Как выпрямить напряжение 220

Как выровнять напряжение в сети 220в в частном доме

Как поднять напряжение в сети до 220 в частном доме

Морозной зимой сельским жителям много хлопот доставляет обогрев своих жилищ. Тем же, кто отказался от печного отопления, проблему, как будто специально, создает заниженный уровень поступающей электроэнергии.

Да и в многоэтажных зданиях многочисленных городских поселков жители страдают от плохого электричества. Вот люди и задаются вопросом: Как повысить напряжение в сети до 220 в частном доме с наименьшими затратами и почему энергоснабжающие организации не качественно выполняют свои обязанности?

Предлагаю рассмотреть его объективно с точки зрения потребителя и поставщика. Решение проблем лучше искать совместными усилиями на основе компромисса.

Электрические районные сети: где искать потери напряжения

Рекомендую обратить внимание на три вопроса:

  1. Работу трансформаторной подстанции.
  2. Состояние линии электропередач.
  3. Равномерность распределения нагрузки по фазам.

Виды трансформаторных подстанций 10/0,4 кВ: простая оценка по внешнему виду

Электроэнергия от промышленных генераторов к нам в жилой дом поступает по линиям электропередач через трансформаторные подстанции. На них напряжение с 10 или 6 киловольт снижается до 0,4.

Конструкция ТП должна пройти реконструкцию с заменой изношенного оборудования, отвечать современным требованиям надежности и безопасности.

В этом случае вам просто уже повезло. Если воздушная ЛЭП 380 вольт идет от подобной модульной подстанции, то она обладает резервом мощности.

Однако довольно часто еще можно встретить старые конструкции ТП, введенные в работу в советское время.

Нельзя сказать, что они выработали свой ресурс и не пригодны к работе. Просто надо понять, что сейчас сильно изменились условия их эксплуатации. Они уже не справляются нормально с современными, сильно возросшими нагрузками.

Их резерв мощности был рассчитан на энергоснабжение групп потребителей в частных домах, подключенных к бытовой проводке, собранной алюминиевыми жилами 2,5 мм кв. Сила тока тогда практически никогда не превышала 16 ампер, что соответствовало примерно 3 киловаттам.

С тех пор многое изменилось. Даже простой электрочайник потребляет 2 кВт. А ведь еще есть различные отопители и нагреватели, стиральные машины, микроволновки, бытовой инструмент. У многих мастеров работают насосы, станки, сварка.

Все эти потребители вместе сильно нагружают старые трансформаторные подстанции: их мощности не хватает на обеспечение полноценного питания подключенных нагрузок.

Воздушная линия электропередач: влияние конструкции на качество электроснабжения

Закон Ома определяет, что падение напряжения на участке воздушной линии электропередач от трансформаторной подстанции до конечного потребителя зависит от силы тока и величины сопротивления проводов.

На последний параметр влияют протяженность токопроводящей магистрали и конструкция проводников:

  • тип металлических жил;
  • общее поперечное сечение провода;
  • качество контактных соединений в местах стыковок — переходное сопротивление.

Чем длиннее магистраль от трансформаторной подстанции до последнего потребителя, тем больше проблем возникает у энергоснабжающей организации, да и жителей дальних домов.

Существующие нормативы ПУЭ определяют, что уровень напряжения в однофазной сети должен укладываться в предел 207÷253 вольта. Для обеспечения этого условия на ТП предусмотрена возможность его оперативного регулирования.

Обычно им пользуются для переключения режимов работы при смене сезонов: зимний период связан с большим энергопотреблением. Он требует завышать выходной уровень сети 0,4 на трансформаторной подстанции.

Длинные воздушные линии и возросшее количество мощных потребителей приводят к тому, что у владельцев домов, запитанных около ТП, напряжение находится на максимуме предела регулирования и поднимать его уже нельзя, а на самых удаленных потребителях падает ниже допустимого уровня вплоть до 180 вольт, а то и ниже.

Читайте также: Ваз 2110 причина слабого напряжения генератора

В этой ситуации поставщик энергии быстро решить вопрос не сможет. Ему необходимо:

  • полностью менять оборудование трансформаторной подстанции;
  • или строить новые линии электроснабжения;
  • либо решать одновременно все задачи.

Нам следует понимать, что они энергозатратны, не дешевы, требуют приложения больших усилий и материальных средств.

Как устроена старая ВЛ

За основу передачи энергии раньше массово использовали алюминиевые провода со стальным сердечником. Их так и называли: АС. Кстати, производство алюминиево-стальных проводов различных типов существует до сих пор.

В сельской местности применяется провод АС с сечением 16 мм квадратных, как наиболее бюджетный вариант. Его небольшой диаметр при значительной длине и наличии стальной жилы создает довольно высокое электрическое сопротивление.

Ухудшает его еще способ соединения раскатки провода на составляющие проволоки и скрутку их в единый узел. Хорошо, если он выполняется с обжатием в гильзе. А ведь его могут сделать и на скорую руку.

Косвенным признаком вины алюминиевых проводов является характерное снижение напряжения вечером и нормальная величина ночью, когда большая часть нагрузки снята.

Модернизация ВЛ кабелем СИП

Современная конструкция воздушного кабеля сделана для обеспечения минимальных потерь напряжения. У них используется улучшенная технология сборки и повышенная проводимость токопроводящих жил. Каждая из фаз покрыта слоем светостойкой ПВХ изоляции, что разрешает скручивать их единой магистралью.

Кабель СИП монтируется по специальной технологии, обеспечивающей минимальные потери напряжения при транспортировке по нему электрической энергии.

Распределение нагрузки по фазам: как просто определить дисбаланс

Идеальное трехфазное напряжение создается генераторами на холостом ходу.

Его схему и диаграмму удобно представлять векторной формой в виде равностороннего треугольника. Между вершинами A, B и C создается линейное напряжение 380, а относительно нуля и вершин — фазное.

Это напряжение 220 поступает к нам в жилой дом и ко всем потребителям. К нему каждый владелец по своему усмотрению подключает нагрузку. Процесс этот носит чисто случайный характер на всем протяжении питающей ЛЭП.

Если какая-то фаза станет перегруженной (течет больший ток), то на ней может произойти посадка напряжения. Точка рабочего нуля в треугольнике смещается из центра, меняются разности двух других фазных потенциалов.

На этот процесс снабжающая организация реагировать практически не может. Она влияет на него на стадии проекта и очень редко переключает потребителей при эксплуатации.

Электрические замеры под напряжением на ВЛ около дома способны дать объективную оценку качества напряжения. Но делать их могут только подготовленные бригады электриков с соблюдением ряда организационных и технических мероприятий.

Причина низкого напряжения довольно часто может быть создана по вине владельца здания.

Электропроводка в частном доме: скрытые ошибки монтажа, создающие проблемы

Внимание: зона ответственности снабжающей организации заканчивается на ответвительной опоре! Схема подключения к ней, кабель ввода в дом и весь внутренний монтаж лежат на совести частного владельца.

Поэтому вначале надо обращать внимание на состояние качества уличной проводки, а затем — внутридомовой.

Контакты на улице

Ввод в здание и подключение к счетчику делают бригады электриков от поставщика и энергосбыта. От качества их работы может пострадать хозяин дома. Ему следует контролировать состояние проводов и создаваемых контактов.

Обычная скрутка алюминиевых жил на воздухе покрывается слоем окислов и ухудшает переходное сопротивление. Это место начинает больше греться и сильнее окисляться. Процесс со временем нарастает, хотя визуально может быть не заметен.

Читайте также: Что может снять стресс напряжение

Естественный обдув воздухом и длина открытого провода его маскируют, но не останавливают. Увеличенное переходное сопротивление такого контакта — причина потери напряжения на нем.

