Источники отрицательного напряжения – преобразователи на зарядном дросселе
В предыдущей статье были рассмотрены схемы преобразователей положительного напряжения в отрицательное напряжение по принципу построения – на коммутируемом конденсаторе, где предложенная схема с успехом используется для двухполярного питания двенадцати операционных усилителей сложного устройства. Существуют другие способы получения отрицательного напряжения — схемы преобразователей на зарядных дросселях. КПД этих преобразователей намного хуже, чем у преобразователей на коммутируемом конденсаторе, но у многих таких схем есть свои достоинства превосходящие преобразователи на конденсаторе – хорошая нагрузочная способность, малое количество радиоэлементов и возможность получения выходного напряжения по амплитуде, превышающее входное до четырёх — пяти раз.
Поэтому, если у Вас имеется достаточно мощный источник положительного напряжения, а Вам необходимо кроме положительного, ещё и отрицательное напряжение, то схема на зарядном дросселе достаточно привлекательный вариант преобразователя. Кроме того, эти преобразователи ещё осуществляют стабилизацию выходного напряжения (не путайте с подавлением пульсаций). В схемах преобразователей на коммутируемых конденсаторах стабилизация выходного напряжения, к сожалению, как правило отсутствует. В любом случае выбирать схему преобразователя Вам.
Источник отрицательного напряжения на ИМС MAXIM — MAX764, MAX765 или MAX766
Основа предлагаемого источника отрицательного напряжения — микросхема производства MAXIM — MAX764, MAX765 или MAX766.
Краткие характеристики микросхемы:
— нагрузочная способность — 250 мА;
— максимальный потребляемый ток — 120 мкА;
— входное напряжение от 3 до 16 вольт;
-5 вольт для ИМС MAX764, при входном напряжении от +3 до +15 вольт;
-12 вольт для ИМС MAX765, при входном напряжении от +3 до +8 вольт;
-15 вольт для ИМС MAX766, при входном напряжении от +3 до +5 вольт;
-или регулируемое от -1 до -16 вольт;
— частота преобразования напряжения — 300 кГц;
Имеется встроенный, P-канальный силовой транзистор MOSFET.
Принципиальная схема источника отрицательного напряжения с фиксированным выходным напряжением изображена на рисунке. Инвертирующие импульсные стабилизаторы напряжения MAX764 (MAX765, MAX766) имеют высокую эффективность преобразования в широком диапазоне токов нагрузки, и обеспечивают нагрузочную способность до 1,5 Вт. Уникальная схема управления с ограничением тока и частотно — импульсной модуляцией (ЧИМ) объединяет преимущества традиционных ЧИМ конверторов, с достоинствами конверторов, основанных на широтно — импульсной модуляции (ШИМ). Как и конверторы с ШИМ, микросхемы MAX764 (MAX765, MAX766) имеют высокую эффективность преобразования при больших нагрузках. Но, поскольку, они являются ЧИМ — преобразователями, то они потребляют ток менее 120 мкА, а не 2…10 мА, как аналогичные устройства с ШИМ.
Схема работает стандартно – как и все импульсные преобразователи. Транзисторный ключ MOSFET замыкается (коллектор которого — это 7-й вывод микросхемы, эмиттер — 8-й вывод). В этот промежуток времени, энергия запасается в сердечнике дросселя, затем ключ размыкается, и накопленная энергия через диод Шоттки заряжает выходной конденсатор С4, цикл повторяется, пока цепь обратной связи (1-й вывод микросхемы), определив, что напряжение на выходе достигло номинального значения, даст команду генератору изменить частоту генерируемых импульсов. В результате, напряжение на выходе преобразователя стабилизируется.
Диапазон входных напряжений составляет от 3 до 16 вольт.
Как было указано ранее, ИМС имеют фиксированные выходные напряжения: -5 вольт (MAX764), -12 вольт (MAX765), -15 вольт (MAX766). Все эти микросхемы могут использоваться в режиме регулируемого выходного отрицательного напряжения от -1 до -16 вольт. Регулирование производится с помощью двух внешних резисторов. Максимальная разность рабочих напряжений Vin — Vout составляет 20 вольт.
Типовая схема включения с регулируемым напряжением изображена на следующем рисунке. Разница от преобразователя с фиксированным выходным напряжением – наличие дополнительных элементов – резисторов R1 и R2, которые являются «регуляторами» степени обратной связи.
Для работы устройства в регулируемом режиме подбирают резистор R2 из соотношения:
где Vref = 1,5 вольта – напряжение источника опорного напряжения. Значение сопротивления резистора R1 выбирается равным 150 Ом, отсюда сопротивление резистора R2 рассчитывается по формуле:
R2 = R1 * (Vout/Vref)
Преобразователи на этих ИМС используют достаточно миниатюрные внешние элементы. Это связано с частотой преобразования. Высокая частота преобразования (до 300 кГц) позволяет использовать миниатюрные дроссели — менее 5 мм в диаметре. Стандартный дроссель индуктивностью 47 мкГн идеально подходит для работы преобразователя, поэтому отсутствует необходимость в расчете индуктивности дросселя. Встроенный силовой транзистор MOSFET делает ИМС MAX764 (MAX765, MAX766) идеальным выбором для реализации преобразователей малой и средней мощности с минимальным числом компонентов.
Источник отрицательного напряжения повышенной мощности на ИМС MAX774, MAX775 или MAX776
При необходимости реализации преобразователей с повышенным уровнем мощности, или с более высокими выходными напряжениями, возможно использование ИМС MAX774 (MAX775, MAX776), которые управляют внешним, силовым, P-канальным MOSFET транзистором, и обеспечивают нагрузочную способность до 5 Вт.
ИМС имеют фиксированные выходные напряжения:
-5 вольт 1А (MAX774),
-12 вольт 0,5А (MAX775),
-15 вольт 0,4А (MAX776).
Значения максимального тока нагрузки уменьшаются по мере увеличения разницы между входным и выходным напряжениями. Это связано с увеличением падающей мощности на элементах микросхемы и выходного транзистора.
Принципиальная схема источника отрицательного напряжения с фиксированным выходным напряжением изображена на рисунке.
Все эти микросхемы могут также использоваться в режиме регулируемого выходного отрицательного напряжения от -1 до -24 вольта. Но следует учесть, что чем больше разница между входным и выходным напряжением, тем меньше ток нагрузки. В соответствии со справочником на эту микросхему, при входном напряжении +4 вольта и отрицательном выходном напряжении -24 вольта, ток нагрузки не может превышать 150 мА.
Типовая схема включения с регулируемым напряжением изображена на рисунке. Как и в предыдущем случае, разница от преобразователя с фиксированным выходным напряжением – наличие дополнительных элементов – резисторов R1 и R2, которые являются «регуляторами» степени обратной связи. По своей сути — это делитель напряжения измерительной цепи.
Для работы устройства в регулируемом режиме резистор R2 рассчитывают из формулы:
а R1 находят из соотношения:
где Vref = 1,5 вольта – напряжение источника опорного напряжения.
Универсальный источник отрицательного напряжения на ИМС LM2576
Ещё один вариант преобразователей на зарядном дросселе — на недорогой и распространённой микросхеме LM2576. Принцип построения и работы схемы не отличается от ИМС MAX764 (MAX765, MAX766). Но LM2576 без дополнительных элементов имеет более высокую нагрузочную способность и дополнительную возможность повышения нагрузочной способности с помощью дополнительного транзистора.
Источник отрицательного напряжения с общим плюсовым проводом, способен выдать ток до 700мА без дополнительного транзистора и до 3А с дополнительным транзистором, при напряжении в диапазоне от 1,23 до 20 вольт. Имеет встроенную защиту от перегрузок по току и от перегрева кристалла.
Так же как ИМС MAX765, микросхема LM2576 может выдавать фиксированное выходное напряжение, которое на приведённой схеме равно –12 вольт.
Схема такого преобразователя изображена на рисунке.
