Период и частота колебаний
Период — это отрезок времени, которое необходимо для совершения одного цикла периодического процесса.
Периодом ($T$) колебаний называют время, за которое совершается одно полное колебание.
За время равное периоду колебаний фаза изменяется на величину равную $2\pi $, поэтому:
Разные периодические процессы, (процессы, повторяющиеся через равные промежутки времени) можно представить в виде совокупности наложенных гармонических колебаний.
Гармонические колебания некоторого параметра $\xi $ описываются уравнением:
где $A=<\xi >_$ — амплитуда колебаний; $<\omega >_0$ — циклическая (круговая) частота колебаний; $\varphi $ — начальная фаза колебаний (фаза при $t=0$); $(<\omega >_0t+\varphi )$ — фаза колебаний. Величина $\xi $ лежит в пределах $-A\le s\le $+A.
Формулы для вычисления периода простейших колебательных систем
Период колебаний пружинного маятника определим как:
на упругой пружине, жесткость которой равна $k,$ подвешен груз массой $m$.
Период колебаний математического маятника зависит от ускорения свободного падения ($g$) и длины подвеса ($l$)
Формула для вычисления периода колебаний физического маятника представляет собой выражение:
где $J$ — момент инерции маятника относительно оси вращения; $a$ — расстояние от центра масс тела до оси вращения.
Единицами измерения периода служат единицы времени, например секунды.
Частота колебаний
Физическая величина обратная периоду колебаний называется частотой колебаний ($\nu $).
Частота — это количество полных колебаний, которые колебательная система совершает за единицу времени.
Частота колебаний связана с циклической частотой как:
Единицей измерения частоты в Международной системе единиц (СИ) является герц или обратная секунда:
Примеры задач с решением
Задание. Каковы период ($T$) и частота ($\nu $) колебаний, которые происходят в соответствии с уравнением: $x=A_0(t+\tau ))\ >$, где $<\omega >_0=2,5\ \pi \ (\frac)$; $\tau =0,4\ $с?
Решение. Из уравнения колебаний:
заключаем, что это гармонические колебания, так как они происходят по закону синуса следовательно, они являются периодическими. Период найдем, зная циклическую частоту колебаний:
Подставляя имеющиеся данные, вычислим период колебаний:
Частоту колебаний найдем как величину, обратную периоду:
Ответ. $T=0,8$ с; $\nu =1,25\ Гц$
Задание. Какими будут период и частота малых колебаний тонкого обруча, который висит на гвозде (точка А), вбитом горизонтально в стену (рис.1)? Колебания совершаются в плоскости параллельной стене. Радиус обруча R.
Решение. В этой задаче мы имеем дело с физическим маятником период которого, найдем, используя формулу:
Осью вращения обруча является гвоздь, находящийся в точке А. Цент масс обруча находится в его геометрическом центре, точке О, следовательно, расстояние от центра масс до оси вращения обруча (рис.1) равно:
Найдем момент инерции обруча относительно оси, перпендикулярной плоскости обруча, проходящей через точку $A$. Для этого воспользуемся теоремой Штейнера:
где $J_0=mR^2$ — момент инерции обруча, относительно оси, проходящей через его центр (т.О), перпендикулярно плоскости обруча; расстояние между осями равно радиусу обруча. Получаем, момент инерции обруча относительно гвоздя равен:
Используя формулы (2.1) (2.2) и (2.4), имеем:
Отталкиваясь от полученного результата, найдем частоту колебаний как:
Характеристики колебаний
Чтобы описать колебательные процессы и отличить одни колебания от других, используют 6 характеристик. Они называются так (рис. 1):
- амплитуда,
- период,
- частота,
- циклическая частота,
- фаза,
- начальная фаза.
Рис. 1. Основные характеристики колебаний – это амплитуда, период и начальная фаза
Такие величины, как амплитуду и период, можно определить по графику колебаний.
Начальную фазу, так же, определяют по графику, с помощью интервала времени \(\large \Delta t\), на который относительно нуля сдвигается начало ближайшего периода.
Частоту и циклическую частоту вычисляют из найденного по графику периода, по формулам. Они находятся ниже в тексте этой статьи.
А фазу определяют с помощью формулы, в которую входит интересующий нас момент времени t колебаний. Читайте далее.
Что такое амплитуда
Амплитуда – это наибольшее отклонение величины от равновесия, то есть, максимальное значение колеблющейся величины.
Измеряют в тех же единицах, в которых измерена колеблющаяся величина. К примеру, когда рассматривают механические колебания, в которых изменяется координата, амплитуду измеряют в метрах.
В случае электрических колебаний, в которых изменяется заряд, ее измеряют в Кулонах. Если колеблется ток – то в Амперах, а если – напряжение, то в Вольтах.
Часто обозначают ее, приписывая к букве, обозначающей амплитуду индекс «0» снизу.
К примеру, пусть колеблется величина \( \large x \). Тогда символом \( \large x_ \) обозначают амплитуду колебаний этой величины.
Иногда для обозначения амплитуды используют большую латинскую букву A, так как это первая буква английского слова «amplitude».
С помощью графика амплитуду можно определить так (рис. 2):
Рис. 2. Амплитуда – это максимальное отклонение от горизонтальной оси либо вверх, либо вниз. Горизонтальная ось проходит через уровень нуля на оси, на которой отмечены амплитуды
Что такое период
Когда колебания повторяются точно, изменяющаяся величина принимает одни и те же значения через одинаковые кусочки времени. Такой кусочек времени называют периодом.
Обозначают его обычно большой латинской буквой «T» и измеряют в секундах.
\( \large T \left( c \right) \) – период колебаний.
Одна секунда – достаточно большой интервал времени. Поэтому, хотя период и измеряют в секундах, но для большинства колебаний он будет измеряться долями секунды.
Чтобы по графику колебаний определить период (рис. 3), нужно найти два одинаковых значения колеблющейся величины. После, провести от этих значений к оси времени пунктиры. Расстояние между пунктирами – это период колебаний.