Подключение ответвления специальными зажимами с нарушениями технологии — тоже возможная причина плохого контакта.

Если на нем образовались трещины, сколы, потемнения и другие дефекты, то они явно свидетельствуют об увеличенном переходном сопротивлении, потерях энергии.

Контакты вводного автомата

Подключение силового провода к автоматическому выключателю на вводе часто требует использования специальных переходников с созданием надежного ужима. Халатная работа сразу может не сказаться, но со временем проявиться.

Переходное сопротивление контактов владелец может проверить созданием электропроводке режима максимальной нагрузки на некоторое время. Сразу потребуется проконтролировать их нагрев. Проводя визуальный осмотр, следует обращать внимание на потемнение корпуса защитного модуля, состояние изоляции.

Внутри дома возможны и другие причины, ведущие к снижению уровня электричества.

Общие организационные вопросы: что обсуждать с поставщиком электроэнергии

Приступать к обсуждению возникших проблем следует только после того, как окончательно стало ясно, что у владельца здания все выполнено надежно и его вины нет.

Это же должны подтвердить соседи, у которых не решены аналогичные вопросы. Действовать лучше сообща. Обращаться следует в различные инстанции власти с письменными заявлениями, но начать необходимо с поставщика. Он в первую очередь должен обеспечить качество подводимой электроэнергии.

Однако, как показано выше, этот процесс, скорее всего, растянется на длительный срок. Владельцу дома до его решения придется принимать самостоятельные меры.

Как повысить напряжение в сети: 2 подхода

Решить вопрос можно своими руками или приобрести специальное промышленное оборудование.

Как повысить напряжение: бюджетные варианты от бывалого

Способ №1: старый стабилизатор от черно-белого телевизора

Кинескопные ламповые модели телевизоров в советское время потребляли много электроэнергии, порядка 400 ватт. Им требовалось стабилизированное питание.

Для них многочисленные заводы массово выпускали различные модели стабилизаторов напряжения. Со временем необходимость в них пропала и они попали к мастерам в кладовки, а кто-то просто выбросил, хотя надежность и работоспособность этих устройств сохранилась и по сей день.

Использовать такой старый стабилизатор вполне допустимо, но, стоит обратить внимание на его выходную мощность. Питать через него лучше какой-то один бытовой прибор с электродвигателем.

Если имеются два одинаковых стабилизатора, то их можно объединить и подключить более высокую нагрузку.

Способ №2: понижающий трансформатор

Подойдет любая модель от старого ненужного зарядного устройства автомобильных аккумуляторов или самодельная конструкция. Показываю на примере трансформатора 220/12-36 вольт. Его номинальная мощность 315 вольт-ампер.

На правой части картинки показаны выходные цепи со снятым корпусом. Подобных зарядных было выпущено очень много. Из них можно выцепить схему электроники. Она не нужна.

Далее поступаем очень просто. Собираем схему увеличения напряжения, когда первичная обмотка работает, как обычно, а вторичка добавляет свои вольты к питанию прибора.

С научной точки зрения необходимо выполнять фазировку, а на ее основе ставить перемычку между обмотками, которая позволит сделать вольт-добавку. Предлагаю более простой вариант:

  1. Соединяем перемычкой произвольно одну клемму входной цепи с любой выходной, действуя по принципу: «мне повезет».
  2. Включаем трансформатор в сеть обмоткой 220 и замеряем сигнал на его выходе вольтметром.
  3. Если он увеличился, то удача нам улыбнулась и все получилось.
  4. Когда напряжение снизилось, то это значит, что мы собрали схему понижения и требуется переключить перемычку на одной из клемм входа или выхода.

Читайте также: Решение ищется в напряжениях стрессовых ситуациях имитирующих реальные жизненные ситуации

Если отсутствует трансформатор заводского исполнения, то его не так уж сложно намотать своими руками на подходящем магнитопроводе. Можно использовать даже статор от сгоревшего асинхронного двигателя.

Методику расчета и сборки описывать не буду. Она довольно подробно изложена в этой статье про трансформаторный паяльник Момент. Что будет не понятно — спрашивайте. Я помог уже многим читателям в этом вопросе.

Чтобы не допустить перегрева добавочного ТН, достаточно правильно подобрать к нему предохранитель, контролировать и ограничивать время работы при максимальных нагрузках.

Способ №3: стабилизатор напряжения своими руками

Любителям мастерить предлагаю собрать относительно не сложную электронную схему на трансформаторе с тремя обмотками, работающими по принципу приведенной выше вольт-добавки понижающего трансформатора.

Предлагаемый стабилизатор напряжения своими руками нормально справляется со стабилизацией электроэнергии для нагрузок 1,5 кВт при уровне сети 200 вольт и 700 ватт при снижении до 180В. Работает он автоматически.

Компаратор имеет 4 ступени настройки порогов срабатывания. Переключение обмоток осуществляют контакты реле РП-21 постоянного тока с напряжением 24 вольта. Их можно заменить аналогами, но обращайте внимание на коммутационную способность контактов. Иначе они сгорят.

Марки и номиналы компонентов электронной базы показаны на схеме. Однако, проще купить такой прибор промышленного изготовления.

Стабилизатор напряжения для частного дома: на какие характеристики обращать внимание

Индуктивная нагрузка

Выбирать модель стабилизатора следует под конкретные нужды его эксплуатации. Необходимо учесть, что пусковые токи электродвигателей превышают в два-три раза номинальную величину нагрузки.

Мощность источника должна их надежно перекрывать. Особенно важно выполнять это требование для электродвигателей насосов различных жидкостей и компрессоров, начинающих свой запуск под нагрузкой рабочей среды, а не раскручивающихся на холостом режиме.

Способы регулирования

Стабилизаторы напряжения работают по принципу автотрансформатора и построены по одной из двух схем:

  1. ступенчатого переключения дополнительных обмоток релейными или полупроводниковыми ключами;
  2. плавного регулирования выходной величины за счет перемещения сервопривода по принципу работы ЛАТР.

В первом случае на автотрансформаторе создаются отпайки. Их количество влияет на величину ступени регулирования напряжения. Коммутации происходят по командам от электронного блока тиристорами или симисторами.

Стабилизатор с сервоприводом плавнее переключает напряжение движением угольных электродов по виткам автотрансформатора.

Стабилизаторы напряжения изготавливают для работы с трехфазной и однофазной нагрузкой. Однако при их выборе надо хорошо представлять условия их эксплуатации.

Особенности трехфазного питания

В доме с таким электроснабжением на вводе лучше устанавливать 3 однофазных устройства на каждую фазу отдельно. Любой из них будет нормально выравнивать напряжение при разных нагрузках намного лучше, чем один общий.

Трехфазные электродвигатели и трансформаторы подключают через соответствующие 3-х фазные стабилизаторы. Они больше приспособлены к симметричным нагрузкам.

Режим Bypass

Полезной функцией прибора является возможность транзита электроэнергии, минуя орган стабилизации.

Видеоролик владельца Voltra BY «Как выбрать стабилизатор для дома» поможет вам определиться с поиском подходящей конструкции. Рекомендую посмотреть.

Если же у вас еще остались вопросы и не ясно, как повысить напряжение в сети до 220 в частном доме, то спрашивайте. Постараюсь помочь.

© 2023
Информация, опубликованная на сайте, носит исключительно ознакомительный характер

Выпрямитель напряжения для 12 вольт схема

Металлобаза

Основные элементы и принцип действия блоков питания

Главной частью является понижающий трансформатор, причем при отсутствии его с необходимыми параметрами, то вторичная обмотка перематывается вручную и получается необходимое выходное напряжение. Посредством трансформатора происходит уменьшение напряжения сети 220 вольт до 12, идущих дальше к потребителю.