Существует пять модификаций микросхем LM2576В. Четыре из них рассчитаны на различные фиксированные выходные напряжения. В зависимости от маркировки ИМС LM2576 подключенная по выше приведённой схеме выдает отрицательные выходные напряжения:
LM2576HV-3.3 — 3,3 вольта;
LM2576HV-5.0 — 5 вольт;
LM2576HV-12 — 12 вольт;
LM2576HV-15 — 15 вольт;
Но из этих микросхем, которые рассчитаны на фиксированные напряжения можно получить и другие напряжения. Если в разрыв вывода 4 микросхемы и точки соединения индуктивности с конденсатором поставить добавочный резистор R1, как показано на рисунке ниже, то эти «стандартные» напряжения можно повысить, но не более, чем до 20 вольт.
Дальнейшее повышение не рекомендуется по причине повышения падения напряжения на встроенном выходном транзисторе, что может привести к выходу микросхемы из строя. Вообще в микросхему встроена защита по току и температуре, но на защиту надейся, а сам «не дури» — это залог высокой надёжности электронной техники.
Пятая модификация семейства 2576 — микросхема LM2576HV-ADJ. Эта микросхема как ИМС MAX764 (MAX765, MAX766) может работать в режиме регулируемого выходного напряжения, с пределами регулирования от 1,2 до 20 вольт. Её схема подключения для получения отрицательного напряжения изображена на рисунке ниже.
Схема работает точно так-же, как и предыдущая. Особенность в ней заключается в том, что предыдущие модификации микросхем с фиксированным напряжением имели встроенные делители напряжения, а модификация ADJ использует внешний делитель, который и изображён на рисунке. Значение выходного напряжения и соотношение резисторов определяются из приведённых формул:
Минимальное значение выходного напряжения ограничено напряжением встроенного источника опорного напряжения равным 1,23 вольта.
По своей сути, делитель на резисторах R1 и R2 это — измерительная цепь выходного напряжения (цепь обратной связи). Чем ниже по схеме ползунок резистора R2, тем больше выходное напряжение преобразователя (в минусе).
Выходной ток преобразователя ограничен мощностью, поглощаемой выходным транзистором. По справочнику выходной ток микросхемы может доходить до 3 ампер, но так как у нас схема обратноходового преобразователя, поэтому выходной ток значительно ограничен. Для повышения нагрузочной способности преобразователя существует возможность «усилить» выход микросхемы силовым транзистором. В частности, мы применили мощный МОП-транзистор с изолированным затвором. Схема мощного преобразователя положительного напряжения в отрицательное напряжение изображена ниже.
Тут и объяснять то ничего и не надо. В качестве силового транзистора можно использовать N- канальный MOSFET транзистор типа IRFZ44N, IRFZ46N, или IRFZ48N.
Так как микросхема LM2576 имеет высокую частоту встроенного генератора = 52 кГц, схема не чувствительна к точности подбора дросселя L1. Допускается значение индуктивности дросселя от 150, до 300 микрогенри. Поэтому допускается как самостоятельно намотанный, так и практически любой готовый промышленный дроссель.
В следующей статье, будет представлена действующая схема другого способа получения отрицательного напряжения, а вернее — схема получения двухполярного напряжения, из источника однополярного напряжения. При минимальном количестве элементов, активный делитель напряжения позволяет получать на выходе двухполярное питание без потерь мощности. КПД такого устройства около 99%.
Может ли напряжение быть отрицательным электротехника
Оказалось, что когда речь заходит об отрицательном напряжении, первый вопрос, который возникает у людей: «Как такое может быть? Как напряжение может быть отрицательным?»
Поэтому хотел бы чуть подробнее остановиться на том, что такое отрицательное напряжение и где оно может пригодиться.
Если меня спросят на каком этаже я живу, то не задумываясь скажу, что на пятом и мой ответ понятен каждому, всё дело в том, что мы привыкли отсчитывать этажи от земли. А для соседа с 10 этажа, если он свой этаж примет за точку отсчёта, я живу на -5 этаже. Так же и в электронике, измеряемое напряжение зависит от точки отсчёта, от точки которую мы приняли за ноль. Обычно такую точку, относительно которой ведётся отсчёт, называют землёй и тогда становится понятно, что раз напряжение — величина относительная, то может быть равна как 5 так и -5 вольтам, всё зависит от точки отсчёта.
Давайте рассмотрим схемы, изображённые ниже.
На схеме изображён делитель напряжения, который запитан от 10 вольт. Если мы будем измерять напряжение относительно отрицательного провода, то в точке B будет 5 вольт, а в точке С будет 10 вольт. А давайте в качестве точки отсчёта выберем точку B(средняя схема), тогда в точке А у нас будет -5 вольт, а в точке С будет 5 вольт. Ну а если примем за точку отсчёта точку С(правая схема), то в точках B и A у нас будет, -5 и -10 вольт соответственно.
Но что интересно,нельзя найти устройство, которое питается отрицательным напряжением, а услышать про отрицательное напряжение можно лишь, когда речь заходит о двухполярном питании. Ну вот только с одним, чуть разобрались и снова, какие-то умные слова. На самом деле ничего хитрого в двухполярном питании нет. Если для работы электронного компонента необходимо положительное и отрицательное напряжение(средняя схема на картинке выше), то говорят, что ему необходимо двухполярное питание.
В каком случае двухполярное питание может пригодиться? Рассмотрим простой пример, если на один из входов ОУ, питающегося положительным напряжением, подать отрицательное напряжение, то ничего не произойдёт, он просто не знает про существование отрицательного напряжения и сделать с ним ничего не может.
Кто-то из читателей, может подумать: «Вон выше схема на резисторах, используешь её и получаешь двухполярное питание, чего тут дальше читать?» А нет, всё не так просто, у схемы на резисторах есть один недостаток — отсутствие стабилизации средней точки, то есть при разной нагрузке в плечах, будет смещаться напряжение общей точки, тогда при подключении разной нагрузки на выходе будет не 5 и -5 вольт, а например, 4 и -6 вольт. Поэтому схема на резисторах — не самый лучший вариант.
Чёт мы я отвлёкся от темы, и так мне надо было организовать двухполярное питание и вопрос возникал в том как получить -5 вольт с током до 20мА. Дабы не усложнять себе жизнь, использовал две последовательно включенные зарядки от телефона. Точку в которой соединялся плюс одной зарядки с минусом другой принял за точку отсчёта(землю), тогда зарядка, у которой остался не подключённым плюсовой вывод, использовалась для получения 5 вольт, та у которой не подключён минусовой вывод для получения -5 вольт.
Прошло немного времени и стало понятно, что таскать две зарядки для одного устройства неудобно и хорошо было найти более простой способ получить отрицательное напряжение. Вариантов было два: первый — это собрать на рассыпухе источник отрицательного напряжения, второй — купить готовую микросхему, которая бы из положительного напряжения сделала отрицательное. Немного поискав в интернете, нашёл LM828, которая при подаче на вход положительного напряжения, на выходе выдавала такое же только отрицательной полярности. Идея использовать такую микросхему, показалась мне очень заманчивой поэтому сразу сделал заказ на али. Когда микросхема пришла, вытравил маленькую платку и монтировал её на основную плату и теперь для пользования устройством нужна только одна зарядка. Хотелось бы отметить, что номинал конденсаторов в обвязке микросхемы по даташиту равен 10uF, но при увеличении нагрузки микросхема начала пищать, поэтому увеличил их значение до 47uF.
Что такое отрицательное напряжение?
Просто вопрос по электронике: что такое отрицательное напряжение, например, -5 Вольт?
Исходя из моих базовых знаний, мощность генерируется электронами, блуждающими от минуса к плюсу источника питания (при условии, что здесь мощность постоянного тока). Отрицательное напряжение, когда электроны отклоняются от + до -?
Зачем это нужно некоторым устройствам, что в этом особенного?
У кого-то могут быть более подходящие слова, чтобы объяснить это, чем у меня, но важно помнить, что напряжение — это разность потенциалов. В большинстве случаев «разницей» является разница между некоторым потенциалом и потенциалом земли. Когда кто-то говорит -5v, они говорят, что вы под землей.
