Инструкция по расчёту
Программа предназначена для расчёта установившихся режимов электрических цепей по законам ТОЭ. Программа позволяет нарисовать схему, задать параметры её элементов и рассчитать схему. В результате формируется текстовое описание порядка расчёта.
Рисование схемы
Рисование схемы производится путём перетаскивания элементов методом drag-and-drop из боковой панели и последующим соединением выбранных элементов.
В боковой панели доступны следующие элементы с задаваемыми параметрами:
- резистор :
- номер элемента;
- сопротивление, Ом;
- номер элемента;
- сопротивление, Ом;
- номер элемента;
- сопротивление, Ом;
- номер элемента;
- амплитудное значение, В;
- начальная фаза, °;
- номер элемента;
- амплитудное значение, А;
- начальная фаза, °.
При наведении указателя мыши на элемент отображаются точки соединения элемента с другими элементами (рис. 1) и кнопка для поворачивания элемента (рис. 2).
Рис. 1. Точки соединения элемента
Рис. 2. Кнопка для поворачивания элемента
Для соединения одного элемента с другим необходимо навести указатель мыши на точку соединения элемента, нажать левую клавишу мыши и соединить его с другим элементом (рис. 3), нажав левой клавишей мыши на точке соединения другого элемента.
Рис. 3. Соединение элементов
Узлы формируются автоматически при соединении элемента с другой соединительной линией.
Рис. 4. Формирование узла
При нажатии на элемент в правой части экрана формируется окно с параметрами элемента, которые доступны для редактирования (рис. 5).
Рис. 5. Задание параметров элемента
Ограничения при рисовании схемы
Для корректного анализа схемы соединительная линия обязательно должна быть соединена с обеих сторон к элементам/соединительным линиям, иначе программа не будет производить расчёт схемы, о чём она просигнализирует соответствующим уведомлением.
Удаление элементов производится нажатием кнопки «Удалить», расположенной в левой части экрана ниже боковой панели с элементами.
Сохранение схемы в виде файла и загрузка схемы из файла
На боковой панели доступна кнопка
для загрузки схемы из файла и кнопка
для сохранения исходной схемы в файл.
Задание параметров
ВНИМАНИЕ! Если параметры элементов задаются в виде вещественного числа, то дробную часть от целой необходимо отделять точкой.
При расчёте можно выбрать единицы измерения, в которых задаются параметры конденсаторов и катушек индуктивности. Доступны 2 варианта:
В том случае, если выбран вариант Ф/Гн, необходимо задать частоту. В качестве значения по умолчанию выбрано значение 50 Гц. Частота обязательно должна быть больше нуля.
Если для конденсаторов и катушек индуктивности часть параметров задаётся в Омах, а другая часть — в ёмкостях/индуктивностях, то в этом случае величины необходимо привести к одним. К примеру, сопротивления рассчитываются по известным формулам:
где $ X_ = \omega L $, $ X_ = \frac <\omega C>$, $ R $ – сопротивление резистора, $ L $ – индуктивность катушки, $ C $ – ёмкость конденсатора, $ \omega = 2 \pi f $ – циклическая частота, $ f $ – частота сети, $ j $ – мнимая единица.
Задание параметров источников ЭДС и тока задаются в виде их модуля и фазы. Например, если в исходных данных
$$ \underline = 3 + 4j, $$
то для того, чтобы задать это значение в программу, его необходимо привести в полярную форму. Получим:
$$ \underline = 5 \angle 53.13 \degree $$
Таким образом, в поле «Амплитудное значение» необходимо задать значение 5, а в поле «Начальная фаза» необходимо задать значение 53.13.
Методы расчёта
После завершения рисования схемы при нажатии кнопки «Расчёт» запускается расчёт электрической цепи. Программа анализирует исходную схему и при выявлении каких-либо ошибок сообщает об этом. При успешном анализе схемы запускается расчёт по методам ТОЭ.
Метод расчёта осуществляет путём его выбора в спадающем списке, расположенном ниже кнопки «Расчёт». Приняты следующие обозначения методов:
- ЗК − расчёт по законам Кирхгофа
- МУП − расчёт по методу узловых потенциалов
- МКТ − расчёт по методу контурных токов
- МЭГ − расчёт по методу эквивалентного генератора
- Z − расчёт эквивалентного сопротивления цепи относительно источника питания
Следует обратить внимание на то, что если рассчитываемая схема одноконтурная, то, независимо от выбранного метода расчёта, расчёт будет производиться по закону Ома. Эквивалентное сопротивление цепи может быть рассчитано только для схемы с одним источником питания.
Расчёт по закону Ома
Расчёт по закону Ома осуществляется для одноконтурных схем. Используемая методика расчёта приведена здесь.
Пример схемы и расчёт:
Исходные данные и схема:
- E1:
- Номер элемента: 1
- Амплитудное значение: 100 В
- Начальная фаза, °: 0
- Номер элемента: 1
- Сопротивление, Ом: 1
После нажатия кнопки «Расчёт» формируется решение:
В исходной схеме только один контур. Рассчитаем её по закону Ома.
Согласно закону Ома, ток в замкнутой цепи равен отношению ЭДС цепи к сопротивлению. Составим уравнение, приняв за положительное направление тока $ \underline $ направление источника ЭДС $ \underline_ $:
$$ R_\cdot \underline = \underline_ $$
Подставим в полученную систему уравнений значения сопротивлений и источников и получим:
Отсюда искомый ток в цепи равен
$$ \underline = 100\space \textrm$$
Расчёт по законам Кирхгофа
Используемая методика при расчёте по законам Кирхгофа приведена здесь.
Пример схемы и расчёт:
Исходные данные и схема:
- E1:
- Номер элемента: 1
- Амплитудное значение: 100 В
- Начальная фаза, °: 0
- Номер элемента: 1
- Сопротивление, Ом: 1
- Номер элемента: 1
- Сопротивление, Ом: 1
- Номер элемента: 1
- Сопротивление, Ом: 1
После нажатия кнопки «Расчёт» на исходной схеме отображаются принятые обозначения узлов и принятые направления токов и формируется решение:
Рассчитаем схему по законам Кирхгофа.
В данной схеме: узлов − 2 , ветвей − 3, независимых контуров − 2.
Произвольно зададим направления токов в ветвях и направления обхода контуров.
Принятые направления токов:
Ток $ \underline_ $ направлен от узла ‘2 у.’ к узлу ‘1 у.’ через элементы $ \underline_ $, $ R_ $.
Ток $ \underline_ $ направлен от узла ‘1 у.’ к узлу ‘2 у.’ через элементы $ L_ $.
Ток $ \underline_ $ направлен от узла ‘1 у.’ к узлу ‘2 у.’ через элементы $ C_ $.Принятые направления обхода контуров:
Контур №1 обходится через элементы $ \underline_ $, $ R_ $, $ L_ $ в указанном порядке.
Контур №2 обходится через элементы $ L_ $, $ C_ $ в указанном порядке.Составим уравнения по первому закону Кирхгофа. При составлении уравнений «втекающие» в узел токи будем брать со знаком «+», а «вытекающие» − со знаком «−».
Количество уравнений, составляемых по первому закону Кирхгофа, равно $ N_\textrm − 1 $, где $ N_\textrm $ − число узлов. Для данной схемы количество уравнений по первому закону Кирхгофа равно 2 − 1 = 1.
Составим уравнение для узла №1:
$$ \underline_- \underline_- \underline_ = 0 $$
Составим уравнения по второму закону Кирхгофа. При составлении уравнений положительные значения для токов и ЭДС выбираются в том случае, если они совпадают с направлением обхода контура.
Количество уравнений, составляемых по второму закону Кирхгофа, равно $ N_\textrm- N_\textrm + 1 $, где $ N_\textrm $ − число ветвей. Для данной схемы количество уравнений по второму закону Кирхгофа равно 3 − 2 + 1 = 2.
Составим уравнение для контура №1:
$$ R_\cdot \underline_ + jX_\cdot \underline_=\underline_ $$
Составим уравнение для контура №2:
$$ jX_\cdot \underline_- (-jX_)\cdot \underline_=0 $$
Объединим полученные уравнения в одну систему, при этом перенесём известные величины в правую сторону, оставив в левой стороне только составляющие с искомыми токами. Система уравнений по законам Кирхгофа для исходной цепи выглядит следующим образом:
$$ \begin\underline_- \underline_- \underline_ = 0 \\ R_\cdot \underline_+jX_\cdot \underline_ = \underline_ \\ jX_\cdot \underline_-(-jX_)\cdot \underline_ = 0 \\ \end $$
Подставим в полученную систему уравнений значения сопротивлений и источников и получим:
$$ \begin\underline_- \underline_- \underline_=0 \\ \underline_+ j \cdot \underline_=100 \\ j \cdot \underline_+ j \cdot \underline_=0 \\ \end $$
Решим систему уравнений и получим искомые токи:
$$ \underline_ = 0 $$
$$ \underline_ =-100j $$
$$ \underline_ = 100j $$Расчёт по методу узловых потенциалов
Используемая методика при расчёте по методу узловых потенциалов приведена здесь.