Принципиальной разницы между штатными устройствами и с перемотанной вторичной обмоткой нет, главное – правильно рассчитать сечение провода и количество его витков на обмотке.

Далее ток идет на выпрямитель. Состоит из полупроводников, например, диодов. Диодный мост, в разных схемах, может состоять из одного, двух или четырех диодов. После выпрямителя ток поступает на конденсатор, также в схеме для выдачи стабильного напряжения желательно включение стабилитрона с соответствующими характеристиками.

Читайте также: Термоусадочная трубка – что это такое, из чего сделана, для чего нужна, основные характеристики

Компоновка прибора

Если мы хотим сделать приличный прибор, который не стыдно будет потом приделать в качестве постоянного блока питания, допустим, для цепочки светодиодов, нужно начать с трансформатора, платы для монтажа электронных компонентов и коробки, где все это будет закреплено и подключено. При выборе коробки важно учесть, что электрические схемы при работе разогреваются. Поэтому коробку хорошо найти подходящую по размерам и с отверстиями для вентиляции. Можно купить в магазине или взять корпус от блока питания компьютера. Последний вариант может оказаться громоздким, но в нем как упрощение можно оставить уже имеющийся трансформатор, даже вместе с вентилятором охлаждения.

Корпус блока питания

Корпус блока питания

Корпус блока питания

На трансформаторе нас интересует низковольтная обмотка. Если она дает понижение напряжения с 220 В до 16 В – это идеальный случай. Если нет, придется ее перемотать. После перемотки и проверки напряжения на выходе трансформатора его можно закрепить на монтажной плате. И сразу продумать, как монтажная плата будет крепиться внутри коробки. У нее для этого имеются посадочные отверстия.

Монтажная плата

Монтажная плата

Дальнейшие действия по монтажу будут проходить на этой монтажной плате, значит, она должна быть достаточной по площади, длине и допускать возможную установку радиаторов на диоды, транзисторы или микросхему, которые должны еще поместиться в выбранную коробку.

Диодный мост собираем на монтажной плате, должен получиться такой ромбик из четырех диодов. Причем левая и правая пары состоят одинаково из диодов, подключенных последовательно, а обе пары параллельны друг другу. Один конец каждого диода маркирован полоской – это обозначен плюс. Сначала паяем диоды в парах друг к другу. Последовательно – это значит плюс первого соединен с минусом второго. Свободные концы пары тоже получатся – плюс и минус. Параллельно соединить пары – значит спаять оба плюса пар и оба минуса. Вот теперь имеем выходные контакты моста – плюс и минус. Или их можно назвать полюсами – верхним и нижним.

Схема диодного моста

Схема диодного моста

Остальные два полюса – левый и правый – используются как входные контакты, на них подается переменное напряжение с вторичной обмотки понижающего трансформатора. А на выходы моста диоды подадут пульсирующее знакопостоянное напряжение.

Если теперь подключить параллельно с выходом моста конденсатор, соблюдая полярность – к плюсу моста – плюс конденсатора, он напряжение начнет сглаживать, причем настолько хорошо, насколько велика у него емкость. 1 000 мкФ будет достаточно, и даже ставят 470 мкФ.

Внимание! Электролитический конденсатор – прибор небезопасный. При неверном подключении, при подаче на него напряжения вне рабочего диапазона или при большом перегреве он может взорваться. При этом разлетается по округе все его внутреннее содержимое – лохмотья корпуса, металлической фольги и брызги электролита. Что весьма опасно.

Читайте также: Принцип селективности для выбора автоматических выключателей и УЗО

Ну вот и получился у нас самый простой (если не сказать, примитивный) блок питания для приборов напряжением 12 V DC, то есть постоянного тока.

Трансформатор

Состоит трансформатор из сердечника, изготовленного из ферромагнетика, а также первичной и вторичной обмоток. На первичную обмотку приходит 220 вольт, а со вторичной, в данном случае, снимается 12, идущие на выпрямитель. Сердечники в данном типе блоков питания по большей части изготавливают Ш-образной и U-образной формы.

Расположение обмоток допускается как одна на другой на общей катушке, так и по отдельности. К примеру, у U-образного сердечника пара катушек, на каждую из которых намотано по половине обмоток. Выводы при подсоединении трансформатора подключают последовательно.

Выпрямитель на основе диодного моста

Схема двухполупериодного выпрямителя на основе диодного моста, пригодная для сборки своими руками, изображена на рис. 3а. Выпрямлению подвергается напряжение, снимаемое со вторичной понижающей обмотки трансформатора Т. Для этого нужно подключить диодный мост к трансформатору.

Пульсирующее выпрямленное напряжение сглаживается электролитическим конденсатором С, имеющим достаточно большую емкость — обычно порядка нескольких тысяч мкФ. Резистор R играет роль нагрузки выпрямителя на холостом ходу. В таком режиме конденсатор С заряжается до амплитудного значения, которое в 1,4 (корень из двух) раза выше действующего значения напряжения, снимаемого со вторичной обмотки трансформатора.

С ростом нагрузки выходное напряжение уменьшается. Избавиться от этого недостатка можно, подключив к выходу выпрямителя простейший транзисторный стабилизатор. На принципиальных схемах изображение диодного моста часто упрощают. На рис. 3б показано, как еще может быть изображен соответствующий фрагмент на рис. 3а.

Следует заметить, что, хотя прямое сопротивление диодов невелико, тем не менее, оно отлично от нуля. По этой причине они нагреваются в соответствии с законом Джоуля-Ленца тем сильнее, чем больше величина тока, протекающего по цепи. Для предотвращения перегрева мощные диоды часто устанавливаются на теплоотводах (радиаторах).

Диодный мост — это практически обязательный элемент любого электронного устройства, питающегося от сети, будь то компьютер или выпрямитель для зарядки мобильного телефона.

Во многих электронных приборах, работающих при переменном токе в 220 вольт устанавливаются диодные мосты. Схема диодного моста на 12 вольт позволяет эффективно выполнять функцию по выпрямлению переменного тока. Это связано с тем, что для работы большинства приборов используется постоянный ток.

Как правильно рассчитать число витков

При перемотке вторичной катушки, нужно знать, какому напряжению соответствует виток. Если перематывать первичную обмотку не планируется, нет нужды рассчитывать ни сечение провода, ни его свойства. Проблема с первичной обмоткой заключается в большом количестве витков тонкой проволоки, из которой он состоит.

Читайте также: Количественные и качественные характеристики освещения

Для расчета вторичной обмотки, делают 10 витков и подключают трансформатор в сеть. Измеряют напряжение на выводах, после чего делят его на 10, после чего 12 делится на полученное число. Результат и будет необходимым количеством витков, причем рекомендуется увеличить его на 10% для компенсации падения напряжения.

Выбор трансформатора

Преобразующее напряжение приспособление является одним из главных трансформаторных компонентов. Здесь переменное 220-вольтовое напряжение преобразуется в подобное себе, но немного с пониженной амплитудой.

Читайте здесь! Применение аккумуляторов LiFePO4

Воспользовавшись простыми подсчётами, выясним, сколько вторичная обмотка совершила оборотов вокруг своей оси. Узнав число оборотов (обычно показатель вольтажа в этом случае 6,3), следует разделить вольтовый показатель на количество витков.

Обычный понижающий прибор, необходимый для уменьшения вольтажа с привычного 220-вольтового до 12-вольтового, можно использовать в качестве машины трансформаторного типа.

Оптимально брать для прибора конденсатор 470 мкФ ёмкости с 25-вольтовым напряжением. Почему это будет оптимальным вариантом? Это связано с тем, что, когда напряжение выходит из агрегата, то оно становится выше стандартного с вольтажем в 12В. Когда механизм начинает работать, то напряжение возвращается к стандартным показателям (12 В).

