Как найти напряжение на участке

Закон Ома для неоднородного участка цепи простым языком для чайников

Ток в проводнике возникает в электрическом поле, которое, в свою очередь, появляется при наличии разности потенциалов или напряжения. Движение тока направлено в сторону меньшего потенциала. Условно считается, что в этом направлении двигаются положительные заряды, а в обратную сторону происходит движение свободных электронов.

На участке металлического проводника данный процесс будет выглядеть следующим образом. На каждом конце присутствует потенциал – ϕ1 и ϕ2, при этом ϕ1 > ϕ2. Следовательно, напряжение в этом месте равно U = ϕ1 – ϕ2. Немецкий ученый Ом практически установил зависимость, при которой с увеличением напряжения, возрастает и сила тока, протекающего через неполный участок.

Для каждого из проводников, отличающихся материалами, был построен свой график, отражающий зависимость силы тока от напряжения. В дальнейшем, эти графики стали известны, как вольт-амперные характеристики. В результате, было установлено наличие линейной связи между обеими величинами – силой тока и напряжением. То есть, они находятся в прямой пропорциональной зависимости.

Закон Ома для неоднородного участка цепи простым языком для чайников

Но, как показывают графики, все проводники обладают разными коэффициентами пропорциональности. Следовательно, у них разная степень проводимости, получившая название электрического сопротивления (R). Поэтому, чем ниже будет сопротивление проводника, тем выше сила тока, проходящего через него. При том, что напряжение для всех проводников будет одинаковым.

После всех опытов ученый смог окончательно сформулировать свой закон для участка цепи:

Сила тока в однородном проводнике на отдельном участке, находится в прямой пропорции с напряжением на этом же участке и в обратной пропорциональной зависимости с сопротивлением данного проводника.

Классическая формулировка

Как устроить освещение участка

Для участка цепи без источника ЭДС достаточно использовать классический закон Ома:

I (сила тока) = U (напряжение) /R (электрическое сопротивление).

Данное соотношение было установлено экспериментальным путем в начале 19 века. В названии сохранена фамилия немецкого ученого, который сделал открытие. Напряжение определяют по разнице потенциалов на концах проводника:

Элементарные вычисления показывают взаимные зависимости перечисленных параметров:

  • I1 = 24/6 = 4А;
  • I2 = 60/6 = 10А.

Увеличив разницу потенциалов, при неизменном сопротивлении получают большую силу тока:

Чтобы уменьшить ток до нужного уровня, при работе с определенным источником питания изменяют сопротивление:

  • I1 = 24/4 = 6А;
  • I2 = 24/12 = 2А.

Основные формулы

Для запоминания правил пользуются такой картинкой. Чтобы вычислить определенный параметр, закрывают соответствующий сегмент. Взаимное расположение оставшихся компонентов условно изобразит необходимую формулу.

Закон Ома для неоднородного участка цепи простым языком для чайников

Ток, напряжение и сопротивление

Картинка выше наглядно демонстрирует взаимное влияние тех основных электрических параметров. С ее помощью можно пояснить особенности практического применения на примере типового проекта домашней сети питания.

В современных жилых объектах часто используют кондиционеры, духовые шкафы, другую технику с большой мощностью потребления. Для нормального функционирования требуется увеличивать ток, потому что напряжение ограничено стандартами. Повышающие трансформаторы в данном случае не пригодятся, так как серийные изделия рассчитаны на подключение к сети 220 (380) V.

При увеличении силы тока понадобятся проводники с достаточно большим поперечным сечением. В противном случае концентрация зарядов на единицу объема повысится до критичной величины. Воздействие на кристаллическую решетку повысит температуру металла вплоть до механического разрушения проводки.

Чтобы исключить проблемы, кроме кабельной продукции, тщательно выбирают защитные автоматы. Для создания проекта электроснабжения и перечня подходящих функциональных компонентов пользуются представленными выше формулами.