Рис. 3. Период колебаний – это горизонтальное расстояние между двумя похожими точками на графике
Период – это время одного полного колебания.
На графике период найти удобнее одним из таких способов (рис. 4):
Рис. 4. Удобно определять период, как расстояние между двумя соседними вершинами, либо между двумя впадинами
Что такое частота
Обозначают ее с помощью греческой буквы «ню» \( \large \nu \).
Частота отвечает на вопрос: «Сколько полных колебаний выполняется за одну секунду?» Или же: «Сколько периодов умещается в интервал времени, равный одной секунде?».
Поэтому, размерность частоты — это единицы колебаний в секунду:
\( \large \nu \left( \frac \right) \).
Иногда в учебниках встречается такая запись \( \large \displaystyle \nu \left( c^ \right) \), потому, что по свойствам степени \( \large \displaystyle \frac = c^ \).
Начиная с 1933 года частоту указывают в Герцах в честь Генриха Рудольфа Герца. Он совершил значимые открытия в физике, изучал колебания и доказал, что существуют электромагнитные волны.
Одно колебание в секунду соответствует частоте в 1 Герц.
Чтобы с помощью графика определить частоту, нужно на оси времени определить период. А затем посчитать частоту по такой формуле:
Существует еще один способ определить частоту с помощью графика колеблющейся величины. Нужно отмерить на графике интервал времени, равный одной секунде, и сосчитать количество периодов колебаний, уместившихся в этот интервал (рис. 5).
Рис. 5. На графике частота – это количество периодов, уместившихся в одну секунду
Что такое циклическая частота
Колебательное движение и движение по окружности имеют много общего – это повторяющиеся движения. Одному полному обороту соответствует угол \(\large 2\pi\) радиан. Поэтому, кроме интервала времени 1 секунда, физики используют интервал времени, равный \(\large 2\pi\) секунд.
Число полных колебаний для такого интервала времени, называется циклической частотой и обозначается греческой буквой «омега»:
\( \large \displaystyle \omega \left( \frac> \right) \)
Примечание: Величину \( \large \omega \) так же называют круговой частотой, а еще — угловой скоростью (ссылка).
Циклическая частота отвечает на вопрос: «Сколько полных колебаний выполняется за \(\large 2\pi\) секунд?» Или же: «Сколько периодов умещается в интервал времени, равный \(\large 2\pi\) секунд?».
Обычная \( \large \nu \) и циклическая \( \large \omega \) частота колебаний связаны формулой:
Слева в формуле количество колебаний измеряется в радианах на секунду, а справа – в Герцах.
Чтобы с помощью графика колебаний определить величину \( \large \omega \), нужно сначала найти период T.
Затем, воспользоваться формулой \( \large \displaystyle \nu = \frac \) и вычислить частоту \( \large \nu \).
И только после этого, с помощью формулы \( \large \omega = 2\pi \cdot \nu \) посчитать циклическую \( \large \omega \) частоту.
Для грубой устной оценки можно считать, что циклическая частота превышает обычную частоту примерно в 6 раз численно.
Определить величину \( \large \omega \) по графику колебаний можно еще одним способом. На оси времени отметить интервал, равный \(\large 2\pi\), а затем, сосчитать количество периодов колебаний в этом интервале (рис. 6).
Рис. 6. На графике циклическая (круговая) частота – это количество периодов, уместившихся в 2 пи секунд
Что такое начальная фаза и как определить ее по графику колебаний
Отклоним качели на некоторый угол от равновесия и будем удерживать их в таком положении. Когда мы отпустим их, качели начнут раскачиваться. А старт колебаний произойдет из угла, на который мы их отклонили.
Такой, начальный угол отклонения, называют начальной фазой колебаний. Обозначим этот угол (рис. 7) какой-нибудь греческой буквой, например, \(\large \varphi_ \).
\(\large \varphi_ \left(\text \right) \) — начальная фаза, измеряется в радианах (или градусах).
Начальная фаза колебаний – это угол, на который мы отклонили качели, перед тем, как их отпустить. Из этого угла начнется колебательный процесс.
Рис. 7. Угол отклонения качелей перед началом колебаний
Рассмотрим теперь, как величина \(\large \varphi_ \) влияет на график колебаний (рис. 8). Для удобства будем считать, что мы рассматриваем колебания, которые происходят по закону синуса.
Кривая, обозначенная черным на рисунке, начинает период колебаний из точки t = 0. Эта кривая является «чистым», не сдвинутым синусом. Для нее величину начальной фазы \(\large \varphi_ \) принимаем равной нулю.
Рис. 8. Вертикальное положение стартовой точки в момент времени t = 0 и сдвиг графика по горизонтали определяется начальной фазой
Вторая кривая на рисунке обозначена красным цветом. Начало ее периода сдвинуто вправо относительно точки t = 0. Поэтому, для красной кривой, начавшей новый период колебаний спустя время \(\large \Delta t\), начальный угол \(\large \varphi_ \) будет отличаться от нулевого значения.
Определим угол \(\large \varphi_ \) с помощью графика колебаний.
Обратим внимание (рис. 8) на то, что время, лежащее на горизонтальной оси, измеряется в секундах, а величина \(\large \varphi_ \) — в радианах. Значит, нужно связать формулой кусочек времени \(\large \Delta t\) и соответствующий ему начальный угол \(\large \varphi_ \).
Как вычислить начальный угол по интервалу смещения
Алгоритм нахождения начального угла состоит из нескольких несложных шагов.
- Сначала определим интервал времени, обозначенный синими стрелками на рисунке. На осях большинства графиков располагают цифры, по которым это можно сделать. Как видно из рис. 8, этот интервал \(\large \Delta t\) равен 1 сек.
- Затем определим период. Для этого отметим одно полное колебание на красной кривой. Колебание началось в точке t = 1, а закончилось в точке t =5. Взяв разность между этими двумя точками времени, получим значение периода.
\[\large T = 5 – 1 = 4 \left( \text \right)\]
Из графика следует, что период T = 4 сек.