Вы также должны иметь в виду, что напряжение относительно. Как я уже говорил, большинство людей ссылаются на «землю»; но что такое земля? Вы можете сказать, что земля — это земля, но как насчет случая, когда у вас есть устройство с питанием от батареи, которое не имеет контакта с землей. В этой ситуации мы должны рассматривать какую-то произвольную точку как «основание». Обычно отрицательный вывод на батарее — это то, что мы рассмотрим из этой ссылки.
Теперь рассмотрим случай, когда у вас есть 2 батареи в серии. Если бы оба были 5 вольт, то вы бы сказали, что у вас будет всего 10 вольт.
Но предположение, что вы получите 0 / + 10, основано на «заземлении» как отрицательном контакте на батарее, который не касается другой батареи, а затем на 10 В как месте положительного контакта, который не касается другой аккумулятор. В этой ситуации мы можем принять решение о том, что соединение между двумя батареями должно быть нашей «заземляющей» ссылкой. Это приведет к + 5В на одном конце и -5В на другом конце.
Трехфазное напряжение. Чем трехфазное напряжение отличается от однофазного
Что такое трехфазная сеть?
Любой дом или квартира перед вводом в эксплуатацию подключается к местной электросети. Такая сеть может быть однофазной или трехфазной. При однофазном подключении к дому подводится два провода, фаза и ноль, между которыми напряжение 220 В. Трехфазная же сеть характеризуется наличием четырех проводов: трех фаз и ноля. Между каждой фазой и нолем напряжение 220 В, а между самими фазами 380 В (как показано на изображении).
Для учета электроэнергии в такой сети необходим трехфазный счетчик, который устанавливается местным РЭСом. Типичным примером такого счетчика является INCOTEX Меркурий 231 АМ-01, предназначенный для учета активной электроэнергии.
Чем три фазы отличаются от одной?
В обоих видах питания присутствует рабочий нулевой проводник (НОЛЬ). Про защитное заземление я подробно рассказал здесь, это обширная тема. По отношению к нулю на всех трёх фазах – напряжение 220 Вольт. А вот по отношению этих трёх фаз друг к другу – на них 380 Вольт.
Напряжения в трёхфазной системе
Так получается, потому что напряжения (при активной нагрузке , и ток) на трёх фазных проводах отличаются на треть цикла, т.е. на 120°.
Подробнее можно ознакомиться в учебнике электротехники – про напряжение и ток в трехфазной сети, а также увидеть векторные диаграммы.
Получается, что если у нас есть трехфазное напряжение, то у нас есть три фазных напряжения по 220 В. И однофазных потребителей (а таких – почти 100% в наших жилищах) можно подключать к любой фазе и нулю. Только делать это надо так, чтобы потребление по каждой фазе было примерно одинаковым, иначе возможен перекос фаз.
Система распределения электроэнергии
Исходно напряжение всегда является трехфазным. Под “исходно” я подразумеваю генератор на электростанции (тепловой, газовой, атомной), с которого напряжение в много тысяч вольт поступает на понижающие трансформаторы, которые образуют несколько ступеней напряжения. Последний трансформатор понижает напряжение до уровня 0,4 кВ и подаёт его конечным потребителям – нам с вами, в квартирные дома и в частный жилой сектор.
На крупных предприятиях с потреблением мощности более 100 кВт обычно существуют собственные подстанции 10/0,4 кВ.
Трехфазное питание – ступени от генератора до потребителя
На рисунке упрощенно показано, как с генератора G напряжение (везде речь идёт про трехфазное) 110 кВ (может быть 220 кВ, 330 кВ или другое) поступает на первую трансформаторную подстанцию ТП1, которая понижает напряжение в первый раз до 10 кВ. Одна такая ТП устанавливается для питания города или района и может иметь мощность порядка от единиц до сотен мегаватт (МВт).
Читайте также: Какое устройство позволяет выпрямить переменное напряжение название
Далее напряжение поступает на трансформатор ТП2 второй ступени, на выходе которого действует напряжение конечного потребителя 0,4 кВ (380В). Мощность трансформаторов ТП2 – от сотен до тысяч кВт. С ТП2 напряжение поступает к нам – на несколько многоквартирных домов, на частный сектор, и т.п.
Такие ступени преобразования уровня напряжения необходимы для того, чтобы уменьшить потери при транспортировке электроэнергии. Подробнее о потерях в кабельных линиях – в другой моей статье.
Схема упрощённая, ступеней может быть несколько, напряжения и мощности могут быть другие, но суть от этого не меняется. Только конечное напряжение потребителей одно – 380 В.
Трехфазное питание: преимущества
Наличие трех фаз несет массу преимуществ владельцу частного дома или дачи. Вот некоторые из них:
- Увеличенный объем мощностей
С каждым годом количество бытовых электроприборов в каждом доме увеличивается, а значит увеличивается их суммарная мощность и нагрузка, которую они передают на электросеть. На сегодняшний день в России местные Облэнерго предлагают возможность оформления договора на потребление 5 кВт для однофазных сетей и 15 кВт для трехфазных.
Предположим у вас одна фаза и суммарная мощность всех электроприборов в вашем доме составляет 4 кВт. Но прошло время, и вы решили приобрести себе сварочный аппарат мощностью 3 кВт. Кстати о том, какой купить сварочный аппарат, можете прочитать здесь. В этом случае суммарная мощность составит 7 кВт, и одновременно все приборы вы использовать никак не сможете. А если в будущем планируется установка насосного оборудования или электрической отопительной системы, тогда стоит задуматься о подключении трехфазной сети.
- Равномерное распределение нагрузки
Благодаря работе одновременно трех фаз есть возможность равномерно распределить между ними нагрузку, чтобы избежать перекоса. Например, если вы регулярно занимаетесь сваркой в гараже, лучше всего это делать не на той фазе, к которой подключен телевизор, компьютерная техника или лампочки в доме. Можно подсчитать нагрузку по каждому бытовому прибору и пропорционально распределить их по фазам.
Также бывают случаи, когда из-за повышенной нагрузки (не по вашей вине) на определенных фазах происходит падение напряжения до 170 В или даже ниже. Зачастую это бывает, если дом находится на большом расстоянии от трансформаторной подстанции, и перед ним десятки других потребителей. В этом случае оборудование можно временно переключить на менее загруженную фазу, а когда перекос «уйдет», вернуть все на место.
- Работа трехфазного оборудования
Хотя большинство бытовых приборов работают от 220 В, все же существует оборудование для трехфазных сетей в 380 В. Можно выделить следующие виды такого оборудования:
- Насосные станции. Для некоторых глубинных и поверхностных насосных станций требуется 380 В.
- Трансформаторные сварочные аппараты.
- Отопительные котлы. Большинство отопительных электрических котлов имеют номинальную мощность в 7 — 9 кВт — однофазная сеть просто-напросто его бы не потянула. Например, для одноконтурного котла ЭВАН Warmos-IV-9.45 мощностью 9.45 кВт обязательно требуется три фазы.
- Возможность установки автоматов и УЗО с меньшими номинальными значениями
Благодаря тому, что на каждом фазном проводе в трехфазной сети будет меньшая нагрузка, чем на одной фазе в случае исполнения однофазного ввода, есть возможность установки автоматов защиты и УЗО с меньшими показателями токовой нагрузки. Например, если на каждой из фаз будут размещены приборы суммарной мощностью по 3 кВт, то для каждой фазы потребуются автомат, способный выдержать такую нагрузку:
3000/220 = 13.6 А (нагрузка по фазе)
Ближайший автомат по номиналу на 16 А. Для однофазного же питания при максимально возможной мощности в 5 кВт, потребуется автомат мощнее. То же правило действует и для устройств защитного отключения. Мы уже писали о том, как выбрать УЗО по мощности, поэтому не будем на этом останавливаться.
Недостатки трехфазного питания
У трехфазного питания существует также и несколько неприятных моментов, которые стоит учитывать перед подключением:
- Расходы на подключение и покупку оборудования
Если у вас уже заведен в дом однофазный ввод, то переподключение на трехфазный потребует дополнительных растрат. В такие растраты включается:
- Оформление договора. Согласно текущему законодательству оформление договора на установку трехфазного ввода и счетчика стоит 550 рублей.