ВНИМАНИЕ! На данный момент имеются ограничения на расчёт схем по методу узловых потенциалов. Расчёт не производится для больших схем, где имеется большое количество особых ветвей, не связанных между собой. Если расчёт не получается осуществить по методу узловых потенциалов, рекомендуем воспользоваться расчётом по законам Кирхгофа.
Пример схемы и расчёт:
Исходные данные и схема:
- E1:
- Номер элемента: 1
- Амплитудное значение: 100 В
- Начальная фаза, °: 0
- Номер элемента: 1
- Сопротивление, Ом: 1
- Номер элемента: 1
- Сопротивление, Ом: 1
- Номер элемента: 1
- Сопротивление, Ом: 1
После нажатия кнопки «Расчёт» на исходной схеме отображаются принятые обозначения узлов и принятые направления токов и формируется решение:
Рассчитаем схему по методу узловых потенциалов.
В данной схеме: узлов − 2, ветвей − 3, из них особых ветвей − 0. Под особыми ветвями понимаются ветви, в которых имеется только источник ЭДС.
Количество уравнений, составляемых по методу узловых потенциалов, равно $ N_\textrm- 1- N_\textrm $, где $ N_\textrm $ − число узлов, $ N_\textrm $ − число особых ветвей. Для данной схемы количество уравнений, составляемых по методу узловых потенциалов, равно 2 − 1 − 0 = 1.
В исходной схеме нет особых ветвей. Примем потенциал узла №1 равным нулю, т.е. $$ \underline_ = 0 \space\textrm $$
Составим уравнения для определения потенциалов остальных узлов.
Уравнение для узла №2:
Перенесём все известные слагаемые в правую часть и объединим полученные уравнения в систему. Получим:
Подставим в полученную систему уравнений численные значения и получим:
Решим систему уравнений и получим искомые потенциалы узлов:
Произвольно зададим направления токов в ветвях.
Принятые направления токов:
Ток $ \underline_ $ направлен от узла ‘2 у.’ к узлу ‘1 у.’ через элементы $ \underline_ $, $ R_ $.
Ток $ \underline_ $ направлен от узла ‘1 у.’ к узлу ‘2 у.’ через элементы $ L_ $.
Ток $ \underline_ $ направлен от узла ‘1 у.’ к узлу ‘2 у.’ через элементы $ C_ $.Определим токи во всех ветвях, кроме особых, по закону Ома для участка цепи:
Расчёт по методу контурных токов
Используемая методика при расчёте по методу контурных токов приведена здесь.
Пример схемы и расчёт:
Исходные данные и схема:
- E1:
- Номер элемента: 1
- Амплитудное значение: 100 В
- Начальная фаза, °: 0
- Номер элемента: 1
- Сопротивление, Ом: 1
- Номер элемента: 1
- Сопротивление, Ом: 1
- Номер элемента: 1
- Сопротивление, Ом: 1
После нажатия кнопки «Расчёт» на исходной схеме отображаются принятые обозначения узлов и принятые направления токов и формируется решение:
Рассчитаем схему по методу контурных токов.
В данной схеме: узлов − 2, ветвей − 3, независимых контуров − 2.
Количество уравнений, составляемых по методу контурных токов, равно $ N_\textrm- N_\textrm + 1 $, где $ N_\textrm $ − число ветвей, $ N_\textrm $ − число узлов.
Для данной схемы количество уравнений, составляемых по методу контурных токов, равно 3 − 2 + 1 = 2.
Произвольно зададим направления обхода контуров и соответствующие контурные токи.
Принятые направления обхода контуров:
Контур №1 обходится через элементы $ \underline_ $, $ R_ $, $ L_ $ в указанном порядке. Через эти элементы протекает контурный ток $ \underline_ $.
Контур №2 обходится через элементы $ L_ $, $ C_ $ в указанном порядке. Через эти элементы протекает контурный ток $ \underline_ $.Составим уравнения по методу контурных токов.
Составим уравнение для контура №1:
$$ \underline_ \cdot (R_+jX_)+\underline_ \cdot jX_=\underline_ $$
Составим уравнение для контура №2:
$$ \underline_ \cdot (jX_- jX_)+\underline_ \cdot jX_=0 $$
Объединим полученные уравнения в одну систему, при этом перенесём известные величины в правую сторону, оставив в левой стороне только составляющие с искомыми контурными токами. Система уравнений по методу контурных токов для исходной цепи выглядит следующим образом:
$$ \begin\underline_ \cdot (R_+jX_)+\underline_ \cdot jX_ = \underline_ \\ \underline_ \cdot (jX_- jX_)+\underline_ \cdot jX_ = 0 \\ \end $$
Подставим в полученную систему уравнений значения сопротивлений и источников и получим:
$$ \begin(1+1j)\cdot \underline_+ j \cdot \underline_=100 \\ j \cdot \underline_=0 \\ \end $$
Решим систему уравнений и получим искомые контурные токи:
Произвольно зададим направления токов в ветвях.
Принятые направления токов:
Ток $ \underline_ $ направлен от узла ‘2 у.’ к узлу ‘1 у.’ через элементы $ \underline_ $, $ R_ $.
Ток $ \underline_ $ направлен от узла ‘1 у.’ к узлу ‘2 у.’ через элементы $ L_ $.
Ток $ \underline_ $ направлен от узла ‘1 у.’ к узлу ‘2 у.’ через элементы $ C_ $.Рассчитаем токи в ветвях исходя из полученных контурных токов.
$$ \underline_ =\underline_=0=0 $$ $$ \underline_ =\underline_+\underline_=0+(-100j)=-100j $$ $$ \underline_ =-\underline_=-(-100j)=100j $$
Расчёт по методу эквивалентного генератора
Суть метода эквивалентного генератора приведена здесь.
Для расчёта тока в ветви по методу эквивалентного генератора необходимо выбрать метод расчёта «МЭГ». После этого необходимо определить все ветви рассчитываемой цепи с помощью кнопки «Ветви» и выбрать ветвь, в которой необходимо рассчитать ток, в полученном спадающем списке.
Для расчёта тока в ветви по методу эквивалентного генератора программа рассчитывает напряжение холостого хода $ \underline_\textrm $ на выводах разомкнутой ветви с искомым током и внутреннее сопротивление цепи $ \underline_\textrm $ относительно ветви с искомым током.
Пример схемы и расчёт:
Исходные данные и схема:
- E1:
- Номер элемента: 1
- Амплитудное значение: 100 В
- Начальная фаза, °: 0
- Номер элемента: 1
- Сопротивление, Ом: 1
- Номер элемента: 1
- Сопротивление, Ом: 1
- Номер элемента: 1
- Сопротивление, Ом: 1
После выбора ветви «L1» и нажатия кнопки «Расчёт» на исходной схеме появляется обозначение и направление искомого тока и формируется решение.
Рассчитаем ток $ \underline $ в ветви с элементами $ L_ $ по методу эквивалентного генератора. Для этого рассчитаем напряжение холостого хода на выводах разомкнутой ветви с искомым током и эквивалентное сопротивление пассивной цепи относительно ветви с искомым током.
Рассчитаем напряжение холостого хода. На рисунке ниже приведена рассчитываемая схема. Напряжение холостого хода $ \underline_\textrm $ сонаправлено с искомым током. Принятое направление искомого тока приведено на схеме выше.
В исходной схеме только один контур. Рассчитаем её по закону Ома.
Согласно закону Ома, ток в замкнутой цепи равен отношению ЭДС цепи к сопротивлению. Составим уравнение, приняв за положительное направление тока $ \underline $ направление источника ЭДС $ \underline_ $:
$$ (R_-jX_)\cdot \underline = \underline_ $$
Подставим в полученную систему уравнений значения сопротивлений и источников и получим:
Отсюда искомый ток в цепи равен
$$ \underline = 50+50j\space \textrm $$
Определим искомое напряжение холостого хода. Рассмотрим контур, проходящий в указанном порядке через элементы $ \underline_\textrm $, $ R_ $, $ \underline_ $, и составим для него уравнение по второму закону Кирхгофа. Получим:
$$ \underline_\textrm-\underline_ \cdot R_=-\underline_ $$
Определим напряжение холостого хода. Получим:
$$ \underline_\textrm = \underline_ \cdot R_-\underline_=(50+50j) \cdot 1-100=-50+50j\space\textrm $$
Рассчитаем внутреннее сопротивление цепи $ \underline_\textrm $ относительно ветви с искомым током. Для этого из исходной схемы уберём ветвь с искомым током, при этом оставим концы этой ветви. Все источники ЭДС закоротим, а источники тока разомкнем.
Рассчитаем эквивалентное сопротивление цепи относительно ветви с искомым током.
Ветвь с элементами $ R_ $ параллельна ветви с элементами $ C_ $. Эквивалентное сопротивление этих ветвей равно:
Внутреннее сопротивление цепи равно:
Определим искомый ток:
Расчёт эквивалентного сопротивления цепи
Используемые формулы расчёта эквивалентного сопротивления цепи приведены здесь.