- Рассчитаем теперь, какую долю периода составляет интервал времени \(\large \Delta t\). Для этого составим такую дробь \(\large \displaystyle \frac\):
Полученное значение дроби означает, что красная кривая сдвинута относительно точки t = 0 и черной кривой на четверть периода.
- Нам известно, что одно полное колебание — один полный оборот (цикл), синус (или косинус) совершает, проходя каждый раз угол \(\large 2\pi \). Найдем теперь, как связана найденная доля периода с углом \(\large 2\pi \) полного цикла.
Для этого используем формулу:
\(\large \displaystyle \frac \cdot 2\pi = \frac<\pi > =\varphi_ \)
Значит, интервалу \(\large \Delta t\) соответствует угол \(\large \displaystyle \frac<\pi > \) – это начальная фаза для красной кривой на рисунке.
- В заключение обратим внимание на следующее. Начало ближайшего к точке t = 0 периода красной кривой сдвинуто вправо. То есть, кривая запаздывает относительно «чистого» синуса.
Чтобы обозначить запаздывание, будем использовать знак «минус» для начального угла:
Примечание: Если на кривой колебаний начало ближайшего периода лежит левее точки t = 0, то в таком случае, угол \(\large \displaystyle \frac<\pi > \) имеет знак «плюс».
Для не сдвинутого влево, либо вправо, синуса или косинуса, начальная фаза нулевая \(\large \varphi_ = 0 \).
Для синуса или косинуса, сдвинутого влево по графику и опережающего обычную функцию, начальная фаза берется со знаком «+».
А если функция сдвинута вправо и запаздывает относительно обычной функции, величину \(\large \varphi_ \) записываем со знаком «-».
Примечания:
- Физики начинают отсчет времени из точки 0. Поэтому, время в задачах будет величиной не отрицательной.
- На графике колебаний начальная фаза \( \varphi_\) влияет на вертикальный сдвиг точки, из которой стартует колебательный процесс. Значит, можно для простоты сказать, что колебания имеют начальную точку.
Благодаря таким допущениям график колебаний при решении большинства задач можно изображать, начиная из окрестности нуля и преимущественно в правой полуплоскости.
Что такое фаза колебаний
Рассмотрим еще раз обыкновенные детские качели (рис. 9) и угол их отклонения от положения равновесия. С течением времени этот угол изменяется, то есть, он зависит от времени.
Рис. 9. Угол отклонения от равновесия – фаза, изменяется в процессе колебаний
В процессе колебаний изменяется угол отклонения от равновесия. Этот изменяющийся угол называют фазой колебаний и обозначают \(\varphi\).
Различия между фазой и начальной фазой
Существуют два угла отклонения от равновесия – начальный, он задается перед началом колебаний и, угол, изменяющийся во время колебаний.
Первый угол называют начальной \( \varphi_\) фазой (рис. 10а), она считается неизменной величиной. А второй угол – просто \( \varphi\) фазой (рис. 10б) – это величина переменная.
Рис. 10. Перед началом колебаний задаем начальную фазу — начальный угол отклонения от равновесия. А угол, который изменяется во время колебаний, называют фазой
Как на графике колебаний отметить фазу
На графике колебаний фаза \(\large \varphi\) выглядит, как точка на кривой. С течением времени эта точка сдвигается (бежит) по графику слева направо (рис. 11). То есть, в разные моменты времени она будет находиться на различных участках кривой.
На рисунке отмечены две крупные красные точки, они соответствуют фазам колебаний в моменты времени t1 и t2.
Рис. 11. На графике колебаний фаза – это точка, скользящая по кривой. В различные моменты времени она находится в разных положениях на графике
А начальная фаза на графике колебаний выглядит, как место, в котором находится точка, лежащая на кривой колебаний, в момент времени t=0. На рисунке дополнительно присутствует одна мелкая красная точка, она соответствует начальной фазе колебаний.
Как определить фазу с помощью формулы
Пусть нам известны величины \(\large \omega\) — циклическая частота и \(\large \varphi_\) — начальная фаза. Во время колебаний эти величины не изменяются, то есть, являются константами.
Время колебаний t будет величиной переменной.
Фазу \(\large \varphi\), соответствующую любому интересующему нас моменту t времени, можно определить из такого уравнения:
Левая и правая части этого уравнения имеют размерность угла (т. е. измеряются в радианах, или градусах). А подставляя вместо символа t в это уравнение интересующие нас значения времени, можно получать соответствующие им значения фазы.
Что такое разность фаз
Обычно понятие разности фаз применяют, когда сравнивают два колебательных процесса между собой.
Рассмотрим два колебательных процесса (рис. 12). Каждый имеет свою начальную фазу.
\( \large \varphi_\) – для первого процесса и,
\( \large \varphi_\) – для второго процесса.
Рис. 12. Для двух колебаний можно ввести понятие разности фаз
Определим разность фаз между первым и вторым колебательными процессами:
Величина \(\large \Delta \varphi \) показывает, на сколько отличаются фазы двух колебаний, она называется разностью фаз.
Как связаны характеристики колебаний — формулы
Движение по окружности и колебательное движение имеют определенную схожесть, так как эти виды движения могут быть периодическими.
Поэтому, основные формулы, применимые для движения по окружности, подойдут так же, для описания колебательного движения.
- Связь между периодом, количеством колебаний и общим временем колебательного процесса:
\( \large T \left( c \right) \) – время одного полного колебания (период колебаний);
\( \large N \left( \text \right) \) – количество полных колебаний;
\( \large t \left( c \right) \) – общее время для нескольких колебаний;
- Период и частота колебаний связаны так:
\(\large \nu \left( \text \right) \) – частота колебаний.
- Количество и частота колебаний связаны формулой:
- Связь между частотой и циклической частотой колебаний:
\(\large \displaystyle \omega \left( \frac> \right) \) – циклическая (круговая) частота колебаний.
