в этих предыдущих двух (первая, вторая) статьях получим — uR совпадает по фазе с током, UL опережает ток на 90°.

u = R*Imsinωt + ωLImsin(ωt+π/2).

Влияние числа витков и способа намотки

Катушка индуктивности – это спираль, созданная из проводящего материала. Рабочие параметры изделий будут зависеть от особенностей конструкции. Индуктивность увеличивают:

  • большим количеством витков на единицу длины;
  • укрупнением поперечного сечения;
  • установкой в центральной части сердечника с ферромагнитными характеристиками.

От чего зависит индуктивность катушки, примеры типовых решений

Индуктивность одновиткового контура и индуктивность катушки

Для расчета элементарной конструкции подойдет преобразованная первая формула:

Если рассматривается катушка, это выражение трансформируют в суммарное выражение магнитных потоков (Ψ), образованных отдельными витками:

Читайте также: ЛЭП: вред для здоровья, минимальное расстояние до жилого дома

Советуем изучить Векторная диаграмма токов и напряжений

В действительности для точных расчетов учитывают различия силовых линий в центральной части и на краях конструкции. Для коррекции применяют более сложные выражения.

Индуктивность соленоида

Достаточно длинная электрическая катушка формирует внутри параллельные силовые линии. Для создания равномерного распределения энергии необходимо применять проводник с толщиной намного меньше, по сравнению с диаметром поперечного сечения. Разумеется, необходимо установить одинаковое расстояние между отдельными витками.

Такую конструкцию называют соленоидом. Плотность магнитного потока (B) в центральной рабочей части будет зависеть прямо пропорционально от длины (l) и следующих параметров:

  • количества витков (N);
  • тока (i);
  • плотности намотки (n – число контуров на единицу длины);
  • площади поперечного сечения (S);
  • объема (V = S * l).

Ниже приведены основные формулы для вычислений при отсутствии сердечника с учетом магнитной постоянной (m ≈ 1,257 *10-6 Гн/ м):

  • В = m0 * N * (i/l) = m0 * n * I;
  • Ψ = m0 * N2 * (I * S/l) = m0 * n2 * i *V;
  • L = m0 * N2 * (S/l) = m0 * n2 * V.

Индуктивность тороидальной катушки (катушки с кольцевым сердечником)

Для вычисления индукции катушки с сердечником в представленные выше формулы добавляют корректирующий множитель «m». С учетом особой формы изделия необходимо сделать следующие изменения:

L = N2 * ((m0 * m * S)/2π * rL), либо L = N2 * ((m0 * m * h)/2π) * ln(R/r),

  • 2π * rL – длина рабочего элемента со средним радиусом rL;
  • R (r) и h – наружный (внутренний) радиус и высота тора, соответственно.

Коэффициентом «m» учитывают относительный показатель магнитной проницаемости определенного материала к значению для нейтральной среды (вакуума). Если m намного больше единицы, допускается не учитывать искажения поля, которые создает толстый проводник.

Векторная диаграмма реальной катушки и полное её сопротивление

Несовпадение по фазе слагаемых в выражении (13.12) затрудняет определение амплитуды и действующей величины приложенного к цепи напряжения U. Поэтому воспользуемся векторным способом сложения синусоидальных величин. Амплитуды составляющих общего напряжения

UmR = RIm; UmL = ωLIm ,

а действующие величины

Читайте также: Выпрямители, управляемые трансформатором

UR = RI; UL = XLI .

Вектор общего напряжения

U = UR + UL

Для того чтобы найти величину вектора U, построим векторную диаграмму (рис. 13.10, а), предварительно выбрав масштабы тока Mi и напряжения Мu.

За исходный вектор диаграммы принимаем вектор тока I. Направление этого вектора совпадает с положительным направлением оси, от которой отсчитываются фазовые углы (начальная фаза заданного тока Ψi =0). Как и ранее, эту ось удобно (но не обязательно) направить по горизонтали.

Вектор UR по направлению совпадает с вектором тока I, а вектор UL направлен перпендикулярно вектору I с положительным углом.

UR = Ucosφ

Проекция вектора напряжения U на направление вектора тока называется активной составляющей вектора напряжения и обозначается Ua. Для катушки по схеме рис. 13.9 при Ua = UR

U = Usinφ (13.14)

Проекция вектора напряжения U на направление, перпендикулярное вектору тока, называется реактивной составляющей вектора напряжения и обозначается Up. Для катушки Up = UL

При токе i = Imsinωtуравнение напряжения можно записать на основании векторной диаграммы в виде

U = Umsin(ωt+φ)

Стороны треугольника напряжений, выраженные в единицах напряжения, разделим на ток I. Получим подобный треугольник сопротивлений (рис. 13.10, б), катетами которого являются активное R = UR/I и индуктивное XL = UL/I, сопротивления, а гипотенузой величина Z = U/I.