Расчёт эквивалентного сопротивления осуществляется только для схем с одним источником питания и относительно зажимов этого источника.
Пример схемы и расчёт:
Исходные данные и схема:
- E1:
- Номер элемента: 1
- Амплитудное значение: 100 В
- Начальная фаза, °: 0
- Номер элемента: 1
- Сопротивление, Ом: 1
- Номер элемента: 1
- Сопротивление, Ом: 1
- Номер элемента: 1
- Сопротивление, Ом: 2
После нажатия кнопки «Расчёт» на исходной схеме отображаются принятые обозначения узлов и принятые направления токов и формируется решение:
Рассчитаем эквивалентное сопротивление цепи относительно источника $ \underline_ $.
Ветвь с элементами $ L_ $ параллельна ветви с элементами $ C_ $. Эквивалентное сопротивление этих ветвей равно:
Эквивалентное сопротивление цепи равно:
Баланс мощностей
После завершения расчёта программа осуществляет проверку баланса мощностей. Мощности рассчитываются согласно формулам, приведённым здесь.
Пример расчёта баланса мощностей
Рассмотрим расчёт баланса мощностей для схемы, использованной при расчёте по законам Кирхгофа, методу узловых потенциалов и методу контурных токов.
Проверим баланс мощностей.
Определим мощность, потребляемую приёмниками:
Подставим числовые значения и получим:
Определим мощность, отдаваемую источниками:
где $ \underline_<\underline
> $ − мощность, отдаваемая источниками ЭДС, $ \underline_ $ − мощность, отдаваемая источниками тока. Определим мощность $ \underline_<\underline
> $, отдаваемую источниками ЭДС: где $ \underline’ $ означает сопряжённый комплексный ток.
Подставим числовые значения и получим:
Т.к. в схеме нет источников тока, то $ \underline_<\underline
> = 0. $ Мощность, отдаваемая источниками, равна:
Итак, $ \underline_\textrm = 0 $, $ \underline_\textrm = 0 $. Баланс мощностей сходится.
Определение показаний амперметров и вольтметров
Определение показаний измерительных приборов программа позволяет производить в ручном режиме. Для этого необходимо рассчитать схему и определить токи в ветвях.
Показание амперметра определяется как амплитудное значение тока. Рассмотрим расчёт показаний амперметра для схемы, использованной при расчёте по законам Кирхгофа, методу узловых потенциалов и методу контурных токов. В результате расчёта были получены следующие токи:
При установке амперметров в эти ветви ток, измеряемый амперметрами, будет определяться следующим образом:
Для определения показаний вольтметра необходимо определить напряжение на тех элементах, для которых определяется показание прибора. Для этого необходимо составить уравнение по второму закону Кирхгофа или по закону Ома. Рассчитаем напряжения на элементах $ R_ $, $ L_ $, $ C_ $:
$$ \underline_ = \underline_ \cdot R_ = 0 \cdot 1 = 0 $$
$$ \underline_ = \underline_ \cdot jX_ =-100j \cdot 1j = 100 $$
$$ \underline_ = \underline_ \cdot jX_ = 100j \cdot (-1j) = 100 $$
Показания вольтметров определяются следующим образом:
Построение векторных диаграмм
Для цепей, содержащих реактивные элементы (катушки индуктивностей и конденсаторы), после завершения расчёта программа автоматически формирует векторные диаграммы токов и напряжений. Векторные диаграммы строятся согласно методике, приведённой здесь. Векторные диаграммы токов доступны только для многоконтурных схем.
Все векторные диаграммы токов и все векторные диаграммы напряжений строятся на своих графиках. Внизу каждого графика доступны чекбоксы для отображения или скрытия векторных диаграмм для определённых узлов или контуров.
Пример векторных диаграмм токов и напряжений
Исходные данные и схема:
- E1:
- Номер элемента: 1
- Амплитудное значение: 100 В
- Начальная фаза: 45
- Номер элемента: 1
- Сопротивление, Ом: 1
- Номер элемента: 1
- Сопротивление, Ом: 1
- Номер элемента: 1
- Сопротивление, Ом: 1
- Номер элемента: 1
- Сопротивление, Ом: 1
После нажатия кнопки «Расчёт» формируется решение задачи:
Рассчитаем схему по законам Кирхгофа.
В данной схеме: узлов − 2, ветвей − 3, независимых контуров − 2.
Произвольно зададим направления токов в ветвях и направления обхода контуров.
Принятые направления токов:Ток $ \underline_ $ направлен от узла ‘2 у.’ к узлу ‘1 у.’ через элементы $ \underline_ $, $ R_ $.
Ток $ \underline_ $ направлен от узла ‘2 у.’ к узлу ‘1 у.’ через элементы $ R_ $, $ C_ $.
Ток $ \underline_ $ направлен от узла ‘1 у.’ к узлу ‘2 у.’ через элементы $ L_ $.Принятые направления обхода контуров:
Контур №1 обходится через элементы $ \underline_ $, $ R_ $, $ C_ $ в указанном порядке.
Контур №2 обходится через элементы $ R_ $, $ C_ $, $ L_ $ в указанном порядке.Составим уравнения по первому закону Кирхгофа. При составлении уравнений «втекающие» в узел токи будем брать со знаком «+», а «вытекающие» − со знаком «−».
Количество уравнений, составляемых по первому закону Кирхгофа, равно $ N_\textrm- 1 $, где $ N_\textrm $ − число узлов. Для данной схемы количество уравнений по первому закону Кирхгофа равно 2 − 1 = 1.
Составим уравнение для узла №1:
$$ \underline_ + \underline_- \underline_ = 0 $$
Составим уравнения по второму закону Кирхгофа. При составлении уравнений положительные значения для токов и ЭДС выбираются в том случае, если они совпадают с направлением обхода контура.
Количество уравнений, составляемых по второму закону Кирхгофа, равно $ N_\textrm- N_\textrm + 1 $, где $ N_\textrm $ − число ветвей. Для данной схемы количество уравнений по второму закону Кирхгофа равно 3 − 2 + 1 = 2.
Составим уравнение для контура №1:
$$ R_\cdot \underline_-(R_-jX_)\cdot \underline_=\underline_$$
Составим уравнение для контура №2:
Объединим полученные уравнения в одну систему, при этом перенесём известные величины в правую сторону, оставив в левой стороне только составляющие с искомыми токами. Система уравнений по законам Кирхгофа для исходной цепи выглядит следующим образом:
$$ \begin\underline_ + \underline_- \underline_ = 0 \\ R_\cdot \underline_-(R_-jX_)\cdot \underline_ = \underline_ \\ (R_-jX_)\cdot \underline_+jX_\cdot \underline_ = 0 \\ \end $$
Подставим в полученную систему уравнений значения сопротивлений и источников и получим:
$$ \begin\underline_+ \underline_- \underline_=0 \\ \underline_+(-1+1j)\cdot \underline_=0.7071+0.7071j \\ (1-1j)\cdot \underline_+ j \cdot \underline_=0 \\ \end $$
Решим систему уравнений и получим искомые токи:
$$ \underline_ = 0.4243+0.1414j\space\textrm $$
$$ \underline_ = 0.1414-0.4243j\space\textrm $$
$$ \underline_ = 0.5657-0.2828j\space\textrm $$Пользователям
При невозможности рассчитать схему просьба сообщить об этом Администрации сайта по электронной почте support@faultan.ru либо через контактную форму.
Символический метод расчета цепей
Символический метол, введенный в теорию переменных токов Штейнмецом, является аналитическим развитием векторных диаграмм. Он основан на изображении векторов в комплексной плоскости и на их записи комплексными числами. Это приводит к применению для цепей синусоидального переменного тока законов Ома и Кирхгофа и вытекающих из них методов расчета цепей в той же форме, что и для цепей постоянного тока. В России символический метод был введен В. Ф. Миткевичем.
В символическом методе принято исходную ось направлять вертикально и на ней откладывать вверх положительные вещественные числа, а по горизонтальной оси влево — положительные мнимые числа (рис. 8.1). В дальнейшем эти оси называются осью и осью мнимых. Тогда, например, вращающийся вектор Um, изображающий синусоидальное напряжение
и составляющий с осью вещественных угол может быть записан в виде комплексного числа в алгебраической, тригонометрической или показательной форме:
здесь
— составляющие, соответственно, по осям вещественных и мнимых, Um — модуль (величина) вектора, угол
— его аргумент, а е — основание натуральных логарифмов.
Комплекс
называют множителем вращения, а
— комплексной амплитудой. Соответственно
называют комплексным действующим значением, в данном примере — напряжения, или комплексным напряжением. На комплексной плоскости оно изображается неподвижным вектором.
Для обратного перехода от комплекса к мгновенному значению и следует взять только мнимую часть комплекса (без i), что записывается следующим образом:
Таким образом, комплекс является также изображением (как бы символом) синусоиды и, откуда и получил свое название метод, заключающийся в замене оригиналов (синусоид) комплектными изображениями, в операциях над ними и затем в обратном переходе для искомых величин от их изображений к оригиналам.