Стационарное электрическое поле

Электрический ток возникает при наличии электрического поля и свободных носителей заряда. Соединив проводником разноименно заряженные тела, можно получить электрический ток, протекающий в течение короткого промежутка времени. Стационарное электрическое поле — это поле постоянных во времени электрических токов при условии неподвижности проводников с электрическими токами. Участки цепи, где на заряды действует только стационарное поле, называются однородными.

Сторонние силы

Для того, чтобы в проводнике электрический ток был длительное время, необходимо создать определенные условия. Для этого на отдельных участках цепи, кроме сил стационарного поля, действуют, так называемые, сторонние силы. Участки цепи, на которых имеется действие дополнительных, сторонних, сил называются неоднородными. В этом случае перемещение зарядов возникает под действием сил не электростатической природы, действующих в устройствах, называемых источниками постоянного тока.

Токовая защита нулевой последовательности

Силы, приводящие в движение электрические заряды внутри источника постоянного тока против направления действия сил электростатического поля, называются сторонними силами. Сторонние силы в гальваническом элементе или аккумуляторе возникают в результате электрохимических реакций, происходящих между частицами металлического электрода и молекулами электролита. В генераторах постоянного тока сторонней силой является сила, возникающая от действия магнитного поля на движущийся электрический заряд. Работа источника тока похожа на функцию насоса, который заставляет двигаться жидкость (качает) по трубам замкнутого гидравлического контура. Под воздействием сторонних сил заряды движутся внутри источника тока против сил электростатического поля, благодаря чему в замкнутой цепи длительное время поддерживается постоянный электрический ток.

Закон Ома для неоднородного участка цепи простым языком для чайников

Рис. 1. Источники постоянного тока, аккумуляторы, гальванические элементы, генераторы.

В организме человека имеется множество химических веществ, которые вступая друг с другом в различные реакции, способствуют возникновению электрической энергии. Например, в сердце есть клетки, которые в процессе поддержания сердечного ритма поглощают натрий и выделяют калий, что приводит к образованию электрических зарядов. При достижении определенной величины заряда, возникает импульс электрического поля, заставляющий сокращаться сердечную мышцу. Эти импульсы регистрируют с помощью кардиографа в больницах и поликлиниках при снятии электрокардиограммы (ЭКГ), дающей информацию о работе сердца..

Неоднородный участок цепи постоянного тока

Определение основных параметров и процессов:

  • перемещение зарядов (q) характеризуется плотностью, которая зависит от площади поперечного сечения (S) и силы тока;
  • при концентрации (n) можно подсчитать количество единичных зарядов (q0), перемещенных за единицу времени;
  • эту величину можно изобразить в виде цилиндрического участка проводника с объемом (V):

Если подключить клеммы аккумулятора к проводнику, источник питания разрядится. Для длительного поддержания процесса перемещения зарядов можно создать замкнутый в кольцо путь. Однако и в этом случае свободный дрейф электронов ограничивают совместные столкновения, противодействие зарядов молекулярной решетки материала. Чтобы компенсировать сопротивление, необходимо приложение дополнительных «сторонних» сил.

Пример неоднородного участка цепи

Рисунок демонстрирует факторы, которые следует принять во внимание. Для вычисления напряженности в любой точке этой схемы нужно суммировать векторные составляющие Eq и Est (кулоновских и сторонних сил, соответственно). Приведенный закон Ома для неоднородного участка определяет, что сила тока (I12) = напряжение на данном участке (U12) / полное электрическое сопротивление (R).

Чтобы перенести единичный заряд q из точки «1» в точку «2», необходимо выполнить работу A12. Для этого понадобится создание определенной разницы потенциалов (ϕ1- ϕ2). Источник постоянного тока создает электродвижущую силу (ЭДС), которая способна переместить заряд по цепи. Общее напряжение будет содержать сумму перечисленных сил.