- Покупка счетчика и проводов. Средняя стоимость трехфазного счетчика, внесенного в госреестр, составляет 1500 рублей. Также для ввода понадобится примерно 20 м изолированного кабеля СИП сечением 16 мм2, стоимостью 1200 рублей. Еще стоит учесть необходимость организации проводки внутри дома для трехфазного дома. Этот показатель сложно просчитать, так как все дома разные по площади.
- Дополнительные автоматы. Для каждой фазы потребуется свой автомат. Также потребуется установка реле контроля напряжения, чтобы можно было всегда «мониторить» напряжение по каждой фазе и в случае перекосов, переключаться между фазами.
Чтобы электромонтеры подключили вас к трехфазной сети, придется стать в очередь и пару недель подождать. Если не хотите ждать, то придется отдельно заплатить за срочность. В итоге подключение трехфазного питания выльется своему владельцу в кругленькую сумму.
- Увеличенные размеры щитовой
Для подключения трехфазного питания необходимо смонтировать крупногабаритную щитовую. Это обусловлено наличием дополнительного защитного и распределительного оборудования. Обычно такой силовой шкаф или щитовая устанавливается на улице, чтобы не занимала много места в доме.
Стоит отметить, что для распределительных щитов энергосбыт предъявляет определенные требования. Например, защита щитовой от пыли и грязи должна быть не ниже стандарта IP31, а во влажных помещениях IP54. Для некоторых владельцев дачных участков или частного дома поиск подходящего места для шкафа или монтаж такой конструкции может стать настоящим испытанием.
- Перепланировка проводки в доме
Если изначально в доме была одна фаза, то подключение еще двух потребует от хозяина глобальной перепланировки проводки. Так изначально все розетки и лампочки были «посажены» на одну фазу. С трехфазным подключением необходимо будет эти розетки переносить, а это означает немалый ремонт в доме, так как придется штробить стены под проводку. Естественно эта работа требует дополнительных затрат времени и денег.
Особенности
Чтобы снизить вероятность перегрузки фазы, нагрузку распределяют на фазы равномерно. Несоблюдение этого условия так же, как и отгорание «нулевой» жилы или её плохой контакт, приведут к разнице в напряжении на фазных жилах в большую или меньшую сторону.
Таким образом, преобразованное однофазное питание (220 В) приведёт к неисправности подключённых к нему электропотребителей. Произойдёт это из-за того, что на одни приборы будет приходить повышенное напряжение (240-270 В), на другие – пониженное (160-200 В).
Важно! При неравномерном распределении нагрузки по фазам, на не чувствительных к перекосам счётчиках, произойдёт повышенный расход электроэнергии.
Возникновение концепции трёхфазного напряжения
Отцом трёхфазного напряжения считают Доливо-Добровольского в России и Николу Теслу – в остальном мире. События, относящиеся к эпохе возникновения предмета спора, происходили в 80-е годы XIX века. Никола Тесла продемонстрировал первый двухфазный двигатель, работая на компанию, где налаживал электрические установки разнообразного назначения. Заинтересованность явлением электризации шерсти домашнего кота привела учёного к великим открытиям. Прогуливаясь в парке с приятелем, Никола Тесла осознал, что сумеет реализовать на практике теорию Араго о вращающемся магнитном поле, причём понадобятся:
- Две фазы.
- Сдвиг между ними на угол 90 градусов.
Чтобы показать великое значение открытия, заметим, что трансформатор Яблочкова в указанное время не обрел массовой известности, а опыты Фарадея по магнитной индукции благополучно забыли, записав лишь формулу закона. Мир не хотел знать про:
- переменный ток;
- фазу;
- реактивная мощность.
Генераторы (альтернаторы) и динамо спрямляли напряжение при помощи механического коммутатора. Подобным образом прозябала вся скудная на тот момент отрасль электричества. Эдисон лишь начинал изобретать, никто пока толком не знал про лампочку накала. Кстати, в РФ считают, что устройство изобрёл Лодыгин.
Идея Теслы выглядела революционной, неизвестным оставалось, как получить две фазы с заданным межфазным сдвигом. Молодого учёного мало интересовал вопрос. Он читал про обратимость электрических машин и излучал уверенность, что легко построит генератор, соответствующим образом расположив обмотки. По приводу затруднений не возникало. На начало 80-х годов активно использовался пар, демонстрационную модель предполагалось питать от динамо.
Тесла не задавался необходимостью получить определённую частоту. Исследования не проводились, требовалось просто заставить ротор вращаться. Идея реализовалась через токосъёмные кольца. На тот момент коллекторные двигатели постоянного тока снабжались подобными контактами, вывод Теслы неудивителен. Интереснее объяснить выбор количества фаз.
Читайте также: Чем можно тушить электропроводку под напряжением
Трехфазные цепи. Как подается напряжение в них
В трехфазной цепи напряжение может быть фазным или линейным. Векторная диаграмма выглядит следующим образом:
На графике присутствуют три вектора напряжений (фаз) – Uа, Ub и Uс. Величина угла между ними равна 120°. Это соблюдается между обмотками в простейшем электрооборудовании. Для того, чтобы знак вектора Ub изменился на противоположный, его нужно отразить таким образом, чтобы векторное начало и конец поменялись местами, при этом первоначальный угол наклона был сохранен. После установки векторного начала Ub в конец Uа полученное расстояние и будет рассматриваться, как вектор линейного напряжения (Uл).
Где используется напряжение в 220B, а где в 380B
В большинстве жилых объектов (квартирах, домах, коттеджах и на дачах) установлены и используются однофазные электросети, в которых напряжение составляет стандартные 220B. Это обоснуется тем, что уровень потребления в обычном доме или квартире не превышает, как правило, 10 кВт.
Трехфазная электросеть проводится на объекты, где планируемый уровень потребления мощностей превышает значение в 10 кВт, а также установлены и используются электрические установки, которые требуют именно трехфазную подачу напряжения для обеспечения корректного функционирования. К примеру, если для запуска трехфазного двигателя использовать лишь одну фазу с применением конденсатора, это существенно понизит КПД электроустановки и в то же время увеличит расход электрической энергии.
С другой стороны, если уровень максимально потребляемой мощности в частном домохозяйстве не превышает 9-ти кВт, допускается использование на вводе двужильного медного кабеля с сечением 6мм и установку автомата на 40A.
В случае, когда максимальная нагрузка предположительно равняется 15кВт, для провода одной фазы величина проходящего тока составит 70A. Следовательно, обязательной будет прокладка медного провода с 10-милиметровым сечением и силового автоматического выключателя. Однако стоимость такой сети намного дороже. А потому выходом из ситуации может стать монтаж обычной трехфазной сети и распределение эффективной нагрузки поровну между фазами, то есть – по 5 кВт. На сегодняшний день подобные решения по обеспечению электропитанием используются большинством магазинов, предприятий и офисов.
По каким схемам потребители подключаются к трехфазным электросетям
Для подключения электродвигателей, нагревателей и других трехфазных мощностей используется схема «звезда» или «треугольник». Большинство установок оснащены перемычками, которые в зависимости от положения обмоток формируют вышеуказанные схемы.
Схема предусматривает соединение концов обмоток генерирующего устройства в одну точку и подключение к началу этих же обмоток нагрузки. В электродвигателях получается, что линейное напряжение в 380B, при условии соединения обмоток по схеме звезды, прикладывается к двум обмоткам для каждой фазной пары.
В этой схеме предусмотрено прикладывание линейного напряжения к каждой обмотке. Эти элементы, как правило, рассчитаны именно на такие подключения.
Указанные способы подключения имеют и плюсы, и недостатки.
Варианты подключения 3-х фазного двигателя к электросети
Асинхронные трехфазные двигатели распространены в производстве и быту. Особенность заключается в том, что подсоединить их можно как к трехфазной, так и однофазной сети. В случае с однофазными моторами это невозможно: они работают только при питании от 220В. А какие существуют способы подключения двигателя 380 Вольт? Рассмотрим, как соединять статорные намотки в зависимости от количества фаз в электросети с использованием иллюстраций и обучающего видео.
Использование 3-х фаз
Если вы проживаете в многоквартирном доме, то к нему уже подведено 3 фазы, которые с целью оптимального распределения нагрузок разведены по отдельным квартирам. На каждом этаже стоят распределительные щиты, откуда можно завести в квартиру недостающие две фазы. Но для этого потребуется разрешение.