Геометрическому сложению и вычитанию векторов соответствует алгебраическое сложение и вычитание их проекций на оси комплексной плоскости, т. е. их вещественных и мнимых составляющих. Поэтому геометрическое сложение и вычитание векторов должно быть заменено вновь алгебраическим сложением и вычитанием их комплексов. Таким образом, алгебраический характер сложения и вычитания мгновенных значений синусоидальных величин сохраняется при замене оригиналов комплексными изображениями.
Так как проекция произведения двух векторов не равна произведению проекций этих векторов, изображение произведения двух синусоидальных функций не равно произведению их изображений, поэтому прч умножении таких функций нельзя применять символический метод.
Производная синусоидальной функции
так как Полученное изображение равно производной изображения исходной функции:
Интеграл той же синусоидальной функции
равное интегралу изображения исходной функции:
Таким образом, однозначное соответствие имеет место также между производными и интегралами оригинала и комплексного изображения.
Здесь получен еще один важный результат: дифференцированию оригинала соответствует, умножение на
его изображения, интегрированию — деление на
. Следовательно, интегро-дифференциальному уравнению для мгновенных значений соответствует алгебраическое уравнение для изображений, т. е. применение символического метода приводит к алгебраизации этих уравнений, что крайне упрощает расчеты.
Применение символического метода для расчета цепей переменного тока
Применение символического метода можно показать на примере. Так, для цепи с последовательным соединением r, L и С уравнению по второму закону Кирхгофа
при синусоидальном законе изменения напряжения и тока соответствует алгебраическое уравнение
(8.1)
откуда комплексное изображение тока
(8 2)
От изображения можно сделать переход к оригиналу — мгновенному значению тока.
Выражение (8.2) можно рассматривать как закон Ома в символической форме. Тогда знаменатель
может рассматриваться как комплексное полное сопротивление. Его модуль z равен полному сопротивлению цепи, его аргумент
— сдвигу фаз между напряжением и током цепи. Графически Z изображается неподвижным вектором с составляющими — активным сопротивлением r по оси вещественных и реактивным х — по оси мнимых, что показано на рис. 8.2 для случая
> 0. Соответствующий прямоугольный треугольник является треугольником сопротивлений.
Необходимо заметить, что знак плюс, стоящий в общем выражении комплексного сопротивления Z =г + jx, сохраняется в конкретном числовом выражении при преобладании индуктивного сопротивления (
> 0) и переходит в минус при преобладании емкостного сопротивления (
0. Вектор У имеет направление, сопряженное с направлением обратного ему вектора Z. Знак минус, стоящий в общем выражении комплекса проводимости Y = g — jb, сохраняется в конкретном числовом выражений при
>0 и переходит в плюс при
Непосредственное применение символического метода к вычислению по напряжению и току мощности, мгновенное значение которой является произведением их мгновенных значений (р = ui), невозможно. Однако для вычисления активной, реактивной и полной мощности по символическим изображениям напряжения и тока может быть использован искусственный прием. Для этого комплексное напряжение
должно быть умножено на комплекс I, сопряженный с комплексным током
Таким образом, вещественная часть комплексной мощности S равна активной мощности Р, а мнимая — реактивной Q. При этом положительный знак сохраняется для индуктивной мощности и изменяется на отрицательный для емкостной. Полная мощность вычисляется, как модуль комплексной мощности:
Расчет цепей переменного тока символическим методом
При расчете цепей по законам Кирхгофа методика составления уравнений остается той же, что и при постоянном токе. Для заданных комплексных э. д. с. и токов должны быть также указаны их положительные направления, для искомых — ими надо задаться.
Например, для цени рис. 7.21, а с двумя узлами и двумя элементарными контурами по первому закону Кирхгофа должно быть составлено одно уравнение
Два уравнения, составляемые по второму закону Кирхгофа, при обходе элементарных контуров А и В по часовой стрелке, будут
При постоянном токе ответ со знаком минус указывал на встречное направление по сравнению с предположенным, а при переменном токе ответ в виде комплекса является окончательным для принятого направления искомой величины — напряжения или тока. При выборе обратного направления фаза (аргумент) искомого комплекса изменилась бы на угол π.
Аналогичным образом составляются и решаются уравнения при применении остальных методов, вытекающих из законов Кирхгофа. Так, уравнения по методу контурных токов для цепи рис. 7.21, а при обходе контуров A и В по часовой стрелке имеют вид:
где
Символический метод весьма удобен также для решения задач в общем виде.
В электроизмерительной технике широко применяется мост переменного тока (рис. 8.3). Условие равновесия моста постоянного тока имеет вид:
По аналогии условие равновесия моста переменного тока:
Это условие распадается на два — равенство модулей и аргументов левой и правой частей:
Если модули и аргументы полных сопротивлений трех ветвей известны, из этих уравнений могут быть определены модуль и аргумент полного сопротивления четвертой ветви.
Вторым примером применения символического метода для решения задач в общем виде может служить задача поддержания в цепи изменяющейся нагрузки неизменного по величине и фазе тока. Например, при последовательном соединении ламп, применяемом при освещении аэродромов, должны автоматически замыкаться накоротко зажимы перегоревшей лампы, чтобы избежать разрыва цепи при этом ток остальных не должен измениться.
Пусть для схемы рис. 8.4, а, питаемой напряжением U = const, требуется найти условие, при выполнении которого ток I в правой параллельной ветви не будет меняться по величине и по фазе при любом изменении сопротивления Z этой ветви.
Общее выражение для комплекса тока I может быть найдено методом эквивалентного источника напряжения. По аналогии с цепью постоянного тока
Здесь комплекс напряжения
между зажимами разомкнутой ветви Z (рис. 8.4, б) и комплекс полного сопротивления ZB цепи относительно зажимов ветви Z при источнике напряжения, замкнутом накоротко (рис. 8.4, в), соответственно равны:
а искомый токДля того чтобы ток I не зависел от сопротивления Z нагрузки, коэффициент при Z в выражении I должен быть равен нулю:
Это будет выполнено, если
т. е. сопротивления Z1 и Z2 должны быть чисто реактивными, равными
по величине и противоположными по знаку. Одно из них будет индуктивным, а другое — емкостным:При этом ток нагрузки
Если в цепь до разветвления включено индуктивное сопротивление, а потом — емкостное (рис. 8.5, а), то ток
отстает по фазе от приложенного к цепи напряжения на угол π\2. Если индуктивное и емкостное сопротивления поменять местами (рис. 8.5, б), то
- т. е. ток I опережает приложенное к цепи напряжение на угол π/2. При изменении Z ток I1 до разветвления изменяется и по величине
и по фазе от значения (резонанс напряжений).
Метод дуальных цепей
Метод дуальных цепей, рассмотренный в для частного случая резонансных цепей, является общим методом. Взаимная замена величин при их символической записи должна осуществляться по табл. 8.2, вытекающей из табл. 7.1.
Таблица 8.2
Последовательное соединение Параллельное соединение ω U I L C r g Z Y Параллельное соединение Последовательное соединение ω I U C L g r Y Z Отсюда можно получить соотношения для дуальной цепи, если они даны для цепи исходной. Так, если для исходной цепи в какой-либо вегви имеет место короткое замыкание (Z = 0), то в дуальной цепи это соответствует холостому ходу (У = 0), и наоборот. При переходе от исходной цепи к дуальной уравнения по первому и второму законам Кирхгофа меняются местами.
Основным свойством дуальных цепей является неизменность их параметров r, L и С при переменной частоте. Например, в дуальных цепях рис. 8.6, а и б численное равенство сопротивления
и проводимости
сохраняется при изменении частоты. Этим дуальные цепи отличаются от эквивалентных последовательных и параллельных схем, в которых при изменении частоты и постоянстве параметров одной схемы параметры другой изменяются.
Это свойство дуальных цепей позволяет, произведя исследование поведения какой-либо цепи при переменной частоте, перенести результаты на дуальную цепь, заменив напряжения токами и т. д., что и было сделано для резонансных цепей.
При переходе к дуальной цепи не изменяют своей величины мощности S, Р и Q, так как в их выражения входят произведение напряження и тока, и лишь у реактивной мощности Q = VI sin изменяется знак: индуктивная мощность заменяется емкостной, и наоборот.
В качестве примера может быть решена задача создания схем преобразования неизменного по величине и фазе тока в неизменное по величине и фазе напряжение, т. е. схем, дуальных со схемами. При замене схем и величин по табл. 8.2 получается схема рис. 8.7, а, дуальная схеме рис. 8.5, а, и схема рис. 8.7, б, дуальная схеме рис. 8.5, б. Если
то при неизменном токе I напряжение О на изменяющейся проводимости Y будет постоянным, т. е.
что получается путем перехода от формул для токов I исходных цепей.
Символический метод электрических цепей переменного тока
Методы расчета электрических цепей переменного тока при помощи векторных диаграмм, рассмотренные в предыдущих главах, основаны на изображении синусоидальных величин векторами.