Корпус

Корпус для блока питания очень удобно делать из алюминия. Сперва собирается каркас из уголков, который затем обшивают алюминиевыми пластинками. Плюсов такого решения как минимум два – во-первых, с алюминием легко работать, во-вторых, он очень хорошо проводит тепло, что предохранит блок питания от перегрева.

Если нет желания собирать каркас самостоятельно, можно позаимствовать его от старой микроволновки. Определенные плюсы у такого решения есть – малый вес, эстетичный вид и вместительность.

Печатная плата для блока питания

Изготавливается из фольгированного текстолита, для чего производят обработку металла соляной кислотой либо аккумуляторным электролитом.

Работы проводятся в резиновых перчатках с соблюдением мер предосторожности. Металл промывают содовым раствором и наносят изображение печатной платы. Существуют специальные компьютерные программы для создания таких изображений.

Протравливают плату, опуская ее в раствор хлорного железа, либо смеси медного купороса с солью.


  • Как работает реле контроля напряжения: принцип работы защиты и нюансы подключения реле контроля для дома или квартиры
  • Что такое импульсное реле: принцип работы, виды, описание устройств и схемы подключения. 155 фото реле импульсного типа и видео инструкция по монтажу
  • Фотореле для уличного освещения — критерии выбора, советы по подключению и размещению устройства (135 фото)

Как работает диодный мост

Переменный ток, имеющий определенную меняющуюся частоту, подается на входные контакты моста. На выходах с положительным и отрицательным значением образуется однополярный ток, обладающий повышенной пульсацией, значительно превышающей частоту тока, подаваемого на вход.

Появляющиеся пульсации нужно обязательно убрать, иначе электронная схема не сможет нормально работать. Поэтому, в схеме присутствуют специальные фильтры, представляющие собой электролитические конденсаторы с большой емкостью.

Сама сборка моста состоит из четырех диодов с одинаковыми параметрами. Они соединены в общую схему и размещаются в общем корпусе.

Читайте также: Схема подключения контактора кми 22510

Диодный мост имеет четыре вывода. К двум из них подключается переменное напряжение, а два остальных являются положительным и отрицательным выводом пульсирующего выпрямленного напряжения.

Классическая схема диодного моста на 12 вольт

Выпрямительный мост в виде диодной сборки обладает существенными технологическими преимуществами. Таким образом, на печатную плату устанавливается сразу одна монолитная деталь. Во время эксплуатации, для всех диодов обеспечивается одинаковый тепловой режим. Стоимость общей сборки ниже четырех диодов в отдельности. Однако, данная деталь имеет серьезный недостаток. При выходе из строя хотя-бы одного диода, вся сборка подлежит замене. При желании, любая общая схема может быть заменена четырьмя отдельными деталями.

Монтаж элементов

По окончании протравливания, плату ополаскивают, снимают с дорожек защиту и обезжиривают. Очень тонким сверлом сверлятся отверстия в плате под элементы. Затем элементы вставляют в отверстия и подпаивают к дорожкам, после чего дорожки лудят с помощью олова.

Фото самодельного блока питания на 12 вольт


  • Устройство импульсной защиты: классификация, схема подключения ограничителя и советы по выбору устройства (155 фото)
  • Что такое реле контроля фаз — принцип работы, назначение, схема подключения и основные типы реле контроля фаз (125 фото)
  • Схема подключения магнитного пускателя от А до Я — советы экспертов по выбору и пошаговая инструкция по монтажу и подключению (145 фото и видео)

;)

Вам понравилась статья? Поделитесь

Пересчет переменного напряжения в постоянное после выпрямителя

Преобразование переменного тока в постоянный ток (схема)

Потребители работающие на постоянном токе не могут быть подключены из розетки без выпрямляющего устройства , без него вы просто спалите электрический аппарат постоянного тока , в лучше случаи предохранитель в нём при наличии.

Выпрямить переменный ток можно с помощью одного диода, но это не желательно. Давайте посмотрим на график где будет видно какой ток получится после прохождение тока через диод.

прохождение тока через диод

напряжение прохождения тока через диод

После выпрямления если так можно сказать видя на графике что на выходе не совсем переменный ток , на графике видно что диод просто срезал отрицательную половину. По этому лучше всего выпрямлять переменный ток с помощью диодного моста.

Схема соединения диодного моста

При соединении диодов смотрите на схему , да бы не попутать выводы ниже на картинке фотография диода и его обозначения.

обозначение диодного моста

Как видно из картинки производители помечают на корпусе диода вывод который называется «Катод» метки бывают в виде полоски либо точки.

График на выходе после диодного моста

График на выходе после диодного моста

После диодного моста на выходе получилось постоянное пульсирующее напряжение с частотой 100 Гц , что превышает частоту нашей сети в два раза.

Что бы сгладить постоянное пульсирующее напряжение на выходе с диодного моста добавляют конденсатор либо сглаживающий фильтр , подключается он параллельно нагрузке.

Схема подключения и график с подключение конденсатора

Схема подключения и график с подключение конденсатора

На графике синем цветом показан как изменяется пульсация (изменение напряжения) после того когда мы подключили фильтр в виде конденсатора.

Как получить постоянное напряжение из переменного

Осциллограмма постоянного напряжения

Давайте для начала уточним, что мы подразумеваем под «постоянным напряжением». Как гласит нам Википедия, постоянное напряжение (он же и постоянный ток) — это такой ток, параметры, свойства и направление которого не изменяются со временем. Постоянный ток течет только в одном направлении и для него частота равна нулю.

Осциллограмму постоянного тока мы с вами рассматривали в статье Осциллограф. Основы эксплуатации:

Как вы помните, по горизонтали на графике у нас время (ось Х), а по вертикали напряжение (ось Y).

Для того, чтобы преобразовать переменное однофазное напряжение одного значения в однофазное переменное напряжение меньшего (можно и большего) значения, мы используем простой однофазный трансформатор. А для того, чтобы преобразовать в постоянное пульсирующее напряжение, мы с вами после трансформатора подключали Диодный мост. На выходе получали постоянное пульсирующее напряжение. Но с таким напряжением, как говорится, погоду не сделаешь.

Но как же нам из пульсирующего постоянного напряжения

получить самое что ни на есть настоящее постоянное напряжение?

Для этого нам нужен всего один радиокомпонент: конденсатор. А вот так он должен подключаться к диодному мосту:

В этой схеме используется важное свойство конденсатора: заряжаться и разряжаться. Конденсатор с маленькой емкостью быстро заряжается и быстро разряжается. Поэтому, для того, чтобы получить почти прямую линию на осциллограмме, мы должны вставить конденсатор приличной емкости.

Зависимость пульсаций напряжения от емкости конденсатора

Давайте же рассмотрим на практике, зачем нам надо ставить конденсатор большой емкости. На фото ниже у нас три конденсатора различной емкости:

Рассмотрим первый. Замеряем его номинал с помощью нашего LC — метр. Его емкость 25,5 наноФарад или 0,025микроФарад.

Цепляем его к диодному мосту по схеме выше

И цепляемся осциллографом:

Как вы видите, пульсации все равно остались.

Ну что же, возьмем конденсатор емкостью побольше.

Цепляем к диодному мосту также, как и первый конденсатор снимаем показания с него.

А вот собственно и осциллограмма

Не… почти, но все равно не то. Пульсации все равно видны.

Берем наш третий конденсатор. Его емкость 330 микрофарад. У меня даже LC-метр не сможет ее замерить, так как у меня предел на нем 200 микрофарад.