- Фаза и циклическая частота колебаний связаны так:
\(\large \varphi_ \left( \text \right) \) — начальная фаза;
\(\large \varphi \left( \text \right) \) – фаза (угол) в выбранный момент времени t;
- Между фазой и количеством колебаний связь описана так:
- Интервал времени \(\large \Delta t \) (сдвигом) и начальная фаза колебаний связаны:
\(\large \Delta t \left( c \right) \) — интервал времени, на который относительно точки t=0 сдвинуто начало ближайшего периода.
Электромагнитные колебания — основные понятия, формулы и определения с примерами
Мы проживаем в различных городах и селах нашей республики. Они находятся в сотнях и тысячах километров от столицы. Несмотря на большие расстояния между населенными пунктами, мы постоянно поддерживаем связь. Кроме этого, нам известна информация о событиях со всего мира. Эти новости мы узнаем по телевизору, радио, мобильным телефонам. Каким образом информация доходит до нас по телевидению, через радиоприемники, мобильные телефоны?
Передача на большие расстояния речи, музыки, изображений или другой информации в виде электромагнитных сигналов называется телекоммуникацией. Передача информации в виде электрических сигналов с помощью проводников была изобретена в 1837 году английскими учеными У. Куком и Ч. Уитсоном. Американский художник С. Морзе изобрел передачу информации с помощью специального алфавита, состоящего из точек и тире. Этот метод в дальнейшем стал широко применяться во всем мире. В 1876 году А.Г. Белл изобрел телефон. В настоящее время, если телефоны в наших домах и различных ведомствах связаны со станцией через металлические проводники, то междугородные и международные телефонные станции связаны кабелями оптических волокон. Информация по этим кабелям передается с помощью лазерных лучей. По одной паре кабель одновременно может поддерживать связь 6000 телефонных абонентов. Наши радиоприемники и телевизоры могут получать информацию вообще без проводов. Мобильные телефоны также поддерживают беспроводную связь. В этих случаях информация передается с помощью электромагнитных волн.
Как поступает информация по проводам и воздуху в виде речи, изображения и звука в мобильные телефоны, радиоприемники и телевизоры? Ответы на эти вопросы вы, уважаемые ученики, найдете в данной главе.
Свободные электромагнитные колебания
Простые электромагнитные колебания можно создать в электрической цепи, состоящей из конденсатора и катушки индуктивности. Построим электрическую цепь, состоящую из конденсатора, катушки индуктивности, источника постоянного тока и включателя (рис. 3.1). Для упрощения не будем учитывать сопротивление электрической цепи. При включении включателя с левой стороны батареи пластинки конденсатора С заряжаются. При этом между обкладками конденсатора создается электрическое поле с максимальной энергией
В результате зарядки верхней обкладки конденсатора положительным, а нижней обкладки отрицательным зарядом он становится источником тока (1 случай). В результате с положительной обкладки конденсатора наблюдается перемещение зарядов на отрицательную обкладку через катушку индуктивности, т.е. образуется ток. Вокруг этого тока создается магнитное поле. Этот ток из-за индуктивности катушки постепенно увеличивается и достигает максимального значения (смотрите график на рисунке). Магнитное поле, созданное вокруг тока, протекающего через катушку, будет тоже растущим (2 случай). В этом случае энергия электрического поля между обкладками конденсатора уменьшается до нуля. Энергия магнитного поля вокруг катушки постепенно растет и достигает своего максимального значения Как известно из предыдущих тем, согласно явлению электромагнитной индукции на концах катушки, расположенной в изменяющемся магнитном поле, появляется разность потенциалов. Уменьшая значение тока эта разность потенциалов заряжает обкладки конденсатора противоположными зарядами (3 случай). Заряженный конденсатор через катушку индуктивности снова создает ток (4 случай). Этот ток тоже является растущим, его магнитное поле на концах катушки создает разность потенциалов. Уменьшается ток, и разность потенциалов снова заряжает конденсатор (5 случай). В 5-ом и 1-ом случаях знаки зарядов конденсатора одинаковы. Значит, последующие процессы повторяются, как было описано выше.
Из рассмотренных процессов сделаем следующие выводы:
- В цепи, состоящей из конденсатора и катушки индуктивности, заряд, переданный конденсатору из источника тока, в замкнутой цепи создаст переменный ток.
- Энергия, полученная от источника, сначала концентрируется в качестве энергии электрического поля между обкладками конденсатора, а затем превращается в энергию магнитного поля внутри катушки. Далее энергия магнитного поля превращается в энергию электрического поля и т.д., периодически происходят превращения.
Мы узнали, что любые процессы, которые периодически повторяются, называются колебаниями.
Значит, процесс в цепи, состоящей из конденсатора с и катушки, тоже имеет колебательный характер. Это явление называется электромагнитные колебания. Замкнутая цепь, состоящая из катушки (L) и конденсатора (С), в которой создаются электромагнитные колебания, называется колебательным контуром (рис. 3.3).
Формула определения периода (частоты) электромагнитного колебания в колебательном контуре найдена английским физиком У. Томсоном.
Здесь: Т-период колебания в секундах, -частота колебания измеряется в 1 /с = 1 Гц.
Когда происходят электромагнитные колебания в контуре, энергия электрического поля периодически превращается в энергию магнитного поля и наоборот. В идеальном колебательном контуре из-за отсутствия расхода энергии колебания не затухают. Полная энергия сохраняется и ее величина в любой момент времени равна:
Здесь: L- индуктивность катушки, С-емкость конденсатора, -мгновенные и максимальные значения силы тока соответственно:
— мгновенные и максимальные значения заряда в конденсаторе соответственно.
Явления, происходящие в колебательном контуре, — это превращение энергии электрического поля конденсатора в энергию магнитного поля катушки и наоборот — энергии магнитного поля катушки в энергию электрического поля конденсатора. Это явление можно сравнить с рассмотренным в 10-м классе примером, где потенциальная энергия растянутой пружины, пружинного маятника, превращается в кинетическую энергию груза и наоборот. Согласно этому в следующей таблице приведем аналогию величин, характеризующих механические и электрические колебания.