Из курса математики известно, что каждому вектору А в комплексной плоскости (рис. 15.1) соответствует комплексное число А, которое можно выразить в форме:
алгебраической —Рис. 15.1. К вопросу о выражении вектора комплексным числом
тригонометрической —
показательной —
Это дает основание от графического (векторного) выражения синусоидальных напряжений и токов перейти к аналитическому выражению их комплексными числами, а операции с векторами заменить алгебраическими действиями.Выражение характеристик электрических цепей комплексными числами
При расчете электрических цепей переменного тока используют или определяют следующие величины: э.д.с. напряжения, токи, сопротивления и проводимости, мощность. Все эти величины должны быть выражены в символической форме, т. е. комплексными числами.
Напряжения и токи
Подобно тому как на векторных диаграммах длины векторов выражают действующие величины, комплексные выражения э. д. с. .напряжений и токов записывают так, что модули их также равны действующим величинам (комплексы синусоидально изменяющихся величин принято отмечать точками над их буквенными обозначениями (например, комплексы напряжения
тока
). Комплексы величин, не зависящих от времени (например, сопротивлений, проводимостей), обозначают большими буквами без точек, но с черточкой внизу:
)
Для примера рассмотрим схему электрической цепи параллельного соединения катушки и конденсатора (рис. 15.2).
Напряжение на зажимах цепи выражается уравнением
Этому напряжению соответствуют вектор U в комплексной плоскости (рис. 15.3) и комплексное число в показательной форме
Ток i1 в катушке отстает от напряжения на угол φ1:
уголв рассматриваемом случае
Вектору тока I1 соответствует комплексное число
Ток в конденсаторе опережает напряжение на угол φ2. Вектору тока I2 соответствуют уравнение
и комплекс
где
Согласно первому закону Кирхгофа, ток в неразветвленной части цепи складывается из токов в параллельных ветвях:
Для определения этого тока сложение векторов I1 и I2 можно заменить сложением комплексов:
Следует обратить внимание на различие между действительной или мнимой частями комплекса, с одной стороны, и активной или реактивной составляющими вектора тока — с другой.
Действительная и мнимая части комплекса тока равны проекциям вектора тока на оси комплексной плоскости (ось действительных и ось мнимых величин).Активная и реактивная составляющие вектора тока в данном участке цепи равны его проекциям на взаимно перпендикулярные оси, одна из которых направлена вдоль вектора напряжения этого же участка цепи. Действительная и мнимая части комплекса тока равны соответственно активной и реактивной составляющим вектора тока только в том случае, если вектор напряжения направлен вдоль оси действительных чисел, т. е. комплекс напряжения выражается действительным числом.
Рис. 15.2. К вопросу о выражении токов, напряжений, сопротивлений проводимостей комплексными числами
Рис. 15.3. Векторная диаграмма к схеме цепи рис. 15.2
Сопротивления
Для выражения сопротивлений в комплексной форме продолжим рассмотрение схемы рис. 15.2, где каждый из элементов (катушка и конденсатор) представлен активным и реактивным сопротивлениями, соединенными последовательно.
Разделив комплекс напряжения
на комплекс тока в катушке
, получим комплекс сопротивления первой ветви:
где— модуль комплекса полного сопротивления;
— угол сдвига фаз между напряжением и током первой ветви
.
Выразим комплекс сопротивления катушки в тригонометрической и алгебраической форме:
Но, поэтому
Аналогично, для второй ветви
где—модуль комплекса полного сопротивления;
— угол сдвига фаз между напряжением и током второй ветви
или
Если в ветвях схемы рис. 15.2 реактивных сопротивлений нетто, согласно выражениям (15.6) и (15.7),
При
Из приведенных рассуждений следует:
- Активное сопротивление в комплексной форме выражается действительным положительным числом.
- Реактивные сопротивления в комплексной форме выражаются мнимыми числами, причем индуктивное сопротивление (ХL) положительно, а емкостное (ХC) отрицательно.
- Полное сопротивление участка цепи при последовательном соединении R и X выражается комплексным числом, действительная часть которого равна активному сопротивлению, а мнимая часть равна реактивному сопротивлению этого участка.
Проводимости
Выражения проводимостей ветвей в комплексной форме можно получить, представив каждый элемент (катушку и конденсатор) схемой параллельного соединения активной и реактивной проводимостей (см. рис. 14.1, б)
Из этих формул видно, что выражения проводимостей комплексными числами можно получить в таком же порядке, как для сопротивлений. Для того чтобы не повторять аналогичных рассуждений, полные проводимости в символической форме можно найти как величины, обратные комплексам полных сопротивлений:
Для первой ветви (катушки)
гдеи
— активная и индуктивная проводимости.
Для второй ветви (конденсатора)
гдеи
— активная и емкостная проводимости.
Результаты этих преобразований показывают, что полная проводимость ветви электрической цепи в комплексной форме выражается комплексным числом, действительная часть которого равна активной проводимости, а мнимая часть равна реактивной проводимости этой ветви, причем индуктивная проводимость отрицательна, а емкостная — положительна.Мощность
Комплекс мощности в данной цепи определяется умножением комплекса напряжения на сопряженный комплекс тока этой цепи.
Для ветви с активным сопротивлением и индуктивностью (см. рис. 15.2), согласно векторной диаграмме (см. рис. 15.3),
Произведение комплекса напряжения и сопряженного комплекса тока
В алгебраической форме
Действительная часть полученного комплекса выражает активную мощность, а мнимая часть без множителя— реактивную мощность первой ветви.
Для ветви с активным сопротивлением и емкостью
В алгебраической формеРеактивная мощность в цепи с емкостью имеет отрицательный знак в отличие от положительного знака реактивной мощности в цепи с индуктивностью. Модуль комплекса мощности в той и другой ветви равен полной мощности:
Рис. 15.4. К вопросу о преобразовании схем с применением комплексных чисел
Основные уравнения электрических цепей в комплексной форме
Представление векторов напряжений и токов комплексами, выражение сопротивлений и проводимостей комплексными числами, а также замена операций с векторами алгебраическими действиями с комплексными числами позволяют значительно упростить расчет сложных цепей переменного тока. Кроме того, применение комплексных чисел обеспечивает единство методов расчета электрических цепей постоянного и переменного токов. Это значит, что все методы расчета и вытекающие из них соотношения для цепей постоянного тока можно применить и для цепей переменного тока, если величины выражены в комплексной форме. В этом практический смысл применения комплексных чисел для решения задач электротехники.
Законы Кирхгофа
Согласно первому закону Кирхгофа, алгебраическая сумма комплексов токов в электрическом узле равна нулю:
Для составления уравнения в символической форме по первому закону Кирхгофа нужно выбрать условно-положительные направления токов. В уравнении (15.15) ток записывают со знаком плюс, если он направлен к узлу. Для схемы рис. 14.15, а
или
а в комплексной форме
или
Согласно второму закону Кирхгофа, в контуре электрической цепи алгебраическая сумма комплексов э. д. с. источников равна алгебраической сумме комплексов падений напряжения:
Для схемы рис. 14.10а в комплексной форме
Преобразование схем
На примере цепи смешанного соединения сопротивлений (рис. 15.4) рассмотрим расчет методом преобразования и упрощения схемы. Параллельно соединенные ветви, имеющие полные сопротивления
заменяются одной ветвью с эквивалентным сопротивлением
Сопротивление в неразветвленной части цеписоединено последовательно с сопротивлением
Общее сопротивление цепи
Ток в неразветвленной части цепи
Напряжения на участках, цепи:
Токи в параллельных ветвях:
Преобразованием можно упростить и более сложные схемы с последовательным и параллельным соединениями участков, а также схемы, которые содержат треугольники или трехлучевые звезды сопротивлений.
Метод узлового напряжения
Схему с двумя узлами можно рассчитать, определив узловое напряжение по формуле
Эта формула аналогична формуле (4.21). В числителе ее записана алгебраическая сумма произведений комплексов э. д. с. и проводимости всех ветвей, а в знаменателе — сумма комплексов проводимостей ветвей.
Комплекс тока определяют по формуле
Правило выбора знаков э.д. с. в формулах (15.16) — (15.18) такое же, как и в цепи постоянного тока, с той лишь разницей, что условно-положительные направления э. д. с. выбираются при расчете, а в цепи постоянного тока направления э. д. с. обычно заданы.Метод эквивалентного генератора
Порядок расчета по методу эквивалентного генератора, для цепей постоянного тока, пригоден и для цепей переменного тока, если э.д. с., токи и сопротивления их выражены в комплексной форме.
Токв исследуемой ветви определяют из уравнения, подобного (5.12):
где— комплекс эквивалентной э.д.с., равный комплексу напряжения холостого хода активного двухполюсника при отключении исследуемой ветви,
— комплекс сопротивления пассивного двухполюсника относительно точек присоединения исследуемой ветви (комплекс внутреннего сопротивления эквивалентного генератора);
— комплекс сопротивления исследуемой ветви.
Задача 15.3.
Выполнить символическим методом расчет цепи (см. рис. 14.8). Дано:
= 8 Ом; Х21 = 6 Ом; Х1С — 15 Ом; Х2С = 10 Ом.
Определить ток в цепи и напряжения
Решение. Выразим заданные э. д. с. и сопротивления комплексными числами.