Закон Ома для неоднородного участка цепи простым языком для чайников

Ниже приведены формулы, характеризующие рассмотренный пример:

  • A12/q = ϕ1 – ϕ2;
  • Ast/q = E12;
  • U = A12/q + Ast/q = ϕ1 – ϕ2 + E12;
  • I = (ϕ1 – ϕ2 + E12)/ R.

Интегральный вариант представления рассматриваемых процессов даст аналогичный результат.

К сведению. При выполнении расчетов следует учитывать действительную полярность источника постоянного тока. В зависимости от подключения соответствующая ЭДС будет способствовать или препятствовать перемещению заряда.

Следующий пример демонстрирует решение практической задачи. Необходимо рассчитать ток в цепи, которая составлена из источника питания с ЭДС=40V и проводки с электрическим сопротивлением R=5Ом. На выходе измерены потенциалы:

Подставив значения в формулу, можно получить нужный результат:

Знак «плюс» означает, что ток идет по направлению от точки «1» к «2».

Если рассматривать процесс в дифференциальной форме, можно представить «облако», созданное из определенного количества (N) зарядов. Оно перемещается в проводнике с определенной скоростью дрейфа (Vдр). На него действуют три вида сил:

  • кулоновские – Fкул;
  • сторонние – Fc;
  • сопротивления кристаллической решетки – Fсп.

Последний показатель будет зависеть от особенностей материала. Он может выражаться удельной проводимостью. Вектор плотности тока будет равен сумме векторов ЭДС (кулоновской и сторонней природы), деленной на удельное сопротивление.

Принятые единицы измерения

Необходимо учитывать, что все расчеты должны проводиться в следующих единицах измерения:

  • напряжение – в вольтах;
  • ток в амперах
  • сопротивление в омах.

Если вам встречаются другие величины, то их необходимо будет перевести к общепринятым.

Переменный ток

Если в схема, подключенная к переменному току снабжена емкостью и/или индуктивностью (катушкой), расчет производится с учетом величин их реактивных сопротивлений. Упрощенный вид закона будет выглядеть следующим образом:

Основы электротехники для начинающих

Упрощенный вид закона

Где «Z» представляет собой импеданс, это комплексная величина, состоящая из активного (R) и пассивного (Х) сопротивлений.

Сила тока

Сила тока возникает при наличии частиц со свободными зарядами. Они перемещаются через поперечное сечение проводника из одной точки в другую. Источник питания создает электрическое поле, под действием которого электроны начинают двигаться упорядоченно.

Таким образом, сила тока является количеством электричества, проходящего через определенное сечение за единицу времени. Увеличить этот показатель можно путем увеличения мощности источника тока или изъятия из цепи резистивных элементов.

Международная единица СИ для тока – ампер. Это довольно большая величина, поскольку для человека смертельно опасными считаются всего 0,1 А. В электротехнике малые величины могут выражаться в микро- и миллиамперах.

Определение силы тока можно окончательно сформировать в виде формулы I = q/t, в которой q является зарядом, проходящим через сечение, t – отрезок времени, затраченный на перемещение этого заряда.

Кроме того, сила тока может записываться с помощью основной формулы, когда известны значения напряжения и сопротивления. В числом виде она будет гласить следующее:

Закон Ома для замкнутой цепи

Подключение светодиода через резистор и его расчет

В реальной ситуации следует учитывать электрические сопротивления нагрузки (Rн) и самого источника питания (Rи). Классическую формулу дополняют следующим образом:

Если в рассмотренный выше пример добавить Rи=1Ом, получится I = (ϕ1 – ϕ2 + E12)/(Rн+Rи) = (20-10+40)/(5+1) = +8,33А. Видно уменьшение силы тока в цепи, обусловленное увеличением общего электрического сопротивления. Чтобы компенсировать потери для подключения более мощной нагрузки, необходимо увеличить ЭДС источника.