При желании вы можете получить разрешение у энергоснабжающей компании или согласовать с Энергонадзором обустройство трёхфазного питания в вашей квартире. При этом потребуется установить трёхфазный счётчик электроэнергии.
Использование электродвигателя
Вы наверно знаете, что ротор обычного трёхфазного двигателя после запуска продолжает вращаться после отключения одной фазы. Оказывается, что между выводом отключенной обмотки и задействованными выводами имеется ЭДС.
Сдвиг фаз между обмотками статора зависит только от их расположения. В трёхфазном двигателе эти катушки расположены под углом 120º, а значит они обеспечивают такой же угол сдвига фаз. Это обстоятельство наталкивает на мысль, что асинхронный трёхфазный двигатель можно использовать для получения 380 вольт от обычной однофазной сети. Простая схема подключения электромотора изображена на рисунке 3. Конденсатор на схеме нужен только для запуска двигателя. После запуска его можно отключить. Конденсатор берём типа МБГО, МБГП, МБГТ или К42-4, рабочее напряжение которого должно быть не менее 600 В. Можно применить конденсатор К42-19, с рабочим напряжением минимум 250 В.
Трехфазный ввод и увеличение мощности в квартире
Для повышения уровня комфорта в квартире в первую очередь надо выйти на требуемую величину выделенной мощности на квартиру. Понять эту величину, можно сделав расчет мощности исходя из подобранного оборудования. Практически всегда квартира оборудована однофазным вводом, а для мощного современного оборудования необходим трехфазный ввод. Наконец надо получить недостающую мощность, ввести новую электроустановку квартиры в эксплуатацию и подать напряжение. Все эти вопросы решаемы, но требуют серьезного систематического подхода. Первым делом надо обратиться в эксплуатирующую организацию (УК, ТСЖ, ДЕЗ), получить справку о величине выделенной на квартиру мощности и выяснить возможностьувеличения мощности. Возможны любые варианты, но почти всегда мощность есть, но за нее придется заплатить. В новых домах специально при строительстве закладывают резерв на продажу, в старых домах это обеспечивается запасом прочности с советских времен. Стоимость увеличения мощности родится в результате переговоров с эксплуатирующей организацией, при этом надо учитывать, что никаких законных прав на получение дополнительной мощности у потребителя нет. Не стоит ругаться с эксплуатирующей организацией, так как она может просто вам отказать, сославшись на несогласие использовать свою сеть или назначить непомерно высокую цену. Надо понимать, что электросеть вашей квартиры подключена к электросети другого балансодержателя (УК, ТСЖ, ДЕЗ), который имеет полное право отказать вам в дополнительном использовании своей сети и не давать вам новую точку присоединения к своей сети. К сожалению практически невозможно подключить квартиру непосредственно к сети электросетевой компании (к трансформаторной подстанции или вводному устройству), так как это чрезвычайно дорого и сложно из-за малой величины присоединяемой мощности. Получив согласие эксплуатирующей организации необходимо заключить договор купли продажи электрической мощности и получить разрешение на присоединение мощности к сетям электросетевой компании. В разрешении на присоединение мощности обязательно надо прописать трехфазный ввод, если вы рассчитываете подключать трехфазное оборудование. По новым законам стоимость получения мощности по договору купли продажи мощности является ничтожной для бытовых потребителей до 15 киловатт. Мощность свыше 15 киловатт оплачивается по высоким тарифам для юридических лиц. Желательно договориться с эксплуатирующей организацией, чтобы точка присоединения новой мощности находилась как можно ближе к квартире (в стояке на лестничной площадке). Это сэкономит средства при прокладке новой кабельной линии. В худшем случае придется тянуть новую кабельную линию до ВРУ здания, которое может находиться в подвале другого подъезда. При наличии разрешения на присоединение и выполненных работ по подводу дополнительной мощности энергосбытовая компания заключит с вами новый договор электроснабжения без дополнительных условий. Проект электроснабжения в данном случае не требуется. Единственным условием энергосбытовой компании является наличие положенного прибора учета электроэнергии. При наличии специальных знаний, возможно, самостоятельно выполнить бумажную часть данного комплекса работ, но в любом случае для владельца квартиры результаты переговоров будут намного хуже в денежном выражении, чем для организаций-посредников. Выгоднее поручить весь комплекс работ одной уполномоченной организации и получить скидку за комплекс работ.
Напряжение между двумя фазами
В этой краткой статье, не вдаваясь в историю сетей переменного тока, разберемся в соотношениях между фазными и линейными напряжениями. Ответим на вопросы о том, что такое фазное напряжение и что такое линейное напряжение, как они соотносятся между собой и почему эти соотношения именно таковы.
Ни для кого не секрет, что сегодня электроэнергия от генерирующих электростанций подается к потребителям по высоковольтным линиям электропередач с частотой 50 Гц. На трансформаторных подстанциях высокое синусоидальное напряжение понижается, и распределяется по потребителям на уровне 220 или 380 вольт. Где-то сеть однофазная, где-то трехфазная, однако давайте разбираться.
Читайте также: P0143 низкое напряжение цепи датчика кислорода bank 1 датчик 3
Действующее значение и амплитудное значение напряжения
Прежде всего отметим, что когда говорят 220 или 380 вольт, то имеют ввиду действующие значения напряжений, выражаясь математическим языком — среднеквадратичные значения напряжений. Что это значит?
Это значит, что на сомом деле амплитуда Um (максимум) синусоидального напряжения, фазного Umф или линейного Umл, всегда больше этого действующего значения. Для синусоидального напряжения его амплитуда больше действующего значения в корень из 2 раз, то есть в 1,414 раза.
Так что для фазного напряжения в 220 вольт амплитуда равна 310 вольт, а для линейного напряжения в 380 вольт амплитуда окажется равной 537 вольт. А если учесть, что напряжение в сети никогда не бывает стабильным, то эти значения могут быть как ниже, так и выше. Данное обстоятельство всегда следует учитывать, например выбирая конденсаторы для трехфазного асинхронного электродвигателя.
Фазное сетевой напряжение
Обмотки генератора соединены по схеме «звезда», и объединены концами X, Y и Z в одной точке (в центре звезды), которая называется нейтралью или нулевой точкой генератора. Это четырехпроводная трехфазная схема. К выводам обмоток A, B и C присоединяются линейные провода L1, L2 и L3, а к нулевой точке — нейтральный провод N.
Напряжения между выводом A и нулевой точкой, B и нулевой точкой, С и нулевой точкой, — называются фазными напряжениями, их обозначают Ua, Ub и Uc, ну а поскольку сеть симметрична, то можно просто написать Uф — фазное напряжение.
В трехфазных сетях переменного тока большинства стран стандартное фазное напряжение равно приблизительно 220 вольт — напряжение между фазным проводом и нейтральной точкой, которая обычно заземляется, и ее потенциал принимается равным нулю, потому она и называется еще нулевой точкой.
Линейное напряжение трехфазной сети
Напряжения между выводом A и выводом B, между выводом B и выводом C, между выводом C и выводом A, — называются линейными напряжениями, то есть это напряжения между линейными проводниками трехфазной сети. Их обозначают Uab, Ubc, Uca, или можно просто написать Uл.
Стандартное линейное напряжение в большинстве стран равно приблизительно 380 вольт.
Легко заметить в данном случае, что 380 больше 220 в 1,727 раза, и, пренебрегая потерями, ясно, что это квадратный корень из 3, то есть 1,732.
Безусловно, напряжение в сети все время в ту или другую сторону колеблется в зависимости от текущей загруженности сети, но соотношение между линейными и фазными напряжениями именно таково.
Откуда взялся корень из 3
В электротехнике часто применяют векторный метод изображения синусоидально изменяющихся во времени величин напряжений и токов. Метод основан на положении, что при вращении некоторого вектора U вокруг начала координат с постоянной угловой скоростью ω, его проекция на ось Y пропорциональна синусу ωt, то есть синусу угла ω между вектором U и осью Х, который в каждый момент времени определен.