Отношение действующего напряжения к действующему току данной цепи называется полным сопротивлением цепи. Стороны треугольника сопротивлений нельзя считать векторами, так как сопротивления не являются функциями времени. Из треугольника сопротивлений следует

Понятие о полном сопротивлении цепи Z позволяет выразить связь между действующими величинами напряжения и тока формулой, подобной формуле Ома:

Из треугольников сопротивления и напряжения определяются

cosφ = UR/U = R/Z; sinφ = UL/U = XL/Z; tgφ = UL/UR = XL/R. (13.18)

Мощность реальной катушки

Мгновенная мощность катушки

p = ui = Umsin(ωt+φ) * Imsinωt

Из графика мгновенной мощности (рис. 13.11) видно, что в течение периода мощность четыре раза меняет знак; следовательно, направление потока энергии и в данном случае в течение периода меняется. Относительно некоторой оси t’, сдвинутой параллельно оси t на величину Р, график мгновенно мощности является синусоидальной функцией двойной частоты. При положительном значении мощности энергия переходит от источника в приемник, а при отрицательном — наоборот. Нетрудно заметить, что количество энергии, поступившей в приемник (положительная площадь), больше возвращенной обратно (отрицательная площадь).

Следовательно, в цепи с активным сопротивлением и индуктивностью часть энергии, поступающей от генератора, необратимо превращается в другой вид энергии, но некоторая часть возвращается обратно. Этот процесс повторяется в каждый период тока, поэтому в цепи наряду с непрерывным превращением электрической энергии в другой вид энергии (активная энергия) часть ее совершает колебания между источником и приемником (реактивная энергия).

Скорость необратимого процесса преобразования энергии оценивается средней мощностью за период, или активной мощностью Р, скорость обменного процесса характеризуется реактивной мощностью Q.

Согласно выводам полученных в этих предыдущих (первая, вторая) статьях — в активном сопротивлении P = URI Q = 0; а в индуктивном Р = 0; Q = ULI.

Читайте также: Что такое гармонические составляющие электрического тока

Активная мощность всей цепи равна активной мощности в сопротивлении R, а реактивная — реактивной мощности в индуктивном сопротивлении XL. Подставляя значения UR = Ucosφ и UL = Usinφ, определяемые из треугольника напряжений по формулам (13.18), получим:

P = UIcosφ (13.19)

Q = UIsinφ (13.20)

Кроме активной и реактивной мощностей пользуются понятием полной мощности S, которая определяется произведением действующих величин напряжения и тока цепи;

S = UI = I2Z (13.21)

Величину полной мощности можно получить из выражения (13.22), которое легко доказать на основании формул (13.19) и (13.20):

(13.22)

Мощности S, Р, Q графически можно выразить сторонами прямоугольного треугольника (см. рис. 13.10, в). Треугольник мощностей получается из треугольника напряжений, если стороны последнего, выраженные в единицах напряжения, умножить на ток. Из треугольника мощностей можно определить

cosφ = P/S; sinφ = Q/S; tgφ = Q/P. (13.23)

Полная мощность имеет ту же размерность, что Р и Q, но для различия единицу полной мощности называют вольт-ампер (В · А).

Активная мощность Р меньше или равна полной мощности цепи. Отношение активной мощности цепи к ее полной мощности P/S = = cosφ называют коэффициентом мощности.

Назначение приемников электрической энергии — преобразование ее в другие виды энергии. Поэтому колебания энергии в цепи не только бесполезны, но и вредны, так как при этом в приемнике не совершается полного преобразования электрической энергии в работу или тепло, а в соединительных проводах она теряется.

Что такое индуктивность

Что такое индуктивность — это физическая величина, которая рассказывает нам о магнитных свойствах электрической цепи. Индуктивность измеряют в Гн (Генри).

Если вы вообще не понимаете о чём речь, то советую ознакомиться сначала с вот с этой статьей.

В электрических схемах например, нам встречаются какие-то непонятные катушки, дроссели и многие даже не знают их функциональную роль. В этой статье я постараюсь доступным языком рассказать, что такое индуктивность и как это явление применить на своей любимой работе.

Давайте посмотрим на рисунок

Давайте начнём движение проводника в магнитном поле таким образом, чтобы он пересек силовые линии постоянного магнита. Если это условие выполняется, то тогда в нашем проводнике появляется электродвижущая сила (ЭДС). Или наоборот проводник остаётся на месте, а магнит передвигают таким образом, чтобы силовые линии магнита пересекали проводник. Сейчас был пример электромагнитной индукции. Значение индуцированной электродвижущей силы в проводнике прямо пропорциональна магнитной индукции поля, скорости перемещения и длине проводника

Направление возникшей электродвижущей силы в проводнике определяют через правило правой руки.

Советуем изучить Варианты подсветки потолка в помещениях

Правая рука находится в таком положении чтобы силовые линии магнита заходили в ладонь. Следовательно, большой палец показывает нам направление перемещения проводника, а остальные пальцы покажут нам направление возникшей электродвижущей силы.

Для усиления электродвижущей силы индукции применяют электрические катушки

А если подать напряжение на катушку, то по её виткам потечёт ток, который создаёт своё магнитное поле.