Цепляем его к диодному мосту снимаем с него осциллограмму.

Ну вот. Совсем ведь другое дело!

Итак, сделаем небольшие выводы:

— чем больше емкость конденсатора на выходе схемы, тем лучше. Но не стоит злоупотреблять емкостью! Так как в этом случае наш прибор будет очень габаритный, потому что конденсаторы больших емкостей как правило очень большие. Да и начальный ток заряда будет огромным, что может привести к перегрузке питающей цепи.

— чем низкоомнее будет нагрузка на выходе такого блока питания, тем больше будет проявляться амплитуда пульсаций. С этим борются с помощью пассивных фильтров, а также используют интегральные стабилизаторы напряжения, которые выдают чистейшее постоянное напряжение.

Как подобрать радиоэлементы для выпрямителя

Давайте вернемся к нашему вопросу в начале статьи. Как все-таки получить на выходе постоянный ток 12 Вольт для своих нужд? Сначала нужно подобрать трансформатор, чтобы на выходе он выдавал … 12 Вольт? А вот и не угадали! Со вторичной обмотки трансформатора мы будем получать действующее напряжение.

Umax — максимальное напряжение, В

Поэтому, чтобы получить 12 Вольт постоянного напряжения, на выходе трансформатора должно быть 12/1,41=8,5 Вольт переменного напряжения. Вот теперь порядок. Для того, чтобы получить такое напряжение на трансформаторе, мы должны убавлять или добавлять обмотки трансформатора. Формула здесь. Потом подбираем диоды. Диоды подбираем исходя из максимальной силы тока в цепи. Ищем подходящие диоды по даташитам (техническим описаниям на радиоэлементы). Вставляем конденсатор с приличной емкостью. Его подбираем исходя из того, чтобы постоянное напряжение на нем не превышало то, которое написано на его маркировке. Простейший источник постоянного напряжения готов к использованию!

Кстати, у меня получился 17 Вольтовый источник постоянного напряжения, так как у трансформатора на выходе 12 Вольт (умножьте 12 на 1,41).

Как конвертировать переменный ток в постоянный

В создании этой статьи участвовала наша опытная команда редакторов и исследователей, которые проверили ее на точность и полноту.

Команда контент-менеджеров wikiHow тщательно следит за работой редакторов, чтобы гарантировать соответствие каждой статьи нашим высоким стандартам качества.

Количество источников, использованных в этой статье: 7. Вы найдете их список внизу страницы.

Количество просмотров этой статьи: 70 726.

Переменный ток (AC) является наиболее эффективным способом передачи электроэнергии на большие расстояния. Тем не менее многим бытовым и электронным устройствам для работы необходим постоянный ток (DC). Для бытовых нужд обычно используется переменный ток, поскольку он эффективнее и не приводит к падению напряжения на больших расстояниях. Однако во многих бытовых приборах и электронике используется постоянный ток, который обеспечивает непрерывное питание устройства. Если вам необходимо определить напряжение постоянного тока, которое даст источник питания переменного тока, используйте формулу VAC/√(2), где VAC — переменное напряжение. Можно также самостоятельно собрать цепь, которая будет преобразовывать переменный ток в постоянный!

». Прижмите щупы к положительным и отрицательным клеммам источника питания, на котором вы хотите измерить напряжение, и проверьте показания на дисплее мультиметра. Запишите измеренную величину напряжения. [1] X Источник информации

  • Не имеет значения, какой контакт прижать к какой клемме.
  • Никогда не пользуйтесь мультиметром, если резиновая изоляция вокруг его щупов повреждена и разорвана, так как в этом случае можно получить удар током.

Совет: если у вас нет калькулятора, можно округлить √(2) до 1,4, чтобы облегчить вычисления.

Какое напряжение после диодного моста 220в?

Какое напряжение после диодного моста 220в?

Во многих приборах которые работают от сетевого напряжения, присутствует диодный мост.
Почти вся электроника начиная с светодиодной лампочки и заканчивая телевизором и компьютером — все устройства имеют диодный мост в том или ином виде.

Диодный мост, или по другому выпрямитель, необходим для преобразования переменного тока сетевого напряжения в постоянный ток, которым питается вся электроника и преобразователи напряжения различных устройств различной мощности и величины напряжения.
Такие электронные элементы как диодные мосты, очень часто выходят из строя при какой то поломке в схеме, за собой выводя из строя и предохранитель если он есть.

Но как проверить диодный мост чтоб понять следует ли его заменить? Есть несколько способов, давайте рассмотрим некоторые.

Диодные мосты, в схеме, зачастую бывают в двух исполнениях, это может быть диодная сборка в корпусе, а может и состоять из отдельных диодов смонтированных на плате устройства и соединенных между собой медными дорожками.

Читайте также: Как снять внутреннее напряжение беспокойство практические упражнения

Диодные мосты, а вернее их сборки могут быть однофазными и трехфазными, а также полупериодными, когда например трансформатор используется с отводом от средней точки.
Но мостом можно назвать именно включение четырех диодов которые соединяются между собой параллельно-последовательным способом.
Переменка от сети подается на два места соединения катода с анодом, ну а постоянный ток снимается с мест соединения одинаковых полюсов (два катода — плюс, а два анода — минус).

Во всех блоках питания, как трансформаторных так и особенно — импульсных стоят диодные мосты, которые преобразуют переменное напряжение в постоянное.
Разница лишь в том что у импульсных блоках питания, диодная сборка стоит на входе и преобразует сразу сетевое напряжение, а у трансформаторных — после трансформатора. В обоих случаях, после диодного моста стоит конденсатор или несколько конденсаторов, что в общей системе после выпрямления поднимает напряжение на несколько вольт в трансформаторном исполнение, и несколько десятков вольт при выпрямление сетевого напряжения 220 вольт, в этом случае на конденсаторе может быть больше 300 вольт.

Как правило если устройство не работает, то смотрят сначала в блок питания и если он не выдает напряжения на своих выходах то смотрят на предохранитель.
Если предохранитель сгорел то не стоит спешить его заменять и сразу же включать устройство, просто так же он не сгорел.
Скорее всего на плате КЗ и здесь следует заметить что речь идет о импульсных блоках питания, потому как с трансформаторными БП такое редко бывает чтоб предохранитель сгорал.
При сгоревшем предохранителе, следует проверить всю первичную цепь радио элементов на пробой, но мы здесь поговорим о том как проверить диодный мост или диоды которые его представляют, потому как это самая вероятная причина поломки но следует заметить что не всегда единственная.

Так же импульсные блоки питания следует проверять и ремонтировать подключая вместо предохранителя лампочку накаливания (где то на 40 — 60 ват). Но у меня, например, есть вот такое, простое устройство выполненное в корпусе маленького пластикового щитка с автоматами разных номиналов которые выполняют роль предохранителей, и УЗО — которое защищает от поражения фазой сетевого напряжения, человека во время ремонта.

В устройстве установлено коммутирующее гнездо для подключения внешней лампочки разных мощностей. При ремонтах различных блоков питания и устройств, на практике нужно разной мощности лампочки накаливания.

Суть лампочки состоит в том что если на плате, где то на входе, есть замыкание то через плату потечет высокий ток и лампочка ярко засветится сохранив при этом не сгоревшие еще элементы.
Но если блок питания исправен то лампочка при включение может слегка вспыхнуть, продемонстрировав заряд конденсатора что стоит после диодного моста, и лампочка должна погаснуть.

Но следует помнить что при нагрузке блока питания на мощность выше мощности лампочки, блок питания будет ограничен мощностью лампочки, а сама лампочка будет ярко светится, поэтому для диагностики необходимо иметь несколько лампочек разного номинала, на 25, 60, 100, 150 ватт

Теперь вернемся к наиболее частой, возможно косвенной причине поломок большинства устройств с импульсными блоками питания — к диодному мосту.
Как же проверить исправен ли он и не подлежит ли замене на новый?