Э. д. с. в комплексной форме:
Сопротивления в комплексной форме:
При последовательном соединении общее сопротивление цепиСопротивление цепи в показательной форме:
модуль
аргументУгол φ можно определить, найдя
Ток в цепи
Для удобства деления выразим числитель и знаменатель в показательной форме:
Из сравнения комплексови
и обшей з. д. с.
видно, что ток в цепи совпадает по фазе с э. д. с. Е2 и опережает общее значение э. д. с. на угол 120—83 = 37°.
Напряжение
Угол сдвига фаз между током и напряжениемНапряжение
Между током и напряжением
угол сдвига фаз
так как
Задача 15.5.
Определить символическим методом напряжения ка зажимах источника, токи и мощность в цепи рис. 14.13, для которой известны R1 = 8 Ом; ХL = 6 Ом; R2 = 9 Ом; ХC = 12 Ом; I1 = 9А.
Решение. Выразим сопротивления ветвей в символической форме:
Предположим, что комплекс токавыражается действительным числом (начальная фаза тока
)
(начальную фазу тока можно выбрать произвольно, т.е. уголне равен нулю).
Напряжение в первой ветви, равное напряжению на зажимах источника,Ток во второй ветви
Ток в источникеМощность цепи
Комплексные сопротивления и проводимости элементов электрических цепей
Вычисление комплексных сопротивлений и проводимостей последовательных и параллельных двухполюсников, содержащих различные элементы электрических цепей, осуществляются по тем же правилам, которые были получены для резистивных цепей, поскольку, как это было показано в лекции 7, для комплексных амплитуд справедливы законы Ома и Кирхгофа.
Комплексные сопротивления и проводимости полностью характеризуют свойства соответствующего элемента. Будем рассматривать только пассивные элементы, через которые проходит гармонический ток
(8.1)
комплексная амплитуда которого равна Найдём комплексные сопротивления и проводимости резистивного элемента, индуктивности и ёмкости при согласованной системе отсчёта токов и напряжений.
Резистивный элемент
Для резистивного элемента, обладающего активным сопротивлением, имеем
где — амплитуда гармонического напряжения. Отсюда комплексная амплитуда напряжения на резистивном элементе
По определению комплексного сопротивления двухполюсника (7.38) имеем:
(8.3)
а комплексная проводимость
Средняя мощность, выделяемая в активном сопротивлении, согласно (7.15) при равна
(8.4)
или, переходя к действующим значениям (7.18) напряжения и тока,
(8.5)
Выводы:
- комплексное сопротивление и проводимость резистивного элемента имеют только активные вещественные составляющие:
- фазы колебаний напряжения и тока совпадают, т. е. рассматриваемые колебания находятся в фазе (рис. 8.1, а), поскольку
- действующие значения напряжения и тока представляют собой значения таких постоянных напряжения и тока, которые эквивалентны по мощности, выделяемой в данном активном сопротивлении.
Индуктивность
Напряжение на зажимах индуктивности изменяется по закону
(8.6)
Операции дифференцирования гармонического колебания (см. лекцию 7) соответствует умножение символического изображения на оператор т. е.
(8.7)
причём зависимость между амплитудами гармонических колебаний напряжения на зажимах индуктивности и тока в индуктивности определяется выражением:
(8.8)
Из (8.7) для индуктивности получаем: комплексное сопротивление (индуктивное сопротивление)
(8.9)
и комплексную проводимость (индуктивную проводимость)
(8.10)
Выводы:
Комплексные сопротивление (8.9) и проводимость (8.10) индуктивности имеют только реактивные составляющие и зависят от частоты:
поэтому элемент индуктивности называют реактивным;
гармоническое напряжение на индуктивности опережает ток на поскольку
что следует из (8.6), т. е. ток и напряжение находятся в квадратуре (рис. 8.1, б);
значение средней мощности в элементе индуктивности равно нулю:
это объясняется тем, что в элементе индуктивности энергия не рассеивается; в режиме гармонических колебаний происходит обмен энергией между индуктивностью и подключённой к ней внешней цепью.
Ёмкость
Напряжение на зажимах ёмкости определяется соотношением
(8.11)
Операции интегрирования гармонического колебания (см. лекцию 7) соответствует деление символического изображения на оператору’со, т. е.
(8.12)
причём зависимость между амплитудами гармонических колебаний напряжения на зажимах ёмкости и тока в ёмкости определяется выражением:
(8.13)
Из (8.12) для ёмкости получаем: комплексное сопротивление (ёмкостное сопротивление)
(8.14)
и комплексную проводимость (ёмкостную проводимость)
(8.15)
Выводы:
комплексные сопротивление (8.14) и проводимость (8.15) ёмкости имеют только реактивные составляющие:
поэтому элемент ёмкости также называют реактивным.
гармоническое напряжение на ёмкости отстаёт оттока на поскольку
что следует из (8.11), т.е. ток и напряжение находятся в квадратуре (рис. 8.1, в);
значение средней мощности в элементе ёмкости так же, как и в индуктивности, равно нулю:
это объясняется тем, что в элементе ёмкости энергия не рассеивается; в режиме гармонических колебаний происходит обмен энергией между ёмкостью и подключённой к ней внешней цепью.
Комплексные сопротивления и проводимости двухполюсников
Проиллюстрируем вычисления комплексных сопротивлений и проводимостей на простейших примерах последовательного соединения резистивного элемента с индуктивным (рис. 8.2, а) и ёмкостным (рис. 8.2, б).
Последовательное соединение резистивного и индуктивного элементов
Алгебраическая форма записи комплексного сопротивления рассматриваемого двухполюсника (рис. 8.2, а)
(8.16)
где активная составляющая
и реактивная составляющая
Полное сопротивление двухполюсника равно
(8.17)
поэтому показательная форма записи комплексного сопротивления имеет вид
(8.18)
Комплексная проводимость по определению для данного двухполюсника такова:
Найдём активную и реактивную части комплексной проводимости, для чего умножим числитель и знаменатель полученного выражения на комплексное число, сопряжённое знаменателю, а затем выделим вещественную
и мнимую
составляющие:
Отсюда модуль и аргумент комплексной проводимости соответственно равны:
(8.19)
(8.20)
и, наконец, для показательной формы комплексной проводимости получаем:
(8.21)
Последовательное соединение резистивного и ёмкостного элементов
Алгебраическая форма записи комплексного сопротивления рассматриваемого двухполюсника (рис. 8.2, б)
(8.22)
Полное сопротивление двухполюсника равно:
(8.24)
показательная форма имеет вид:
(8.25)
Комплексная проводимость по определению для данного двухполюсника такова:
B полученном выражении в силу равенства имеем:
поэтому
(8.26)Из (8.26) получаем полную проводимость и аргумент двухполюсника соответственно:
(8.27)
(8.28)
Наконец, найдём активную
и реактивную
части комплексной проводимости:
(8.29)
Выводы:
Реактивные составляющие сопротивления и проводимости пассивных двухполюсников могут иметь как положительные, так и отрицательные значения;
- если
, то говорят, что сопротивление двухполюсника имеет индуктивный характер (на входе двухполюсника колебания напряжения опережают по фазе колебания тока); при этом на частоте
сопротивление двухполюсника является чисто активным и равным R,поскольку сопротивление элемента индуктивности при постоянном токе равно нулю, т. е. индуктивность представляет собой короткое замыкание, а при
сопротивление двухполюсника стремится к поскольку сопротивление элемента индуктивности стремится к бесконечности, т. е. индуктивность представляет собой разрыв цепи;
- если же
, то говорят, что сопротивление двухполюсника имеет ёмкостной характер (на входе двухполюсника колебания напряжения отстают по фазе от колебаний тока); при этом на частоте
сопротивление двухполюсника стремится к
поскольку сопротивление ёмкости стремится к бесконечности, т. е. ёмкость представляет собой разрыв цепи; а при
сопротивление двухполюсника становится равным R, поскольку сопротивление ёмкости стремится к нулю, т. е. ёмкость представляет собой короткое замыкание.
Анализ установившихся гармонических колебаний в простейших цепях
Определения режимов состояния электрической цепи:
Колебания в цепях, имеющих реактивные элементы, качественно отличаются от колебаний, происходящих в резистивных цепях. Причиной качественных отличий является способность реактивных элементов выступать как в роли потребителя энергии, чему соответствуют положительные значения мгновенной мощности на зажимах элемента, так и в роли источника, когда элемент отдаёт накопленную энергию в цепь, чему соответствуют отрицательные значения мгновенной мощности на зажимах элемента. Процессы накопления и возврата энергии реактивными элементами не могут прекратиться и начаться сразу же после окончания внешних воздействий на цепь. Колебания в цепи продолжаются за счёт накопленной в реактивных элементах энергии, т. е. цепь обладает электромагнитной инерцией. Характер колебаний зависит от вида воздействия, схемы цепи, наличия начального запаса энергии в реактивных элементах к моменту приложения воздействия и т. д.
Колебания в цепях разделяют на установившиеся (стационарные) и неустановившиеся (нестационарные).