График зависимости величины проекции от времени есть синусоида. И если амплитуда напряжения — это длина вектора U, то проекция, которая меняется со временем — это текущее значение напряжения, а синусоида U(ωt) отражает динамику напряжения.
Так вот, если теперь изобразить векторную диаграмму трехфазных напряжений, то получится, что между векторами трех фаз одинаковые углы по 120°, и тогда если длины векторов — это действующие значения фазных напряжений Uф, то чтобы найти линейные напряжения Uл, необходимо вычислить РАЗНОСТЬ любой пары векторов двух фазных напряжений. Например Ua – Ub.
Выполнив построение методом параллелограмма, увидим, что вектор Uл = Uа + (-Ub), и в результате Uл = 1,732Uф. Отсюда и получается, что если стандартные фазные напряжения равны 220 вольт, то соответствующие линейные будут равны 380 вольт.
Фазное и линейное напряжения
Напряжение между фазой и нолем называется фазным. На одной фазе напряжение всегда 220 В, а на ноле, соответственно, 0. Так как разница между ними составляет 220 В, то значит фазное напряжение всегда будет 220 В (в бытовой сети бывают скачки и падения, поэтому напряжение может немного меняться).
Но если фазным напряжением все предельно ясно, то с линейным не все так просто. Линейным напряжением называется напряжение между двумя фазами. Мы знаем, что оно составляется 380 В, но откуда оно получается?
Все дело в работе генератора, который генерирует электроэнергию, и установлен на подстанции. Обратите внимание на иллюстрацию ниже. Обмотки (фазы А, В и С) генератора расположены под углом 120о относительно друг друга. Внутренний индуктор или магнит (обозначенный буквами С и Ю) вращаясь, создает электромагнитное поле. Но так как фазы расположены под углом 120о относительно друг друга, то вращение индуктора по отношению к каждой фазе смещено на 1/3 цикла. В итоге, когда магнит проходит возле одной фазы, то он максимально возбуждает обмотку до 220 В, а в это же время другая фаза возбуждена лишь на -160. В данном случае линейное напряжение составит Uл = 220 — (-160) = 380 В.
Также для четырехпроводной системы проводки при соединении трехфазного генератора звездой существует такая формула: Uл = квадратный корень из 3*Uф, где Uф — это фазное напряжение, которое равняется 220 В. В итоге получаем Uл = 1,73 *220 = 380 В.
Как бы вы ни решили проводить вычисления, вы придете к показателю в 380 В.
Отличия линейного и фазного напряжения
Трехфазная цепь электрического питания зданий и промышленных объектов популярна в РФ, так как имеет преимущества — экономичность (по использованию материалов) и способность передачи большего количества электроэнергии по сравнению с однофазной цепью электроснабжения.
Трехфазное подключение дает возможность включения в работу генераторов и электродвигателей повышенной мощности, а также возможность работы с разными параметрами напряжения, это зависит от вида включения нагрузки в электрическую цепь. Для работы в трехфазной сети надо понимать соотношение ее элементов.
Вычисление соотношения между фазным и линейным напряжением
Для расчёта соотношения следует знать линейные параметры. Все вычисления производятся по формуле: 12UAB=UA cos 30˚, либо UAB=2√3/2×UA=√3×UA. Таким образом, делаем вывод, что окончательная формула выглядит следующим образом – Uл=√3×UФ.
На первый взгляд может показаться, что формулы слишком сложны, однако это не так. С другой стороны, домашнему мастеру практически нет смысла заниматься подобными расчётами. Достаточно обычной проверки напряжения на каждой из фаз обычным мультиметром.
Для чего требуется проверка напряжения фаз перед включением
При подключении оборудования, требующего напряжения 380 в (к примеру, асинхронного электродвигателя) следует проверить напряжение на каждой из трёх фаз и сравнить показатели. Особенно это касается частных секторов, где напряжение нестабильно или электромонтёры имеют недостаточную квалификацию. Дело в том, что в деревнях часто не обращают внимания на распределение нагрузки. В результате подобных действий одна из фаз может быть перегружена при минимальной нагрузке на остальные. Вкупе с устаревшими трансформаторами это приводит к перекосу фаз. Получается, что на одной из фаз напряжение значительно снижается. Это приводит к перегреву трёхфазных двигателей или иного оборудования и выходу его из строя.
Подведём итог
Из всего изложенного можно сделать вывод, что фазное напряжение в сети 0.4 кВ всегда равно 220 В, в то время как линейное 380 В. Однако не стоит считать, что если значения фазного напряжения ниже, оно становится менее опасным. Редакция Homius со всей ответственностью заявляет, что поражение электрическим током может привести к летальному исходу независимо от того, линейное напряжение в цепи или фазное. Ведь поражение тканям и органам наносит не само напряжение, а сила тока. К примеру, 220 В трансформированные в 36 В становятся даже опаснее. Ведь человек практически не чувствует столь низкого напряжения, а в это время ток поражает органы. Поэтому при электромонтажных работах не следует забывать о технике безопасности.
Надеемся, что изложенная информация будет полезна начинающим электромонтажникам и домашним мастерам. При возникновении вопросов можете смело излагать их в обсуждениях ниже. Редакция Homius с удовольствием ответит на них как можно более развёрнуто и быстро. Там же Вы можете изложить своё мнение о статье, оставить комментарий или поделиться личным опытом в подключении трёхфазного оборудования. Если понравилась статья, не забываем её оценивать. А мы напоследок предлагаем Вашему вниманию короткий видеоролик, который позволит более полно раскрыть сегодняшнюю тему.
- Напряжение
- Реле
- Трансформатор
- Что такое рекуперация на электровозе
- Чем отличается электровоз от тепловоза
- Чем глушитель отличается от резонатора
- Стойки стабилизатора как определить неисправность
- Стабилизатор поперечной устойчивости как работает
Может ли напряжение быть отрицательным: когда, как, подробные ответы на часто задаваемые вопросы, аналитическая информация
Напряжение не всегда означает, что оно должно быть положительным. Поэтому возникает вопрос, может ли напряжение быть отрицательным? Давайте утолим ваше любопытство по поводу отрицательного напряжения.
В этой статье объясняется, как напряжение может быть отрицательным, объясняется соглашение о знаках напряжения (в соответствии с соглашением о знаках базовой схемы) в различных схемах, что вызывает отрицательное напряжение и преобразование любого напряжения в отрицательное напряжение.
Напряжение положительное или отрицательное?
Напряжение — это потенциал, созданный между двумя разными точками. Напряжение можно объяснить как работу, совершаемую на единицу, необходимую для перемещения единичного заряда из одной точки в другую в присутствии статического электрического поля.
Напряжение имеет величину и полярность. Полярность напряжения может быть отрицательной или положительной, а величина напряжения может быть только положительной. Напряжение — величина относительная, поэтому она может быть как положительной, так и отрицательной.
Изображение Фото: «Файл: анимация электрической нагрузки 2.gif» by Четворно отмечен CC0 1.0
Понятие положительного и отрицательного напряжения исходит из соглашения о знаках. Знаковое соглашение — это правило, принятое во всем мире для определения электрического потока или знаков электроэнергии в цепи. Бенджамин Франклин был тем, кто предположил, что электрический ток течет от положительной клеммы напряжения к клемме отрицательного напряжения. В то время роль электрона в протекании тока не была ясна из-за принятого им соглашения. Тем не менее, позже, после нескольких открытий, был обнаружен тот электрон, который вызывает движение тока в направлении, противоположном току.
Нулевое напряжение в цепи называется заземлением, которое используется как эталон для измерения других напряжений. Полярность напряжения элемента электрической цепи варьируется для активного или пассивного элемента для пассивного элемента, такого как резистор. Клемма, через которую электрон входит в элемент, эта клемма является клеммой отрицательного напряжения, а другая клемма компонента является клеммой положительного напряжения. Для активных компонентов, таких как источник питания и конденсатор, вывод, по которому подается ток, является положительным выводом, а другой вывод — отрицательным выводом.
Что означает отрицательное напряжение?
Напряжение — это относительная величина, поэтому она может быть отрицательной или положительной.