Как проверить диодный мост

Радиоэлементы можно проверять прямо на плате не выпаивая, с диодным мостом можно так же, пусть этот метод будет не точным но быстрым.

Такой экспресс метод проверки дает возможность узнать что диодный мост неисправен если он точно не исправен, но если диоды подгорели или не полностью пробиты то лучше все таки выпаять и проверить элемент отдельно от платы.
Немного проще будет проверить диодный мост который состоит из отдельных диодов на плате.

Для проверки будем использовать мультиметр, причем практически любой дешевый прибор имеет функцию прозвонки диодов с звуковой индикацией пробоя.

В данном режиме тестер показывает значение падения напряжения (в милливольтах).

Прямое подключение — красный щуп(+) подключаем к аноду диода, а черный(-) к катоду (там где полоска на диоде). При таком подключение у исправного диода падение напряжения должно показать 500 — 800 милливольт.

Если у вашего тестера нет режима проверки диодов, то подойдет и режим измерения сопротивления, по аналогичному методу.

Обратное подключение — (меняем щупы местами) теперь красный на катод, а черный на анод.
У исправного диода значение сопротивления должно быть бесконечным, то есть должно показать или «1» или цифры больше 1500 (что бывает редко).

У «пробитого» диода сопротивление будет нулевым или около нуля и скорее всего сработает звуковая индикация пробоя.

Так можно проверить каждый диод диодного моста по отдельности, но что делать если диодный мост представляет из себя радио элемент с четырьмя выводами?

Диодный мост такого типоисполнения можно проверить быстро ( и не выпаивая)
но проверка будет не точной. Суть такова:
Прикладываем щупы к выводам входа (АС) и если прозвонка мультиметра сработала то мост пробит
Прикладываем щупы к выводам +/- (поочередно) и если мультиметр «запищал» и показал нули то мост пробит, а если показал значения около 1000 в одно направление и «1» в другое то мост исправен.

Точный (полный) метод проверки диодного моста который выпаян выглядит так:

1. красный щуп на «-«, а черным касаемся выводов переменки АС (входа), на обоих выводах мультиметр должен показать число примерно 500.

2. черный щуп на «-«, а красным касаемся выводов переменки АС (входа), на обоих выводах должно показать «1» то есть бесконечное сопротивление.

3. черный щуп на «+», а красным касаемся выводов переменки АС — мультиметр покажет число около 500.

4. красный щуп на «+», а черный на выводы переменки (Ас) — мультиметр покажет «1» или запредельное число.

Кроме простого и более сложного метода проверки диодного моста мультиметром, его еще можно точно так же проверить любым тестером, омметром и даже лампочкой (светодиодом) с батарейкой (контролькой).
Кроме того можно проверить его работоспособность подав постоянное напряжение от блока питания на вход диодного моста и измерить напряжение на выходе, затем изменить полярность на входе. У исправного моста напряжение такое же как на входе будет и на выходе при любой вариации полярности на входе.

Проверка диодного моста, в том числе диодного моста генератора автомобиля вещь не сложная и довольно частая для тех кто занимается ремонтом. Минимум инструментов, но главное понимание того как работает диод и его мостовая сборка.

Если все таки возникают сложности с диагностикой диодного моста то всегда можно поставить другой заведомо исправный и посмотреть как работает схема с ним.

Теперь зная элементарные и эффективные методы проверки вы сможете в домашних условиях определить причину поломки бытового прибора или различной электроники, а возможно и самостоятельно отремонтировать свое устройство.

Что такое диодный мост

Диодный мост – электрическое устройство, предназначенное выпрямления тока, то есть для преобразования переменного тока в постоянный.

Диодные мосты – важная часть электронных приборов, питающихся от бытовой электросети напряжением 220 В и частотой 50 (60) Гц. Его второе название – двухполупериодный выпрямитель. Диодный мост состоит из полупроводниковых выпрямительных диодов или из диодов Шоттки. Элементы могут отдельно распаиваться на плате. Однако современный вариант – объединение диодов в одном корпусе, который носит название «диодная сборка». Диодные мосты активно используются в электронике, трансформаторных и импульсных блоках питания, люминесцентных лампах. В сварочные аппараты устанавливают мощные полупроводниковые сборки, которые крепятся к теплоотводящему устройству.

Схема диодного моста из 4 диодов

Что такое диодный мост и из каких элементов он состоит

Диодный мост в схемах, применяемых в сетях с однофазным напряжением, состоит из четырех диодов, представляющих собой полупроводниковый элемент с одним p-n переходом. Ток в таком полупроводнике проходит только в одном направлении при подключении анода к плюсу источника, а катода – к минусу. Если подключение будет обратным, ток закрывается. Диодный мост для трехфазного электрического тока отличается наличием шести диодов, а не четырех. Существенные различия в принципе работы между мостовыми схемами для однофазных и трехфазных сетей отсутствуют.

Читайте также: Какие стабилизаторы напряжения лучше для холодильника

Диод Шоттки – еще один вид полупроводниковых элементов, используемых в диодных мостах. Его основным отличием является переход металл-полупроводник, называемый «барьером Шоттки». Как и переход p-n, он обеспечивает проводимость в одну сторону. Для изготовления устройств Шоттки применяют арсенид галлия, кремний и металлы: золото, платину, вольфрам, палладий. При приложении небольших напряжений – до 60 В – диод Шоттки отличается малым падением напряжения на переходе (не более 0,4 В) и быстродействием. При бытовом напряжении 220 В он ведет себя как обычный кремниевый выпрямительный полупроводник. Сборки из таких полупроводниковых устройств часто устанавливаются в импульсных блоках питания.

Как работает диодный мост: для чайников, просто и коротко

На вход диодного моста подается переменный ток, полярность которого в бытовой электросети меняется с частотой 50 Гц. Диодная сборка «срезает» часть синусоиды, которая для прибора «является» обратной, и меняет ее знак на противоположный. В результате на выходе к нагрузке подается пульсирующий ток одной полярности.

Обозначение диодного моста на схеме

Частота этих пульсаций в 2 раза превышает частоту колебаний переменного тока и равна в данном случае 100 Гц.

На рисунке а) изображена обычная синусоида напряжения переменного тока. На рисунке б) – срезанные положительные полуволны, полученные при использовании выпрямительного диода, который пропускает через себя положительную полуволну и запирается при прохождении отрицательной полуволны. Как видно из схемы, одного диода для эффективной работы недостаточно, поскольку «срезанная» отрицательная часть полуволн теряется и мощность переменного тока снижается в 2 раза. Диодный мост нужен для того, чтобы не просто срезать отрицательную полуволну, а поменять ее знак на противоположный. Благодаря такому схемотехническому решению, переменный ток полностью сохраняет мощность. На рисунке в) – пульсирующее напряжение после прохождения тока через диодную сборку.

Пульсирующий ток строго назвать постоянным нельзя. Пульсации мешают работе электроники, поэтому для их сглаживания после прохождения диодного моста в схему нужно включить фильтры. Простейший тип фильтра – электролитические конденсаторы значительной емкости.

На печатных платах и принципиальных схемах диодный мост, в зависимости от того, как он устроен (отдельные элементы или сборка), может обозначаться по-разному. Если он состоит из отдельно впаянных диодов, то их обозначают буквами VD, рядом с которыми указывают порядковый номер – 1-4. Буквами VDS обозначают сборки, иначе –VD.