- х-координата
- v- скорость
— масса
-упругость пружины
— потенциальная энергия
-кинетическая энергия
- q- заряд
-сила тока
- L — индуктивность
- 1/С-обратная величина емкости
-энергия электрического поля
— энергия магнитного поля
Следует отметить, что электромагнитные и механические колебания имеют разную природу, но выражаются аналогичными уравнениями.
Пример №1
Емкость конденсатора колебательного контура равна индуктивность катушки — 0,4 Гн. Максимальное напряжение конденсатора -2 В. Найдите период собственного колебания контура и максимальную энергию контура.
Дано: Найти:
Формула:
Решение:
Графическое изображение колебания затухающие электромагнитные колебания
В рассмотренном колебательном контуре для создания возникающих электромагнитных колебаний сначала в момент времени t=0 на конденсатор подается заряд qM, не оказывая других внешних воздействий. Колебания, возникающие при отсутствии внешних воздействий, называются свободными колебаниями.
Учитывая схожесть электромагнитных колебаний с механическими колебаниями, изученными в 10-м классе, изменение заряда конденсатора можно записать следующей формулой:
Если учесть, что для изменения напряжения конденсатора получим
Сила тока в катушке определяется согласно следующей закономерности:
Периодическое изменение физических параметров с течением времени по закону синуса или косинуса называется гармоническими колебаниями.
Модуль наибольшего значения колеблющейся величины называется амплитудой колебания, или амплитудной величиной.
Амплитуда в механических колебаниях равна наибольшему отклонению тела от положения равновесия, а в электромагнитных колебаниях — наибольшему значению электрического заряда на обкладках конденсатора.
Для изображения зависимости величин гармонических колебаний от времени удобен графический метод.
Нарисуем графики зависимости заряда, напряжения и силы тока электромагнитных колебаний от времени. Для этого воспользуемся формулами (3-3), (3-4) и (3-5). Сравнивая эти уравнения, можно увидеть, что колебания отличаются друг от друга по фазовым смещениям, т.е. имеют сдвиг по фазе.
Нарисуем графики вышеназванных уравнений. Ось абсцисс указывает в долях период времени, над ним соответствующие фазы колебания. По оси ординат выставлены величины (рис. 3.4).
Если на этих графиках будет известен масштаб, то по оси абсцисс можно найти период (время), а по оси ординат — амплитуду или мгновенное значение колеблющихся величин. Таким же образом сравнивая графики, можно найти сдвиг по фазе. Например, при максимальном значении заряда и напряжения на обкладках конденсатора сила тока равна нулю.
Колебания силы тока в контуре по фазам опережают колебания заряда на Заряд и напряжение изменяются в одной фазе.
Как было сказано выше, колебания, возникающие в идеальных колебательных контурах, не затухают. В реальных контурах из-за того, что сопротивление R не равняется нулю, электрическая энергия превращается в тепло и амплитуда колебания со временем уменьшается (рис. 3.5).
Такие колебания называются затухающим и колебаниями.
Следует отметить, что согласно формуле чем больше сопротивление контура, тем больше расходуется энергия. С увеличением сопротивления контура увеличится период колебания. Значит, затухающие колебания не являются гармоническими.
Затухающие колебания относятся к непериодичным колебаниям. Их уравнения выражаются через дифференциальные уравнения и являются сложными задачами, поэтому, не приводя их решения, ограничимся приведением их графиков.
Пример №2
На рисунке приведен график изменения тока в колебательном контуре. Объясните изменение энергии в промежутке времени: и
Решение: За приведенный промежуток времени с и
с сила тока, протекающего через катушку, растет и достигает своего максимального значения.
Значит, энергия электрического поля конденсатора уменьшается до нуля и растет энергия магнитного поля катушки, достигая максимального значения.
Генераторы электромагнитных колебаний на транзисторах
Мы узнали, что в колебательном контуре возникают высокочастотные электромагнитные колебания. Если наблюдать на экране осциллографа колебания, возникающие в колебательном контуре, то увидим, что с течением времени амплитуда колебания уменьшается (рис. 3.6).
Причиной этого является электрическое сопротивление проводников катушки контура, используемых для соединения. Известно, что, имея сопротивление, проводник нагревается. Электрическая энергия превращается в тепловую энергию. Поэтому возникающие в контуре свободные электромагнитные колебания являются затухающими колебаниями.
Для того чтобы колебания не затухали, израсходованную энергию нужно периодически передавать колебательному контуру с помощью батарейки. Это означает, что включатель в контуре не должен постоянно оставаться включенным, его надо периодически выключать. Вспомните из 10-го класса фазы колебания. Согласно этому, во время перезарядки обкладки конденсатора включатель должен соединиться в тот момент, когда знаки зарядов на обкладках соответствуют полюсам батарейки.
Как при этом должен работать включатель? Представим себе, что частота колебания контура равна 1 МГц. В этом случае потребуется включатель включать-выключать миллион раз в секунду! Эту задачу не смогут выполнить никакие механические или электромеханические устройства.
Такую задачу может выполнить только электронный прибор, т.е. транзистор. Вспомним приведенный в 10-м классе принцип работы транзистора Чтобы через транзистор протекал ток, подключаются отдельные батарейки между базой-эмиттером и коллектором-эмиттером. В случае подсоединения к базе отрицательного полюса батарейки, к эмиттеру положительного полюса через транзистор протекает ток (включатель включен). Если поменять полюсы батарейки, ток не протекает (включатель выключен). Значит, транзистор может выполнять функцию включателя. Поэтому для создания незатухающего колебания в контуре его нужно подсоединить к источнику через транзистор.