Изображение Фото: «Файл: Анимация источника электроэнергии 2.gif» by Четворно отмечен CC0 1.0
Когда напряжение более отрицательное (по полярности) относительно земли схемы, тогда напряжение отрицательное.
Например, источник постоянного напряжения, такой как аккумулятор (или элемент), имеет отрицательную и положительную клеммы. Когда положительная клемма батареи обнаружена, отрицательная клемма подключается к схеме, тогда напряжение, подаваемое через источник питания в схему, является отрицательным напряжением.
Положительное или отрицательное напряжение может быть связано с ориентацией источников напряжения в схеме. Когда отрицательная клемма напрямую связана с землей, а положительная клемма напрямую связана со схемой, генерируемое напряжение является положительным напряжением. Когда положительная (+) клемма напрямую связана с землей, а отрицательная (-) клемма подключена к схеме, напряжение, генерируемое на отрицательной (-) клемме источника питания, является отрицательным напряжением.
Для чего используется отрицательное напряжение
В некоторых схемах используется отрицательное напряжение, например, транзистор, Телеком, двухтактный усилитель, схема силового драйвера и т.д.
Использование отрицательного напряжения:
Операционному усилителю (OpAmp) требуется как положительное, так и отрицательное напряжение для правильной работы и усиления. Для смещения транзистора необходимо отрицательное напряжение. В электросвязи линии прокладываются под землей в присутствии влаги и других внешних материалов, которые могут вызвать коррозию провода, обычно сделанного из меди. Когда через провод подается отрицательное напряжение, это сводит к минимуму коррозию.
Может ли усиление напряжения быть отрицательным?
Коэффициент усиления по напряжению — это отношение выходного напряжения (в вольтах) к входному напряжению (в вольтах) элемента схемы.
Отрицательное усиление напряжения означает изменение полярности напряжения от входа к выходу. Другими словами, выходное напряжение сдвинуто по фазе на 180 градусов относительно входного.. Коэффициент усиления по напряжению отрицательный, если выходное напряжение меньше (из-за затухания или фазового сдвига), чем входное напряжение. Усилитель с отрицательной обратной связью имеет отрицательное усиление по напряжению.
Может ли напряжение аккумулятора быть отрицательным?
Полярность напряжения батареи зависит от того, как она подключена между цепью и землей.
Предположим, что положительная (+) клемма аккумулятора напрямую связана с землей, а отрицательная (-) клемма подключена к цепи. В этом случае генерируемое на нем напряжение будет отрицательным, и если отрицательный вывод будет заземлен.
Положительный вывод подключается к схеме, тогда генерируемое на нем напряжение будет положительным.
Что такое отрицательное напряжение переменного тока?
В одном из переменный ток (AC), два полюса источника переменного тока меняются местами между положительным и отрицательным.
Кредит изображения: By ru: Пользователь: CJ Cowie – http://en.wikipedia.org/wiki/Image:ACPower03CJC.png CC BY-SA 3.0
Отрицательное напряжение в переменном токе означает, что напряжение сдвинуто по фазе на 180 градусов относительно положительного напряжения. Полный цикл AC состоит из двух полупериодов: одна положительная (+) половина, а другая отрицательная (-) половина. Положительная половина — это положительное напряжение в любой момент. Тем не менее, во время отрицательной половины круга полярность напряжения инвертируется по отношению к положительной половине цикла, что означает, что в любой момент времени в течение отрицательного полупериода напряжение отрицательное.
Может ли напряжение Thevenin быть отрицательным?
Напряжение Thevenin может быть определено в соответствии с теоремой Thevenin, которая утверждает, что любая линейная схема представляет собой комбинацию нескольких источников напряжения, а резисторы могут быть заменены резистором и источником напряжения; Результирующий источник напряжения — это напряжение Тевенина.
Полярность напряжения Thevenin может быть отрицательной или положительной в зависимости от ориентации напряжения Thevenin в схеме. Если рассчитанное напряжение Thevenin отрицательное, это означает, что направление результирующего источника питания изменится. Если рассчитанное значение остается положительным, то ориентация результирующего источника питания правильная.
Может ли среднеквадратичное значение напряжения быть отрицательным?
RMS означает среднеквадратичное значение маршрута. Среднеквадратичное значение напряжения может быть получено путем извлечения квадратного корня из среднего значения квадрата мгновенного напряжения за интервал времени.
report this ad
Результат извлечения квадратного корня может быть отрицательным или положительным. Допустим, амплитуда напряжения принята за среднеквадратичное значение, тогда условно. В этом случае среднеквадратичное значение напряжения будет положительным, только если амплитуда и фаза напряжения взяты для получения среднеквадратичного напряжения, тогда это может быть комплексное отрицательное или положительное значение.
Может ли напряжение на узле быть отрицательным?
В схеме узел — это точка между двумя или более элементами схемы, а узловое напряжение — это разность электрических потенциалов между двумя узлами схемы.
Напряжение узла может быть положительным или отрицательным, поскольку это относительная величина.. Один узел схемы можно рассматривать как опорный узел, и относительно этого узла можно измерить напряжение другого узла. Обычно опорным напряжением является заземляющий узел, поэтому значение другого узла зависит от направления текущей ориентации и т. Д. По отношению к опорному узлу. Напряжение измерительного узла может быть ниже опорного напряжения.
Может ли напряжение остановки быть отрицательным?
В эксперименте по фотоэлектрическому эффекту анод является материалом мишени. Анод подключается к положительному выводу источника напряжения, когда он подвергается воздействию монохроматической и электромагнитной волны, что приводит к протеканию тока через контур, который называется фототоком.
Когда анод соединен с отрицательной клеммой источника напряжения, по мере увеличения напряжения фототок гаснет. Напряжение, при котором фототок перестает протекать по цепи, называется напряжением остановки. В ходе этого эксперимента мы узнали, что напряжение останова имеет отрицательное значение.
Может ли размах напряжения быть отрицательным?
Пиковое напряжение — это разница между минимальным и максимальным напряжением сигнала напряжения.
Величина размаха напряжения может варьироваться от 0 до любого положительного значения, так как полярность размаха напряжения может быть отрицательной и положительной.
Может ли мгновенное напряжение быть отрицательным?
Мгновенное напряжение — это значение напряжения (или разности потенциалов) в определенный момент времени.
Мгновенное напряжение может быть отрицательным или положительным. Мгновенное напряжение источника отрицательного постоянного напряжения постоянно отрицательно в любой момент времени. При переменном напряжении мгновенное напряжение изменяется со временем от положительного до отрицательного. Для отрицательного цикла сигнала напряжения переменного тока мгновенное значение напряжения отрицательно в любой момент времени.
Ток отрицательный, если напряжение отрицательное?
Напряжение — величина относительная, поэтому она может быть отрицательной. Отрицательный ток может означать только направление электронного тока, которое противоположно электрическому току по соглашению.
Отрицательное напряжение означает, что отрицательная клемма источника питания напрямую подключена к схеме, а положительная клемма заземлена. Ток от отрицательного(-) принимается во внимание клемма источника напряжения. Этот ток будет отрицательным током, поскольку мы знаем электрический ток от положительной клеммы любого источника напряжения.
Что означают отрицательные 5 вольт?
5 вольт — это разность потенциалов (или напряжение) между двумя разными точками. Примите во внимание, что напряжение является относительной величиной, полярность напряжения может измениться в зависимости от эталонов.
Изображение: Источник 5 В постоянного тока подключен к земле через положительный вывод.
Когда положительная клемма источника питания 5 В постоянного тока напрямую связана с землей. В результате положительный (+) клемма становится опорным напряжением, а отрицательный (-) клемма источника питания 5 В подключена к электрической схеме. Результирующее напряжение через источник питания 5 вольт будет отрицательным 5 вольт, так как положительный вывод будет взят за точку отсчета..
Как создать отрицательное напряжение?
Для создания отрицательного напряжения можно использовать разные методы.
С использованием :-
С помощью комбинации таймеров 555 и схемы ограничителя отрицательное напряжение может генерироваться на выходе. Здесь таймер 555 действует как нестабильный вибратор. После получения питания от источника питания 555 будет генерировать прямоугольную волну на выходе, которая будет состоять как из положительного, так и из отрицательного напряжения. Во время положительной половины выходного напряжения конденсатор, подключенный к выходу, заряжается, поэтому положительного напряжения не будет. Во время отрицательного напряжения конденсатор разряжается через диод, обеспечивая отрицательное напряжение на выходе.