Колебания считаются установившимися, если все напряжения и токи в цепи изменяются как периодические функции времени с периодом Т, т. е. когда
Частным случаем периодических колебаний являются гармонические напряжения и токи.
Режим гармонических колебаний относится к числу установившихся режимов колебаний.
Режимом постоянного тока называется такое состояние цепи, в котором значения всех напряжений и токов не изменяются во времени:
Режимом покоя, или нулевыми начальными условиями называется такое состояние цепи, в котором значения всех напряжений и токов равны нулю.
Режимом переходных колебаний, или переходным процессом называется такое состояние цепи, в котором происходит переход из одного установившегося режима в другой установившийся режим. Режим переходных колебаний принадлежит к неустановившимся режимам.
Переходным временем называется время перехода из одного установившегося режима в другой установившийся режим.
Здесь и далее, если это не будет оговорено особо, рассматриваются цепи, находящиеся в режиме гармонических колебаний.
Анализ линейной цепи в режиме гармонических колебаний методом комплексных амплитуд состоит в следующем:
1. Гармонические токи и напряжения заменяются их комплексными изображениями: комплексными амплитудами или комплексными действующими значениями
(8.30)
2. Составляются уравнения (системы уравнений) для комплексных изображений токов и напряжений согласно законам Ома и Кирхгофа.
3. Решаются уравнения (системы уравнений) относительно комплексных изображений требуемых токов и напряжений.
4. Осуществляется переход от комплексных изображений токов и напряжений к их оригиналам.
Анализ гармонических колебаний в последовательном RL-контуре
Задача 8.1.
Найти напряжения и токи в последовательном контуре, изображённом на рис. 8.3.
Решение. Как было показано ранее, такой контур обладает комплексным сопротивлением
Комплексная амплитуда тока в контуре согласно закону Ома равна:
где
— комплексная амплитуда напряжения
источника гармонических колебаний. По определению комплексной амплитуды тока
её модуль равен амплитуде, а её аргумент — начальной фазе гармонического тока в контуре. Отсюда имеем:
(8.31)
Определим комплексные амплитуды напряжений на элементах контура:
Отсюда для оригиналов напряжений имеем:
(8.32)
(8.33)
амплитуда тока в контуре зависит не только от значений индуктивности и сопротивления, но и от частоты
гармонического воздействия (читателю предлагается самостоятельно оценить, что происходит в контуре при
и
)
колебания напряжения на входе контура опережают по фазе колебания тока в контуре на угол что объясняется индуктивным характером сопротивления контура, т. е. ток отстаёт по фазе от напряжения на контуре;
колебания напряжения на резистивном элементе происходят в фазе с колебаниями тока в контуре и отстают по фазе на угол от колебаний напряжения источника;
колебания напряжения на индуктивности опережают по фазе колебания напряжения источника на угол
и колебания тока в контуре на уголАнализ гармонических колебаний в RLC-контуре
Задача 8.2.
Найти напряжения и токи в RLC-контуре, изображённом на рис. 8.4, а.
1. Определим эквивалентную комплексную проводимость контура (рис. 8.4,6)
2. Вычислим комплексную амплитуду напряжения на зажимах двухполюсника
где
— комплексная амплитуда задающего тока источника и
— комплексная амплитуда напряжения на ёмкости.
3. Найдём комплексные амплитуды токов в ветвях контура
4. Последние формулы позволяют записать выражения для комплексных амплитуд напряжений на элементах индуктивности и сопротивления:
Амплитуды и начальные фазы колебаний можно найти, представив комплексные амплитуды колебаний в показательной форме, что предлагается выполнить читателю.
Анализ сложных линейных электрических цепей в режиме установившихся гармонических колебаний
Ранее было показано (см. разд. 7.3), что комплексные амплитуды колебаний можно найти из решения систем уравнений Кирхгофа, узловых или контурных уравнений. Поэтому при составлении систем уравнений для комплексных амплитуд необходимо пользоваться правилами, установленными для резистивных цепей. Отличие будет состоять лишь в формальной замене обозначений сопротивлений и проводимостей на обозначения комплексных сопротивлений и проводимостей, а токи и напряжения заменить их комплексными амплитудами. Для удобства обозначений при составлении систем уравнений принято вместо комплексных амплитуд
и
использовать комплексные действующие значения колебаний
(8.30); комплексные сопротивления и проводимости обозначают как Z и Y соответственно. При этом сами комплексные действующие значения токов и напряжений называют просто токами и напряжениями, если это не приводит к недоразумениям.
При этих обозначениях имеем канонические формы записи системы уравнений для комплексных узловых напряжений согласно (5.2)
(8.34)
и системы контурных уравнении для комплексных контурных токов согласно (5.9)
(8.35)
Перед решением задачи анализа гармонических колебаний символическим методом целесообразно сначала найти комплексные проводимости или сопротивления двухполюсников, составляющих ветви цепи, и только после этого составлять систему уравнений. При этом граф цепи упрощается и уменьшается число независимых уравнений.
Пример 8.1.
Рассмотрим схему цепи, изображённую на рис. 8.5, а. В схеме выделены три двухполюсника с сопротивлениями которые нетрудно найти по правилам последовательного и параллельного соединения элементов. Такое преобразование позволило свести исходную схему к эквивалент
Для схемы (рис. 8.5, б) нетрудно составить систему контурных уравнений:
Из этой системы легко получить последовательно:
значения комплексных контурных токов,
значения комплексных напряжений на комплексных сопротивлениях
и на резисторе R,
величины напряжений на всех элементах схемы согласно разд. 8.2.2.
Особенности составления уравнений цепей с индуктивными связями
До сих пор рассматривались цепи, не содержащие индуктивно связанных элементов. Однако в реальных цепях широко используются трансформаторы, предназначенные для преобразования значений переменных напряжений и токов.
Основные соотношения
Простейший воздушный трансформатор без потерь (рис. 8.6) состоит из двух индуктивно связанных элементов индуктивности
и
.
Напряжения и токи на внешних зажимах этих индуктивностей связаны соотношениями:
(8.36)
где М — взаимная индуктивность между элементами
и
, равная
Коэффициент к называется коэффициентом связи; он характеризует степень магнитной связи между элементами
и
. Связь при
называется жёсткой: весь магнитный поток, сцепляющийся с витками одной индуктивности, сцепляется с витками другой; значение при
соответствует отсутствию связи.
Знаки в равенствах (8.36) зависят от направлений магнитных потоков в индуктивностях, а сами магнитные потоки зависят от направлений токов, проходящих через индуктивности. На схемах зажимы индуктивностей, через которые положительные частицы проходят в одном и том же направлении (к индуктивности или от неё), помечаются точками. Такие зажимы (узлы) называются одноимёнными. Одинаково ориентированные относительно одноимённых узлов токи создают складывающиеся потокосцепления. Поскольку в задачах анализа направления токов в индуктивностях выбираются независимо и произвольно, различают согласное и встречное направления отсчётов токов и напряжений. В уравнениях (8.36) согласному направлению соответствует знак «+», а встречному — знак «-«. Варианты согласного и встречного выбора направлений отсчётов токов представлены на рис. 8.7.
Метод развязки индуктивных связей
Для составления уравнений цепи, содержащей индуктивные связи, используют такие схемы их замещения, в которых индуктивные связи отсутствуют. Метод, приводящий к таким схемам замещения, называют методом развязки индуктивных связей.
Рассмотрим наиболее важный для практики случай, когда взаимодействующие катушки имеют один общий узел (рис. 8.8, а). Любая схема замещения, исходя из (8.36), составляется только из элементов индуктивности, число которых должно равняться как минимум трём, поскольку уравнения содержат три коэффициента:
Воспользуемся схемой замещения рис. 8.8, б, для которой запишем систему контурных уравнений:
(8.37)
Полученная система не будет отличаться от системы (8.36) при условии:
(8.38)
Таким образом, схема рис. 8.8, б является схемой замещения двух связанных магнитным потоком индуктивностей, если значения элементов этой схемы равны:
(8.39)
В формулах (8.39) следует выбирать нижние знаки лишь в том случае, когда только один из двух соединённых в узел зажимов цепи рис. 8.8, а помечен точкой. В других случаях необходимо выбирать нижние знаки. Полученная схема называется Т-образной схемой замещения.
при жёсткой связи, когда
и, следовательно,
имеем:
откуда после приведения подобных членов получаем, что значения индуктивностей Т-образной схемы замещения удовлетворяют соотношению
(8.40)
которое может выполняться, если одна из индуктивностей схемы замещения является отрицательной. Если связь не является жёсткой, т. е. равенство (8.40) переходит в неравенство
что также не исключает возможности появления отрицательной индуктивности. На пассивных элементах отрицательная индуктивность физически не осуществима, однако её наличие в схеме замещения не противоречит задаче анализа колебаний в цепи и способствует решению этой задачи.
Применяется также и другая схема замещения (рис. 8.8, в), называемая П-образной. Соотношения между элементами исходной схемы (рис. 8.8, a) и схемы замещения
(8.41)
можно найти, если для рис. 8.8, в составить систему из двух узловых уравнений. Знаки в этих формулах выбираются по тому же правилу, что и в (8.39). В рассмотренной схеме замещения также возможно появление одной отрицательной индуктивности.