На рис. 3.7 приводится схема генератора, в котором создаются высокочастотные незатухающие колебания. Здесь контур, состоящий из L и С, подсоединен к источнику тока через транзистор. В момент включения протекающий через катушку L ток имеет растущий характер. Магнитное поле, возникающее вокруг нее, тоже будет расти. Это магнитное поле, проходящее сквозь катушкусоздает электродвижущую силу взаимной индукции. На рис. 3.7 знаки внутри на концах катушки показаны в кружочках. Здесь на базу транзистора (Б) подастся напряжение с отрицательным знаком, на эмиттер (Э) — с положительным знаком и по транзистору протекает полный ток. В это время конденсатор С в контуре заряжается. Из-за индуктивности катушки (L) протекающий по нему ток перестанет увеличиваться. В
не возникает электродвижущей силы и по транзистору ток не протекает. Теперь ключ выключим. Конденсатор С начинает разряжаться через катушку L, и в контуре появляются электромагнитные колебания. Когда в контуре происходят электромагнитные колебания, меняется и величина, и направление тока, протекающего по катушке L. Значит, знак электродвижущей силы, возникающей в
, изменяется. Транзистор находится то в открытом, то в закрытом положении.
Таким образом, конденсатор С в контуре периодически заряжается от батарейки. Однако если источник напряжения подсоединяется в колебательный контур периодически, в те интервалы времени, когда обкладки конденсатора, подсоединенные к положительному полюсу, заряжаются положительно, конденсатор непрерывно заряжается. В этом случае колебания не затухнут. В противном случае колебания не возникнут. Значит, включение-выключение транзистора должно управляться колебаниями в контуре. Цепь база-эмиттер в транзисторе называется входной цепью, цепь коллектор-эмиттер — выходной цепью. Обычно напряжение (ток), приложенное во входной части на транзисторе, управляет выходным током. В транзисторных генераторах наоборот, напряжение при выходе (в контуре) управляет входным напряжением . Такие процессы называются обратной связью. Благодаря этой обратной связи контур периодически обеспечивается энергией.
Чтобы обратная связь обеспечила колебания, напряжение входных и выходных цепей по фазе должно отличаться на 180°.
Частота электромагнитных колебаний, вырабатываемых генератором, выражается по формуле Томсона (3-1).
Таким образом, в генераторе образуются незатухающие автоколебания. Автоколебания являются вторым типом незатухающих колебаний. Основная их разница от вынужденных колебаний заключается в том, что им не нужны внешние периодичные действия. В этих системах имеется собственный источник энергии. Система сама обеспечивает и управляет пополнением израсходованной энергии. Любая система автоколебания состоит из следующих частей: источник энергии, колебательная система и электронный ключ.
Частоты автоколебания изменяются в очень широком диапазоне. Они используются для радиосвязи, телевидения, ЭВМ и в других устройствах.
Электромагнитные колебания могут быть как полезными, так и вредными для живых организмов. Каждый орган человеческого организма имеет свойственную ему резонансную частоту. Когда частота внешнего колебания равняется этой резонансной частоте, действия будут сильными. Доказано, что электромагнитные излучения влияют на психику человека.
В современной медицине все шире распространяются методы лечения с помощью высокочастотных электромагнитных колебаний. Кроме того, электромагнитные излучения оптического диапазона (УФ-излучения) используются для лечения и диагностики различных заболеваний.
Активное сопротивление в цепи переменного тока
В предыдущих темах мы познакомились с графическими изображениями изменения некоторых физических величин в зависимости от времени. Для их описания также широко применяется метод векторной диаграммы. Скажем, изменение тока в цепи задается уравнением
Возьмем вектор длиной и приведем в движение по направлению против часовой стрелки. Пусть время для одного вращения равно периоду изменения величины
. В этом случае проекция на вертикальной оси вектора м равна мгновенному значению величины
В повседневной жизни, быту и технике к цепи переменного тока подсоединяются различные бытовые приборы. Утюг, электрическая лампочка, вентилятор и т.д — в этих приборах электрическая энергия превращается в тепловую, световую, механическую и другие виды энергии. Когда эти приборы подсоединяются к источнику напряжения, то они оказывают различное сопротивление протеканию тока. Для изучения их природы попробуем подсоединить разные приборы к цепи переменного тока.
Сначала рассмотрим случай, когда к цепи переменного тока подсоединено заранее известное нам сопротивление (рис. 3.9). Пусть это сопротивление будет активным сопротивлением. Такое сопротивление называется активным, потому что когда через него протекает ток, электрическая энергия полностью превращается в другие виды (тепло, свет и др.) энергии. Проводник подсоединен к источнику переменного тока, имеющего сопротивление R и напряжение U. Это напряжение задается уравнением
Используя закон Ома для участка цепи, находим мгновенное значение силы тока, протекающего по сопротивлению R
Здесь амплитудное значение силы тока. Таким образом, изменение силы тока в цепи, состоящей только активного сопротивления, будет иметь вид
Если сопоставить уравнение изменения напряжения (3-6) с полученным уравнением для силы тока (3-7), можно прийти к выводу, что колебания напряжения и силы тока в активном сопротивлении будут происходить в одинаковой фазе. Графики колебания напряжения и силы тока приведены на рис. 3.10.
Зависимость между колебаниями напряжения и силы тока можно показать через векторную диаграмму (рис. 3.11).
На диаграмме амплитуда переменного тока и амплитуда переменного напряжения изображены в виде параллельных векторов, а угол между ними, т.е. разница фазы колебания равна нулю.
Частота потребляемого в быту электрического напряжения равна 50 Гц. Это означает, что в секунду электрическая лампочка накаливания 100 раз включается и выключается. Чувствительность человеческого глаза такова, что он способен уловить изменение процесса только до 16-20 раз в секунду, поэтому мы не чувствуем включение-выключение электрической лампочки с такой частотой. По этой причине важно знать мощность переменного тока.
Мощность цепи с активным сопротивлением
Мгновенная мощность переменного тока определяется как Если выражения (3-7) и (3-6) использовать для определения мгновенных значений силы тока и напряжения, получим,
Здесь: называется максимальным значением мощности переменного тока. Из-за того что выражение
имеет постоянно положительный знак, мгновенное значение мощности переменного тока тоже будет иметь положительный знак (рис. 3.12).