Есть несколько ICS, которые используют преобразователь напряжения на переключаемых конденсаторах для преобразования напряжения в отрицательное напряжение. Как правило, эти ИС содержат некритичные конденсаторы для накачки заряда и резервуара заряда. Основным компонентом этих микросхем является преобразователь уровня напряжения генератора и MOS-переключатели.
Как мы знаем, однополупериодный выпрямитель может отфильтровывать положительную или отрицательную половину любого сигнала переменного тока, поскольку требуемый выход — отрицательное напряжение, выпрямитель отрицательной полуволны может использоваться в этом выпрямителе, только отрицательная половина сигнала переменного тока может проходить через него, так что В результате на выходе будет только отрицательное напряжение.
Коэффициент усиления инвертирующего усилителя по напряжению отрицательный, что означает, что выход инвертирующего усилителя на 180 градусов не совпадает по фазе с входом усилителя, поэтому, если положительное напряжение подается на инвертирующий усилитель, то отрицательное напряжение будет таким, как выход.
Как преобразовать отрицательное напряжение в положительное?
При необходимости отрицательное напряжение можно преобразовать в положительное.
Инвертирующий усилитель можно использовать для трансформировать отрицательный (-) напряжение в положительный(+) напряжение. Коэффициент усиления инвертирующего усилителя по напряжению отрицательный, что означает, что выходное напряжение сдвинуто по фазе на 180 градусов относительно входа. Если на входе принять отрицательное напряжение, то выходное напряжение инвертирующего усилителя будет положительным.
Что такое регуляторы отрицательного напряжения?
Vрегуляторы напряжения используются для поддержания определенного диапазона напряжения для разных целей.
Стабилизатор отрицательного напряжения — это схема, которая используется для поддержания напряжения в любом конкретном диапазоне отрицательного напряжения. 79XX — это семейство микросхем, представляющих собой трехконтактный стабилизатор отрицательного напряжения.
Эти ИС доступны с 3-мя различными выходными напряжениями -5, -12 и -15. Эти интегральные схемы обладают свойствами ограничения интертока и защитой от теплового отключения для их безопасности.
Может ли Arduino выводить отрицательное напряжение?
В продаже имеется несколько плат Arduino.
Как правило, выходное напряжение напрямую от Arduino находится в диапазоне положительного напряжения. Диапазон напряжения будет варьироваться от одного типа к другому или от вывода, с которого берется выход. Для получения отрицательного выходного напряжения от Arduino требуется внешняя схема преобразователя напряжения для преобразования напряжения из положительного в отрицательное.
Заземление положительное или отрицательное?
Земля — это опорная точка схемы, относительно которой можно измерить напряжение в любой точке.
Земля может быть как положительной, так и отрицательной, в зависимости от конструкции схемы. В электронике положительный или отрицательный вывод любого источника питания можно считать землей. Когда отрицательная клемма источника питания напрямую подключена к земле, земля называется отрицательная земля. Когда положительная клемма источника питания напрямую подключена к земле, земля называется положительная почва.
Можете ли вы подключить заземление к минусу?
Источник напряжения имеет два вывода; один считается положительным, а другой — отрицательным.
Земля — это опорная точка нулевого напряжения в цепи. Если в цепи только один источник питания, то отрицательная клемма источника питания считается такой же, как и земля. При необходимости заземление можно подключить непосредственно к отрицательной (-) клемме источника постоянного тока. Когда клемма постоянного тока напрямую связана с землей, земля называется отрицательной землей. В источнике переменного тока нет положительного или отрицательного полюса, поскольку полярность меняется со временем, поэтому нейтральный провод от цепи переменного тока можно напрямую подключить к земле. Заземление не требуется для каждой цепи. Обычно он используется для защиты, общей точки отсчета для напряжений и т. Д.
Как вы проверяете регулятор отрицательного напряжения?
Выходное и входное напряжение регулятора можно проверить для тестирования регулятора отрицательного напряжения.
Входное напряжение отрицательного регулятора можно измерить относительно земли; входное напряжение регулятора проверяется, чтобы регулятор мог нормально работать с достаточным входным напряжением. Входное напряжение должно быть больше регулируемого выходного напряжения по величине. Диапазон выходного напряжения различается разными регуляторами напряжения. Что касается регулятора отрицательного напряжения, диапазон выходного напряжения будет в отрицательных значениях напряжения. При тестировании регулятора отрицательного напряжения убедитесь, что выходное напряжение находится в диапазоне отрицательного напряжения. Выходное напряжение должно быть около номинального выходного напряжения. Если выходное напряжение не соответствует номинальному, регулятор может быть неисправен.
Какая ИС используется для получения отрицательного напряжения?
Преобразователь напряжения на переключаемых конденсаторах, который инвертирует, делит, удваивает или кратно положительному входному напряжению.
Кредит изображения: «Демонстрационная схема ICL7660”(CC BY-NC-SA 2.0) от трониксштуки
ИС, используемые для получения отрицательного напряжения на выходе: TL7660, MAX1044, NCP1729, LT1026, MAX870, MAX829, LT1054, CAT7660 и т. Д.. Эти ИС используются в линейных драйверах, операционных усилителях, поставщиках, генераторах отрицательного напряжения, делителях напряжения, разработчиках напряжения и т. Д. Эти ИС работают для другого диапазона напряжений, который зависит от технических характеристик ИС.
Почему ток перетекает с отрицательного на положительный?
Кредит изображения: Пользователь: Flekstro – Обычный_Current.png by Пользователь: Romtobbi CC BY 3.0
Разность потенциалов между двумя точками в цепи — это протекание тока.
Электронный ток начинается с отрицательной (-) Терминал. Он перемещается к положительному выводу источника питания, поскольку электронный ток находится в противоположном направлении электрического соглашения о токе. Поток электронов вызван разницей полярности или разностью потенциалов, создаваемой избытком электрона на одном конце и недостатком электрона на другом — отрицательно заряженные электроны притягиваются к положительному концу источника питания от отрицательного конца источника питания. .
В чем разница между положительным и отрицательным напряжением?
Любое напряжение может быть положительным, отрицательным или нулевым.
Разница между положительным (+) и отрицательным (-) напряжением заключается в полярности напряжения. Полярность напряжения может изменяться в зависимости от эталона, как если бы точка с более высоким потенциалом была взята за эталон для измерения более низкого потенциала. Разность потенциалов будет отрицательной, что соответствует отрицательному напряжению. И когда точка с более низким потенциалом берется за точку отсчета для измерения более высокого потенциала, разность потенциалов будет положительной. Полярность напряжения также влияет на ориентацию источника постоянного тока. Для источника переменного тока со временем полярность напряжения изменяется, так как для положительной половины сигнала переменного тока напряжение является положительным, а для отрицательной половины — отрицательным.
Я получил высшее образование в области прикладной электроники и приборостроения. Я любопытный человек. У меня есть интерес и опыт в таких предметах, как преобразователи, промышленные приборы, электроника и т. д. Мне нравится узнавать о научных исследованиях и изобретениях, и я верю, что мои знания в этой области будут способствовать моим будущим усилиям. Идентификатор LinkedIn — https://www.linkedin.com/in/sneha-panda-aa2403209/
Последние посты
Гипохлорит представляет собой анионную группу с химической формулой ClO-. Его относят к сложным эфирам хлорноватистой кислоты (HClO), связанным с помощью ковалентных взаимодействий. Давайте рассмотрим факты о ClO-. Гипохлорит.
Оксид магния с эмпирической формулой MgO представляет собой белое гигроскопичное твердое вещество, а йодистый водород (HI) представляет собой сильную кислоту. Давайте подробно разберемся с реакцией HI + MgO. Реакция.
report this ad
О НАС
Мы являемся группой профессионалов отрасли из различных областей образования, таких как наука, инженерия, английская литература, и создаем универсальное образовательное решение, основанное на знаниях.
report this ad