Формулировка для полной цепи

Трактовка для полной цепи будет несколько иной, чем для участка, поскольку в законе, составленном Омом, еще учитывает параметр «r», это сопротивление источника ЭДС. На рисунке ниже проиллюстрирована подобная схема.

Схема с подключенным с источником

Схема с подключенным с источником

Учитывая «r» ЭДС, формула предстанет в следующем виде:

Учитывая «r» ЭДС

Заметим, если «R» сделать равным 0, то появляется возможность рассчитать «I», возникающий во время короткого замыкания.

Напряжение будет меньше ЭДС, определить его можно по формуле:

Напряжение будет меньше ЭДС

Собственно, падение напряжения характеризуется параметром «I*r». Это свойство характерно многим гальваническим источникам питания.

Использование на практике

Закон Ома лежит в основе всех расчетов производимых в электронике и электротехнике. Будущих специалистов с первых дней учат, как использовать так называемый треугольник. Чтобы найти какую-то искомую величину, должны выполняться простые арифметические действия. Если два оставшихся параметра находятся в одной строке – они перемножаются. Если на разных уровнях, то верхний всегда делится на нижний.

Практически данная схема выглядит так:

U = I x R, I = U/R, R = U/I.

Самые простые вычисления производятся на основе данных измерительных приборов. На участке цепи измерение тока выполняется амперметром, а напряжения – вольтметром. После этого найти сопротивление математическим путем не составит труда.

Для замеров сопротивления тоже есть прибор – омметр. Полученное выражение, подставляется в одну из формул, после чего находятся величины силы тока или напряжения. Точность омметра зависит от стабильности напряжения, подаваемого источником тока. Стабилизация проводится путем добавления резистора, выполняющего функцию регулятора.

Иногда требуется исключить из схемы какой-нибудь элемент без демонтажа. С этой целью проводится шунтирование, когда приходится устанавливать проводник на входных клеммах ненужного резистора. Ток начинает идти через шунт с меньшим сопротивлением, а напряжение на резисторе падает до нуля.

Закон Ома используется в защитных системах. Это делается с помощью уставок, обеспечивающих нормальную работу и отключающих питание лишь в аварийных ситуациях.

Формулы для закона Ома

Представленные на рисунке формулы, начали формироваться из основных формул для полной цепи и отдельного участка. С их помощью можно выполнять все основные расчеты, при составлении проектов и в других ситуациях. Формулы полностью пригодны для работы с цепями как постоянного, так и переменного тока.

Применяем закон к любому участку цепи

Собственно, к любому участку цепи можно применить этот закон. Пример приведен на рисунке.
Применяем закон к любому участку цепи

Используя такой план, можно вычислить все необходимые характеристики для неразветвленного участка. Рассмотрим более детальные примеры.
Находим силу тока
Рассмотрим теперь более определенный пример, допустим, возникла необходимость узнать ток, протекающий через лампу накаливания. Условия:

  • Напряжение – 220 В;
  • R нити накала – 500 Ом.

Решение задачи будет выглядеть следующим образом: 220В/500Ом=0,44 А.

Рассмотрим еще одну задачу со следующими условиями:

В этом случае, в первую очередь, потребуется выполнить преобразование: 0,2 МОм = 200000 Ом,после чего можно приступать к решению: 400 В/200000 Ом=0,002 А (2 мА).
Вычисление напряжения
Для решения мы также воспользуемся законом, составленным Омом. Итак задача:

Ток короткого замыкания однофазных и трехфазных сетей

Преобразуем исходные данные:

  • 20 кОм = 20000 Ом;
  • 10 мА=0,01 А.

Решение: 20000 Ом х 0,01 А = 200 В.

Незабываем преобразовывать значения, поскольку довольно часто ток может быть указан в миллиамперах.

Сопротивление

Несмотря на то, что общий вид способа для расчета параметра «R» напоминает нахождение значения «I», между этими вариантами существуют принципиальные различия. Если ток может меняться в зависимости от двух других параметров, то R (на практике) имеет постоянное значение. То есть по своей сути оно представляется в виде неизменной константы.