Как видно из рис. 3.12, величина мгновенной мощности переменного тока меняется периодически. По какой формуле в этом случае можно определить количество тепла, выделенного при протекании переменного тока в электрической плите? Для этого введем понятие эффективного значения переменного тока.
Эффективным значением переменного тока называется величина, равная количеству тепла, выделяемому при протекании переменного тока через активное сопротивление, равное силе постоянного тока, при котором выделяется такое же количество тепла за единицу времени.
Опыты показывают, что эффективное значение силы тока связано с его максимальным значением и определяется следующей формулой:
Эффективное значение переменного напряжения можно записать формулой (3-9):
Пример №3
При подсоединении резистора в цепь переменного тока с максимальным напряжением 30 В по нему протекает максимальный ток 2 А. Найдите среднюю мощность, выделяемую в резисторе.
Дано: Найти:
Формула:
Решение:
Конденсатор в цепи переменного тока
Опыты показывают, что, подсоединяя конденсатор к цепи постоянного тока, по ней ток не протекает, так как пространство между обкладками конденсатора разделено диэлектриком. Если конденсатор подсоединить к цепи переменного тока, то по ней ток течет.
Для изучения вопроса, от каких физических параметров зависит сила тока, протекающего через конденсатор, рассмотрим случай, когда к цепи переменного тока подсоединен только конденсатор (рис. 3.13).
Пусть емкость конденсатора равна С и приложенное напряжение изменяется согласно закономерности
сопротивление соединительных проводов R = 0. В этом случае напряжение конденсатора будет: Здесь: q — заряд обкладок конденсатора и его значение
Чтобы найти силу тока в цепи, возьмем производную первого порядка формулы заряда:
sinco= Если это сопоставить с мгновенным значением силы тока, получим:
Здесь
— максимальное значение силы тока. Тогда уравнение силы тока, протекающего через конденсатор, будет иметь вид:
Если сопоставить это уравнение с напряжением, приложенным к конденсатору (3-11), мы увидим, что колебания силы тока в цепи опережают колебания напряжения на (рис. 3.14). На рис. 3.15 приводится векторная диаграмма силы переменного тока и напряжения для случая, когда к цепи подсоединен только конденсатор. Емкостное сопротивление конденсатора в цепи:
В этом случае значение амплитуды силы тока будет следующим:
Это выражение является законом Ома для участка цепи переменного тока с конденсатором. На месте активного сопротивления стоит величина . Поэтому его называют емкостным сопротивлением (реактивным сопротивлением). Емкостное сопротивление тоже измеряется в омах.
Отсюда вытекает, что сила тока, протекающего через конденсатор, зависит от емкости конденсатора и частоты переменного тока. Чем больше емкость и частота, тем меньше сопротивление цепи, и соответственно сила тока будет больше.
Пример №4
К цепи переменного тока с частотой 50 Гц подсоединен конденсатор емкостью 50 мкФ. Чему равно емкостное сопротивление цепи?
Дано: Найти:
Формула:
Решение:
Катушка индуктивности в цепи переменного тока
Проведем такой опыт. К источнику постоянного тока последовательно подсоединим электрическую лампочку и катушку индуктивности. Обратим внимание на яркость лампочки. Затем последовательно подсоединим электрическую лампочку и катушку индуктивности к источнику с эффективным напряжением, равным постоянному напряжению обратим внимание на яркость лампочки. Тогда яркость лампочки, соединенная с цепью переменного тока, будет меньше. Для определения этого явления рассмотрим случай, когда подсоединена только катушка индуктивности (рис. 3.16).
Сила тока, протекающего по катушке с индуктивностью L, изменяется согласно закономерности
Сопротивление соединительных проводов и катушки пусть будет
Ток, протекающий по катушке, из-за индуктивности катушки создаст электродвижущую силу (ЭДС) самоиндукции. Ее мгновенное значение определяется выражением
Здесь: — производная первого порядка, взятая от силы тока по времени. Если учесть
мгновенное значение ЭДС равно
ЭДС цепи, напряжение на концах катушки и падение потенциала на активном сопротивлении связаны через следующее соотношение
Если учесть, что R = 0, формула (3-16) примет вид
тогда напряжение определяется следующей формулой:
Если сопоставить напряжение с мгновенным значением напряжения, то вытекает — амплитудное значение напряжения. В
таком случае уравнение напряжения, приложенного к концам катушки, будет выглядеть так:
Если сопоставить это уравнение с выражением (3-14) силы тока, протекающего по катушке, можем увидеть, что колебания напряжения, приложенного к концам катушки, по фазе опережают колебания силы тока на (рис.3.17). На рис. 3.18 приводится векторная диаграмма силы тока и напряжения для случая, где в цепь переменного тока подсоединена только катушка индуктивности.
Если амплитудное значение напряжения катушки сопоставимо с законом Ома, написанным для участка цепи, известно, что произведение выражает сопротивление. Введем знак:
Тогда сопротивление катушки будет:
В таком случае амплитудное значение силы тока будет следующим:
Это выражение является законом Ома для участка цепи переменного тока с катушкой. На месте активного сопротивления стоит величина поэтому его называют индуктивным сопротивлением (реактивным сопротивлением). Индуктивное сопротивление тоже измеряется в омах.
Отсюда вытекает, что сила тока, протекающего по катушке, зависит от индуктивности катушки и частоты переменного тока. Чем больше индуктивность и частота, тем больше будет сопротивление цепи, а сила протекающего тока соответственно будет меньше.
Пример №5
К цепи переменного тока с частотой 10 кГц подсоединена катушка с индуктивностью 5 Гн. Чему равно индуктивное сопротивление цепи?