Чем можно заменить диодный мост-сборку

Вместо диодного моста, собранного в одном корпусе, можно впаять в схему 4 кремниевых выпрямительных диода или 4 полупроводника Шоттки. Однако вариант диодной сборки более эффективен, благодаря:

  • меньшей площади, занимаемой сборкой на схеме;
  • упрощению работы сборщика схемы;
  • единому тепловому режиму для всех четырех полупроводниковых устройств.

Различные варианты сборки диодного моста

У такого схемотехнического решения есть и минус – в случае выхода из строя хотя бы одного полупроводника придется заменять всю сборку.

Для чего нужен диодный мост в генераторе автотехники

Диодный мост в генераторе

Это схемотехническое решение используется в электрических схемах автомобилей и мотоциклов. Диодный мост, устанавливаемый на генераторе переменного тока, нужен для преобразования вырабатываемого им переменного напряжения в постоянное. Постоянный ток служит для подзарядки АКБ и питания всех электропотребителей, имеющихся в современном транспорте. Требуемая мощность полупроводников в мостовой схеме определяется номинальным током, вырабатываемым генератором. В зависимости от этого показателя, полупроводниковые приборы разделяют на следующие группы по мощности:

  • маломощные – до 300 мА;
  • средней мощности – от 300 мА до 10 А;
  • высокомощные – выше 10 А.

Для автотехники обычно применяют мосты из кремниевых диодов, способных отвечать эксплуатационным требованиям в широком температурном диапазоне – от -60°C до +150°C.

Чем заменить диодный мост в генераторе

В большинстве моделей авто- и мототехники мостовые сборки впаивают в алюминиевый радиатор, поэтому в случае выхода из строя их придется выпаивать и выпрессовывать из радиаторной пластины и заменять на новый. Поскольку это довольно сложная процедура, лучше избегать возникновения факторов, из-за которых сгорает диодный мост. Наиболее часто встречающиеся причины этой проблемы:

  • на плату попала жидкость;
  • грязь вместе с маслом проникла к полупроводникам и вызвала короткое замыкание;
  • изменение положения полюсов контактов на АКБ.

Видео: принцип работы диодного моста

Что такое диодный мост

Диодный мост – электрическое устройство, предназначенное выпрямления тока, то есть для преобразования переменного тока в постоянный.

Диодные мосты – важная часть электронных приборов, питающихся от бытовой электросети напряжением 220 В и частотой 50 (60) Гц. Его второе название – двухполупериодный выпрямитель. Диодный мост состоит из полупроводниковых выпрямительных диодов или из диодов Шоттки. Элементы могут отдельно распаиваться на плате. Однако современный вариант – объединение диодов в одном корпусе, который носит название «диодная сборка». Диодные мосты активно используются в электронике, трансформаторных и импульсных блоках питания, люминесцентных лампах. В сварочные аппараты устанавливают мощные полупроводниковые сборки, которые крепятся к теплоотводящему устройству.

Схема диодного моста из 4 диодов

Что такое диодный мост и из каких элементов он состоит

Диодный мост в схемах, применяемых в сетях с однофазным напряжением, состоит из четырех диодов, представляющих собой полупроводниковый элемент с одним p-n переходом. Ток в таком полупроводнике проходит только в одном направлении при подключении анода к плюсу источника, а катода – к минусу. Если подключение будет обратным, ток закрывается. Диодный мост для трехфазного электрического тока отличается наличием шести диодов, а не четырех. Существенные различия в принципе работы между мостовыми схемами для однофазных и трехфазных сетей отсутствуют.

Диод Шоттки – еще один вид полупроводниковых элементов, используемых в диодных мостах. Его основным отличием является переход металл-полупроводник, называемый «барьером Шоттки». Как и переход p-n, он обеспечивает проводимость в одну сторону. Для изготовления устройств Шоттки применяют арсенид галлия, кремний и металлы: золото, платину, вольфрам, палладий. При приложении небольших напряжений – до 60 В – диод Шоттки отличается малым падением напряжения на переходе (не более 0,4 В) и быстродействием. При бытовом напряжении 220 В он ведет себя как обычный кремниевый выпрямительный полупроводник. Сборки из таких полупроводниковых устройств часто устанавливаются в импульсных блоках питания.

Как работает диодный мост: для чайников, просто и коротко

На вход диодного моста подается переменный ток, полярность которого в бытовой электросети меняется с частотой 50 Гц. Диодная сборка «срезает» часть синусоиды, которая для прибора «является» обратной, и меняет ее знак на противоположный. В результате на выходе к нагрузке подается пульсирующий ток одной полярности.

Обозначение диодного моста на схеме

Частота этих пульсаций в 2 раза превышает частоту колебаний переменного тока и равна в данном случае 100 Гц.

На рисунке а) изображена обычная синусоида напряжения переменного тока. На рисунке б) – срезанные положительные полуволны, полученные при использовании выпрямительного диода, который пропускает через себя положительную полуволну и запирается при прохождении отрицательной полуволны. Как видно из схемы, одного диода для эффективной работы недостаточно, поскольку «срезанная» отрицательная часть полуволн теряется и мощность переменного тока снижается в 2 раза. Диодный мост нужен для того, чтобы не просто срезать отрицательную полуволну, а поменять ее знак на противоположный. Благодаря такому схемотехническому решению, переменный ток полностью сохраняет мощность. На рисунке в) – пульсирующее напряжение после прохождения тока через диодную сборку.

Пульсирующий ток строго назвать постоянным нельзя. Пульсации мешают работе электроники, поэтому для их сглаживания после прохождения диодного моста в схему нужно включить фильтры. Простейший тип фильтра – электролитические конденсаторы значительной емкости.

Читайте также: Стабилизатор напряжения может работать с ибп

На печатных платах и принципиальных схемах диодный мост, в зависимости от того, как он устроен (отдельные элементы или сборка), может обозначаться по-разному. Если он состоит из отдельно впаянных диодов, то их обозначают буквами VD, рядом с которыми указывают порядковый номер – 1-4. Буквами VDS обозначают сборки, иначе –VD.

Чем можно заменить диодный мост-сборку

Вместо диодного моста, собранного в одном корпусе, можно впаять в схему 4 кремниевых выпрямительных диода или 4 полупроводника Шоттки. Однако вариант диодной сборки более эффективен, благодаря:

  • меньшей площади, занимаемой сборкой на схеме;
  • упрощению работы сборщика схемы;
  • единому тепловому режиму для всех четырех полупроводниковых устройств.

Различные варианты сборки диодного моста

У такого схемотехнического решения есть и минус – в случае выхода из строя хотя бы одного полупроводника придется заменять всю сборку.

Для чего нужен диодный мост в генераторе автотехники

Диодный мост в генераторе

Это схемотехническое решение используется в электрических схемах автомобилей и мотоциклов. Диодный мост, устанавливаемый на генераторе переменного тока, нужен для преобразования вырабатываемого им переменного напряжения в постоянное. Постоянный ток служит для подзарядки АКБ и питания всех электропотребителей, имеющихся в современном транспорте. Требуемая мощность полупроводников в мостовой схеме определяется номинальным током, вырабатываемым генератором. В зависимости от этого показателя, полупроводниковые приборы разделяют на следующие группы по мощности:

  • маломощные – до 300 мА;
  • средней мощности – от 300 мА до 10 А;
  • высокомощные – выше 10 А.

Для автотехники обычно применяют мосты из кремниевых диодов, способных отвечать эксплуатационным требованиям в широком температурном диапазоне – от -60°C до +150°C.