Если через два разных участка проходит одинаковый ток (I), в то время как приложенное напряжение (U) различается, то, опираясь на рассматриваемый нами закон, можно с уверенностью сказать, что там где низкое напряжение «R» будет наименьшим.

Рассмотрим случай когда разные токи и одинаковое напряжение на несвязанных между собой участках. Согласно закону, составленному Омом, большая сила тока будет характерна небольшому параметру «R».

Рассмотрим несколько примеров

Допустим, имеется цепь, к которой подведено напряжение U=50 В, а потребляемый ток I=100 мА. Чтобы найти недостающий параметр, следует 50 В / 0,1 А (100 мА), в итоге решением будет – 500 Ом.

Вольтамперная характеристика позволяет наглядно продемонстрировать пропорциональную (линейную) зависимость закона. На рисунке ниже составлен график для участка с сопротивлением равным одному Ому (почти как математическое представление закона Ома).

Изображение вольт-амперной характеристики, где R=1 Ом

Изображение вольтамперной характеристики

Изображение вольт-амперной характеристики

Вертикальная ось графика отображает ток I (A), горизонтальная – напряжение U(В). Сам график представлен в виде прямой линии, которая наглядно отображает зависимость от сопротивления, которое остается неизменным. Например, при 12 В и 12 А «R» будет равно одному Ому (12 В/12 А).

Обратите внимание, что на приведенной вольтамперной характеристике отображены только положительные значения. Это указывает, что цепь рассчитана на протекание тока в одном направлении. Там где допускается обратное направление, график будет продолжен на отрицательные значения.

Заметим, что оборудование, вольт-амперная характеристика которого отображена в виде прямой линии, именуется — линейным. Этот же термин используется для обозначения и других параметров.

Помимо линейного оборудования, есть различные приборы, параметр «R» которых может меняться в зависимости от силы тока или приложенного напряжения. В этом случая для расчета зависимости нельзя использовать закон Ома. Оборудование такого типа называется нелинейным, соответственно, его вольт-амперные характеристики не будут отображены в виде прямых линий.

Что мы узнали?

Итак, мы узнали, что участки электрической цепи, на которых кроме стационарного электрического поля имеется действие дополнительных, сторонних сил, называются неоднородными. Сторонние силы возникают в результате работы источников тока: аккумуляторов, гальванических элементов и электрических генераторов тока. Получены уравнения закона Ома для неоднородного участка цепи и для полной цепи.

Вывод

Как уже упоминалось в начале статьи, вся прикладная электротехника базируется на законе, составленном Омом. Незнание этого базового догмата может привести к неправильному расчету, который, в свою очередь, станет причиной аварии.

Подготовка электриков как специалистов начинается с изучения теоретических основ электротехники. И первое, что они должны запомнить – это закон составленный Омом, поскольку на его основе производятся практически все расчеты параметров электрических цепей различного назначения.

Понимание основного закона электротехники поможет лучше разбираться в работе электрооборудования и его основных компонентов. Это положительно отразится на техническом обслуживании в процессе эксплуатации.

Самостоятельная проверка, разработка, а также опытное изучение узлов оборудования – все это существенно упрощается, если использовать закон Ома для участка цепи. При этом не требуется проводить всех измерений, достаточно снять некоторые параметры и, проведя несложные расчеты, получить необходимые значения.

Видеоурок

  • https://amperof.ru/teoriya/zakon-oma-dlya-neodnorodnogo-uchastka.html
  • https://obrazovaka.ru/fizika/zakon-oma-dlya-neodnorodnogo-uchastka-cepi.html
  • https://www.asutpp.ru/zakon-oma-dlya-uchastka-cepi.html

Последовательное соединение проводников

Реальные электрические цепи могут состоять не из одного источника тока или нагрузки. Часто можно столкнуться с тем, что цепь питается от двух или больше элементов питания и в нее включено два или больше потребителя. Чтобы рассчитать в каждом случае параметры таких электрических цепей, надо знать законы, по которым изменяются напряжение, ток и сопротивление при различных видах соединения.