Символический метод расчета электрических цепей переменного тока
Действия над комплексными числами:
Символический метод нашел широкое применение для расчета сложных цепей переменного тока.
Символический метод расчета основан на использовании комплексных чисел.
Комплексное число А состоит из вещественной
и мнимой
частей, т. е.
Комплексное число на комплексной плоскости можно представить вектором. Проекция вектора на вещественную ось (ось абсцисс) соответствует вещественной части комплексного числа
(рис. 14.1а). Проекция вектора на мнимую ось j (ось ординат) соответствует коэффициенту при мнимой единице
. Мнимая единица у представляет собой поворотный множитель, умножение на который означает поворот вектора на 90° против часовой стрелки, т.е. в положительном направлении. Мнимая единица
Тогда
Комплексным числам
соответствуют векторы
изображенные на комплексной плоскости (рис. 14.1а и б) в масштабе.
Модуль комплексного числа соответствует длине вектора, изображающего это комплексное число.
Из построения (рис. 14.1а) видно, что модули комплексных чисел определяются выражением
Следовательно,
Углы
образованные векторами
с положительным направлением вещественной оси, называются аргументами комплексного числа.
Аргументы комплексного числа (рис. 14.1а) определяются выражением
То есть
Как видно, аргумент комплексного числа
отрицательный, так как вектор
повернут на угол
по часовой стрелке, а не против.
Существует три формы записи комплексного числа:
1) алгебраическая:
2)тригонометрическая:
так как
3) показательная:
где — основание натурального логарифма, однако в данном случае имеет чисто символическое значение.
Для перевода из показательной формы записи комплексного числа в алгебраическую пользуются тригонометрической формой записи комплексного числа (14.4).
Для перевода из алгебраической формы записи комплексного числа в показательную определяют модуль по (14.1) и аргумент по (14.2) комплексного числа.
Для перевода комплексного числа из одной формы в другую можно использовать логарифмическую линейку или микрокалькулятор.
Комплексные числа можно складывать, вычитать, умножать и делить.
Сложение и вычитание комплексных чисел производится только в алгебраической форме
На рис. 14.16 видно, что сложение и вычитание комплексных чисел соответствует сложению и вычитанию векторов, изображающих эти числа.
Умножение и деление комплексных чисел можно производить 5 алгебраической форме:
Для того чтобы избавиться от комплексов в знаменателе, числитель и знаменатель умножают на комплекс, сопряженный с комплексом знаменателя. У сопряженного комплекса знак перед мнимой единицей изменяется на обратный.
Произведение двух сопряженных комплексов — вещественное число, равное сумме квадратов вещественной и мнимой частей этих комплексов.
Однако умножение и деление комплексных чисел удобно производить в показательной форме.
При умножении комплексных чисел в показательной форме модули этих чисел перемножаются, а аргументы складываются алгебраически:
При делении комплексных чисел в показательной форме модули этих чисел делятся, а аргументы вычитаются с учетом знаков:
Таким образом, сложение и вычитание комплексных чисел можно производить только в алгебраической форме, а умножение и деление удобней и проще производить в показательной форме.
Ток, напряжение и сопротивление в комплексном виде
Если ток и напряжение изменяются по синусоидальному закону то, как указывалось выше, их можно изобразить векторами и, следовательно, записать комплексными числами:
где
— комплексы тока и напряжения. Точка над комплексами указывает, что ток и напряжение изменяются по синусоидальному закону с определенной частотой
— модули комплексов тока и напряжения, они же действующие значения тока
и напряжения
— аргументы комплексов тока и напряжения, они же начальные фазы тока
и напряжения
Для неразветвленной цепи с
(рис. 12.1а) мгновенные значения синусоидального тока и напряжения можно записать так:
Тогда комплексы тока и напряжения
Комплекс полного сопротивления цепи определяется отношением комплекса напряжения к комплексу тока, т. е.
Комплексные величины, не зависящие от времени, обозначаются прописными буквами с черточкой внизу.
Модулем комплекса полного сопротивления является кажущееся сопротивление цепи
а аргументом — угол сдвига фаз между током и напряжением
Алгебраическая форма записи комплекса полного сопротивления
Вещественная часть комплекса полного сопротивления есть активное сопротивление R, а коэффициент при мнимой единице j -реактивное сопротивление X. Знак перед поворотным множителем (мнимой единицей) указывает на характер цепи. Знак «плюс» соответствует цепи индуктивного характера, а знак «минус» — цепи емкостного характера.
Выражения комплексов сопротивлений различных цепей приедены в Приложении 7.
Обратная величина комплекса сопротивления — комплекс проводимости
Любую цепь переменного тока можно рассчитывать по заколам постоянного тока, если все величины представить в комплексной форме. В этом и заключается достоинство символического года расчета.
Мощность в комплексном виде
Для неразветвленной цепи с (рис. 12.3а) мгновенные значения тока и напряжения можно записать как
Комплексы напряжения и тока соответственно равны
Комплекс полной мощности цепи
определяется произведением комплекса напряжения
и сопряженного комплекса тока
(над сопряженным комплексом синусоидальной величины ставят «звёздочку»)
Таким образом, модулем комплекса полной мощности
является кажущаяся мощность цепи
а аргументом — угол сдвига фаз между током и напряжением.
Если комплекс полной мощности перевести из показательной формы в алгебраическую, то получится
То есть вещественная часть комплекса полной мощности — активная мощность Р, а коэффициент при мнимой единице — реактивная мощность Q.
Знак перед поворотным множителем j указывает на характер цепи. В рассматриваемой цепи реактивная мощность емкостного характера
Комплексы величин токов, напряжений, сопротивлений, мощностей и других параметров цепи синусоидального тока необходимо выражать в двух видах записи комплексного числа: показательной и алгебраической. В этом случае сразу определяются действующие значения тока, напряжения, кажущееся сопротивление, его активные и реактивные части
угол сдвига фаз
между током и напряжением, характер цепи, кажущаяся S, активная Р и реактивная Q мощности. Кроме того, в неразветвленной цепи напряжения на участках складываются, суммируются токи в разветвленных цепях, а сложение комплексов можно производить только в алгебраической форме записи. В алгебраической форме записи кажущейся мощности
сразу определяются активная мощность Р и реактивная мощность Q. В показательной форме записи сопротивлений производится их умножение и деление, необходимое при расчете цепей синусоидального тока при смешанном соединении потребителей, и т.д. Необходимость выражения комплексов в двух видах следует из примеров, разобранных в этой главе.
Пример 14.1
Для цепи, изображенной на рис. 14.2а, дано:
Определить токи
напряжение на участках
мощности S, Р и Q цепи; угол
и характер цепи.
Построить векторную диаграмму цепи.
Решение
Комплексы сопротивлений участков (по номерам токов) и полного сопротивления цепи будут равны
Комплекс сопротивления участка CD цепи:
Тогда полное сопротивление цепи равно
Вектор заданной величины (тока или напряжения) можно направить в любом направлении. Однако удобнее совмещать его с вещественной или мнимой осью.
В рассмотренном примере заданное напряжение направляется по вещественной оси. Таким образом, комплекс общего напряжения будет равен
Комплекс тока цепи
равен комплексу первого тока
.
Комплекс напряжения на участке АС:
Комплекс напряжений на участке CD:
Комплексы токов
Комплекс полной мощности цепи:
Из расчета цепи (рис. 14.2а) символическим методом следует:
Характер цепи емкостной, так как угол отрицательный. Векторная диаграмма для рассматриваемой цепи с учетом начальных фаз напряжений и токов изображена на рис. 14.2б.
Пример 14.2
Для цепи, изображенной на рис. 14.3, дано:
Определить токи
напряжение цепи
; угол
и характер цепи.
Решение
Комплексы сопротивлений участков (по номерам токов):
Вектор заданного тока в примере направим по мнимой оси, т. е.
Комплекс напряжения на участке СD:
Значение токов будут равны соответственно
Комплекс напряжения на участке АС:
Комплекс напряжения на участке АВ, т. е. напряжение сети, равен
Комплекс тока
Комплекс тока цепи:
Комплекс полной мощности цепи:
Характер цепи емкостной.
Пример 14.3
По условиям примера 14.2 определить полное сопротивление цепи (рис. 14.3).
Решение
Результаты расчета: полное сопротивление цепи (рис. 14.3)угол сдвига фаз
характер цепи — емкостной
Погрешность 10′ при расчете угла в примерах 14.2 и 14.3 в пределах допустимого.
- Электротехника
- Основы теории цепей
- Четырехполюсники
- Линейные диаграммы
- Круговые диаграммы
- Цепи с взаимной индукцией
- Линейные электрические цепи
- Нелинейные электрические цепи
- Магнитные цепи и их расчёт
- Цепи переменного тока
При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org
Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи
Сайт пишется, поддерживается и управляется коллективом преподавателей
Telegram и логотип telegram являются товарными знаками корпорации Telegram FZ-LLC.
Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.