Дано: Найти:
Формула:
Решение:
Закон ома для цепи переменного тока при последовательном соединении активного, индуктивного и емкостного сопротивления
Составим цепь, последовательно соединяя резистор с сопротивлением R, катушку индуктивности с индуктивностью L и конденсатор с емкостью С (рис. 3.19). На концы подаем переменное напряжение По причине последовательного соединения составных частей цепи сила тока, протекающего по ним, будет одинаковой. Пусть эта сила тока изменяется закономерностью
общее напряжение равно сумме векторов падения напряжения в потребителях:
Здесь: — общее напряжение в цепи,
— напряжение на резисторе,
напряжение на конденсаторе и
— напряжение на катушке. Их амплитудные значения обозначим как
и построим векторную диаграмму.
Амплитуду силы тока возьмем как вектор, направленный по горизонтальной оси (рис. 3.19). Фаза колебания напряжения в активном сопротивлении соответствует фазе колебания силы тока. Колебания напряжения в конденсаторе по фазе отстают на — от колебания силы тока. В катушке колебания напряжения опережают колебания силы тока на . В векторной диаграмме напряжение в конденсаторе
и напряжение в катушке
направлены противоположно. Итоговое напряжение будет
Чтобы найти общее напряжение (U), вектор сложим с вектором
. Из рис. следует
Отсюда находим выражение максимального значения общего напряжения:
Подставим в выражение (3-22)
Это выражение называют законом Ома для полной цепи переменного тока.
подставим в выражение (3-23) и получим
сопротивление называется реактивным сопротивлением.
Выражение
называется полным сопротивлением цепи переменного тока.
Разницу фаз между колебаниями тока и колебаниями напряжения в цепи можно определить, используя векторную диаграмму:
Характерные свойства цепи переменного тока заключаются в том, что энергия, получаемая от генератора, выделяется в качестве тепловой энергии только в активном сопротивлении. В реактивном сопротивлении энергия не выделяется.
В реактивном сопротивлении энергия электрического поля периодически превращается в энергию магнитного поля и наоборот. В первой четверти периода, когда конденсатор заряжается, энергия передастся в цепь и накапливается в виде энергии электрического поля. В следующей четверти периода эта энергия снова передается в источник в виде энергии магнитного поля.
Пример №6
К источнику переменного тока с максимальным значением напряжения 120 В и частотой 100 Гц подсоединены активное сопротивление 200 Ом, конденсатор емкостью и катушка с индуктивностью 400 мГн. Найдите максимальное значение силы тока в цепи.
Дано: Найти:
Формула:
Решение:
Явление резонанса в цепи переменного тока
Полное сопротивление электрической цепи в случае последовательного соединения цепи переменного тока, сопротивления R, катушки с индуктивностью L и конденсатора с емкостью С определяется выражением
Если то разность
Тогда сопротивление цепи достигнет своего минимального значения. Амплитуда силы тока цепи будет
Значит, в этих условиях амплитуда силы тока резко возрастет. Это явление называется резонансом в электрической цепи. Для наблюдения резонанса должны выполняться следующие условия
Мы знаем, что частота свободного колебания в контуре колебания, где активное сопротивление равно нулю,определяется из выражения В этом случае получается, что для появления резонанса в цепи частота внешнего периодического напряжения, приложенного к цепи, должна быть равной собственной частоте цепи
На рис. 3.21 приводится график зависимости амплитудного значения силы тока цепи от частоты внешних напряжений, приложенных к нему. График зависимости кривой резонанса.
На рис. 3.21 С увеличением частоты внешнего напряжения растет амплитудное значение тока в цепи и при
достигает максимального значения. Затем с увеличением частоты значение тока уменьшается.
Рассмотренное явление резонанса называется резонансом напряжения.
Во время резонанса с увеличением тока напряжение в катушке и конденсаторе быстро растет. Их значение может быть больше, чем величины внешнего напряжения.
Во время резонанса амплитуда колебания напряжения индуктивной катушки и конденсатора будет:
В колебательных контурах выполняются условия Поэтому
напряжение катушки и конденсатора будет больше, чем напряжение,
приложенное к цепи, а с уменьшением R оно будет увеличиваться. Другими словами, при больших значениях активного сопротивления резонанс на практике не наблюдается.
В период резонанса амплитудное значение переменного тока и амплитуда общего напряжения колеблется в одинаковой фазе.
Явление резонанса широко используют в технике. В радиоприемниках принцип выделения нужных сигналов среди множества радиосигналов основан на явлении резонанса. При этом значение емкости или индуктивности в колебательном контуре входной части приемника изменяется и его собственная частота настраивается на частоту сигнала той станции, которую необходимо принять. В контуре происходит резонанс именно для сигнала выбранной частоты, и созданное им напряжение будет самым большим. В электротехнических приборах тоже применяется явление резонанса, так как во время увеличения напряжения в катушке или конденсаторе может возникнуть электрический пробой.
Пример №7
К цепи переменного тока с частотой 50 Гц подсоединена катушка с индуктивностью 100 мГн и конденсатор емкостью С. При каком значении емкости конденсатора происходит явление резонанса?
Дано: Найти:
Формула
Решение:
Сила и мощность переменного тока
Как вам известно, работа, выполненная постоянным током, определяется как произведение напряжения, силы тока и времени прохождения тока:
Для определения работы, выполненной переменным током за короткий промежуток времени, его значение рассматриваем как постоянное. В таком случае мгновенное значение выполненной работы переменного тока тоже находится из похожей формулы:
Если напряжение, приложенное к концам цепи, изменяется согласно закономерности
то сила тока в нем тоже меняется по гармоническому закону со сдвигом по фазе: Тогда для мгновенного значения выполненной работы переменного тока напишем следующее выражение:
Работа, выполненная за единицу времени, называется мощностью. Поэтому мгновенное значение мощности переменного тока можно записать в виде
Здесь мощность с истечением времени меняется и по модулю, и по знаку. В первой половине периода, если мощность передается в цепь (р>0), то во второй половине часть мощности обратно передается в сеть питания (р
При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org
Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи
Сайт пишется, поддерживается и управляется коллективом преподавателей
Telegram и логотип telegram являются товарными знаками корпорации Telegram FZ-LLC.
Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.