Последовательное соединение элементов цепи

Если два или больше элементов соединены в виде цепочки так, что один вывод подключен к одному соседнему устройству, а другой – к другому с противоположной стороны, то такое соединение называется последовательным.

На рисунке изображена цепь, в которой последовательно включены:

  • источник питания (батарея);
  • ключ;
  • две одинаковые лампочки.

На схеме эта цепь изображается так:

Чтобы рассчитать параметры — токи и напряжения, существующие в цепи, в первую очередь надо определить общее сопротивление нагрузки (двух лампочек). Для этого надо вспомнить опыт из предыдущих разделов, где два проволочных резистора включались последовательно, и сопротивление увеличивалось вдвое.
Можно расширить опыт, пробуя включать резисторы из проволоки различной длины – чтобы общая длина равнялась сумме длин проводников двух резисторов. Результат будет один – сопротивления при последовательном соединении складываются: . Если включить последовательно несколько резисторов, то результирующее сопротивление будет равно сумме всех n элементов:

Если все резисторы имеют равное сопротивление, то результат можно найти, как произведение сопротивления единичного элемента на общее количество:

Также ранее было показано, что через каждый элемент последовательной цепи протекает одинаковый ток . Тогда напряжение на каждой лампочке, которая представляет собой участок цепи, согласно закону Ома равно:

Так как сопротивлением проводов, соединяющих элементы цепи, и сопротивлением замкнутого ключа (все они приблизительно равны нулю) можно пренебречь, то можно сказать, что все напряжение источника прикладывается к двум лампочкам и .

Это следует из закона сохранения энергии. Напряжение на участке цепи определяется работой электрического тока по переносу по этому участку заряда в 1 Кл. Эта работа определяется энергией электрического поля, которая в сумме равна энергии по переносу зарядов на каждом участке.

Так как сопротивления каждого элемента нагрузки равны, то на клеммах каждой лампы будет напряжение, равное половине напряжения источника питания. Если сопротивления нагрузок будут различаться, то напряжение источника распределится пропорционально сопротивлению каждой лампы.

Это можно подтвердить расчетным путем и проверить экспериментально. Для этого надо добавить в схему два вольтметра и включить их параллельно каждой нагрузке. Меняя лампочки на экземпляры с другой мощностью (а ее определяет сопротивление нити) можно видеть, как распределяются напряжения, а их сумма всегда будет равна напряжению источника

Пример расчета цепи с нагрузками, соединенными последовательно

Имеется электрическая цепь с двумя последовательно соединенными резисторами с сопротивлением 5 и 7 Ом. Измеренный ток в цепи равен двум амперам. Надо определить общее сопротивление нагрузки, напряжение на каждом из них и напряжение источника питания.

I=2 А

_________
R — ?

Решение:
На первом резисторе падает напряжение . На втором . Отсюда можно найти напряжение источника питания как .

Общее сопротивление находится как сумма двух сопротивлений:
. Отсюда тоже можно найти напряжение на участке цепи, как U=I*R=2 А*12 Ом=24 вольта.

Последовательное соединение источников питания

Другой вариант последовательного включения – когда в цепи последовательно включены источники питания.

В этом случае их напряжения складываются. Это свойство используется, например, в автомобильных аккумуляторах. Напряжение одного элемента определяется электрохимическими реакциями, проходящими внутри ячейки, и оно не превышает 2,1 вольта. В большинстве случаев этого мало, и ячейки соединяют последовательно, получая на выходе нужное напряжение (например, 6,12 или 24 вольта).

  • Учебник по физике. Все классы
  • ЕГЭ по физике
  • ОГЭ по физике
  • ВПР по физике
  • Темы по физике