Чем заменить диодный мост в генераторе

В большинстве моделей авто- и мототехники мостовые сборки впаивают в алюминиевый радиатор, поэтому в случае выхода из строя их придется выпаивать и выпрессовывать из радиаторной пластины и заменять на новый. Поскольку это довольно сложная процедура, лучше избегать возникновения факторов, из-за которых сгорает диодный мост. Наиболее часто встречающиеся причины этой проблемы:

  • на плату попала жидкость;
  • грязь вместе с маслом проникла к полупроводникам и вызвала короткое замыкание;
  • изменение положения полюсов контактов на АКБ.

Видео: принцип работы диодного моста

Тема: Про выпрямленное напряжение.

Обратные ссылки
  • URL обратной ссылки
  • Подробнее про обратные ссылки
  • Закладки & Поделиться
  • Отправить тему форума в Digg!
  • Добавить тему форума в del.icio.us
  • Разместить в Technorati
  • Разместить в ВКонтакте
  • разместить в Facebook
  • Разместить в MySpace
  • Разместить в Twitter
  • Разместить в ЖЖ
  • Разместить в Google
  • Разместить в Yahoo
  • Разместить в Яндекс.Закладках
  • Разместить в Ссылки@Mail.Ru
  • Reddit!
Опции темы

Так речь о том что при номинальной нагрузке, рассчитанной из мощности (номинального тока) диодов из 220 В мы не выпрямим 312 В, а будет всего то чуть больше 244 В! Вы только пиковое напряжение учитываете. А если принять синусоиду за треугольники? Площадь треугольника на будет основание помноженное на высоту. Надо будет ещё поделить на 2. Диоды рассчитаны на 3 А, берём 2 А — 400 Вт — 110 Ом.

Последний раз редактировалось vladlat; 28.01.2012 в 20:11 .

  • Поделиться
    • Поделиться этим сообщением через
    • Digg
    • Del.icio.us
    • Technorati
    • Разместить в ВКонтакте
    • Разместить в Facebook
    • Разместить в MySpace
    • Разместить в Twitter
    • Разместить в ЖЖ
    • Разместить в Google
    • Разместить в Yahoo
    • Разместить в Яндекс.Закладках
    • Разместить в Ссылки@Mail.Ru
    • Reddit!

    А чего не за квадраты
    Не забивайте себе голову купите нормальный прибор с True RMS и все проверите как с синусоидальными сигналами так и с другой формы.
    http://www.kipis.ru/info/index.php?ELEMENT_ID=3149

    За сим и раскланиваюсь 73!

    • Поделиться
      • Поделиться этим сообщением через
      • Digg
      • Del.icio.us
      • Technorati
      • Разместить в ВКонтакте
      • Разместить в Facebook
      • Разместить в MySpace
      • Разместить в Twitter
      • Разместить в ЖЖ
      • Разместить в Google
      • Разместить в Yahoo
      • Разместить в Яндекс.Закладках
      • Разместить в Ссылки@Mail.Ru
      • Reddit!

      Так речь о том что при номинальной нагрузке, рассчитанной из мощности (номинального тока) диодов из 220 В мы не выпрямим 312 В, а будет всего то чуть больше 244 В! Вы только пиковое напряжение учитываете. А если принять синусоиду за треугольники? Площадь треугольника на будет основание помноженное на высоту. Надо будет ещё поделить на 2. Диоды рассчитаны на 3 А, берём 2 А — 400 Вт — 110 Ом. У Вас даже на нижнем снимке выпрямленное отфильтрованное напряжение (синее или зелёное) БЕЗ НАГРУЗКИ ито уже меньше пикового за счёт падения напряжения за счёт тока утечки конденсатора, внутреннего сопротивления источника (сопротивления проводов) и падения напряжения на диодах!

      Тогда просто запитайте обычные ЛН через диодный мост с большим конденсатором И сделайте систему плавного пуска( в простейшем случае термистор). Будет светить ярко и не мигать, но, возможно, не долго При 220В в сети на лампочке будет 310В. При 190в — 267В. Можно предварительно понизить напряжение ЛАТРом или включить две лампочки последовательно. Наверное КЛЛ всё же дешевле будет Хотя если диодные мосты и конденсаторы халявные, то можно пробовать. Думаю, несколько сотен микрофарад на 400В должно хватить. От такой же приблуды можно и телевизор попробовать запитать. Но БП может не запуститься и размагничивание надо отключить.»

      Добавлено через 3 минуты
      А. Замените синусоиду на прямоугольные импульсы и посчитайте, учтя не только напряжение, НО И ТОК!

      Последний раз редактировалось vladlat; 28.01.2012 в 20:41 . Причина: Добавлено сообщение

      Выпрямитель для светодиодной ленты на 220В

      У нас в наличии два типа выпрямителей: для светодиодной ленты типа 5050 и типа 3528. Они отличаются внешними разъемами, но технически практически идентичны. Номер (тип) ленты — это тип SMD светодиодов, на которых построена лента.

      Необходимость в использовании коннектора-выпрямителя при подключении к сети светодиодных лент на 220 вольт обусловлена тем фактом, что светодиодам для нормальной работы требуется постоянный ток.

      Техническое описание коннектора-выпрямителя

      Коннектор для подключения светодиодных лент соответствующего питающего напряжения к сети переменного тока с напряжением 220В и частотой 50Гц (бытовая электросеть) представляет собой комбинированное устройство, основой которого является элементарный выпрямитель, построенный по схеме диодного моста (рис. 1).

      Рис. 1. Принцип работы диодного моста.

      Диодный мост — это электронная схема, предназначенная для выпрямления переменного тока в пульсирующий постоянный. В результате преобразования, на выходе диодного моста получается пульсирующее напряжение вдвое большей частоты, чем на входе, но стабильной полярности. В коннекторе не предусмотрено иных электронных компонентов, таких как конденсатор, обычно используемых для сглаживания пульсаций в блоках питания электронных приборов.

      Диодный мост выполнен в виде монолитной диодной сборки размером 23х23мм и помещен в пластиковый корпус, который одновременно является и внешним изолятором (рис. 2). К выводам диодной сборки припаиваются провода входной (переменного тока) и выходной (постоянного тока) цепей.

      Рис. 2. Диодный мост и коннектор в сборе.

      Технические параметры диодного моста

      • Максимальное постоянное обратное напряжение, В: 600
      • Максимальное импульсное обратное напряжение, В: 600
      • Максимальный прямой (выпрямленный за полупериод) ток, А: 4
      • Максимальный допустимый прямой импульсный ток, А: 80
      • Максимальный обратный ток, мкА: 10
      • Максимальное прямое напряжение, В при Iпр., А= 2: 1,05
      • Максимальное время обратного восстановления, мкс: 500
      • Рабочая температура, С: -40···+150
      • Способ монтажа: пайка
      • Количество фаз: 1

      Соединение выпрямителя и светодиодной ленты

      Входная цепь, как правило, комплектуется электрической вилкой (рис. 3) типа А (слева) или типа С (справа), предназначенной, в основном, для проверки работоспособности. Обычно при монтаже в электросеть вилка обрезается, и монтаж производится путем присоединения зачищенных проводов коннектора к токоподводящей цепи.

      Рис. 3. Типы вилок, используемых в выпрямителе.

      Подключение (рис. 4) коннектора к светодиодной ленте 1, рассчитанной на постоянный ток напряжением 220В производится посредством разъема 3 через вилку 2, которая входит в комплект коннектора. Вилка 2 подключается к светодиодной ленте таким образом, чтобы обеспечить надежный контакт с токопроводящими шинами ленты. Дополнительной изоляции соединения не требуется.

      Рис. 4. Порядок подключения светодиодной ленты 220В к выпрямителю.

      В комплектацию выпрямителя также входит силиконовая заглушка, с помощью которой изолируется свободный конец светодиодной ленты (рис. 5), закрывая токопроводящие шины на конце ленты.

      Рис. 5. Оконечная силиконовая заглушка.