Как выпрямить напряжение с трансформатора

Особенности работы выпрямителей, или как правильно рассчитать мощность силового трансформатора.

Хороший и надёжный силовой трансформатор — это уже половина собираемой и разрабатываемой конструкции.
В настоящее время выбор силовых трансформаторов, предлагаемых рынком, для радиолюбителей довольно широк. Но не смотря на это, не все предлагаемые трансформаторы идеально подходят для нужд радиолюбителя (по току, напряжению, количеству обмоток и т.д.), и поэтому довольно часто ему приходится самостоятельно изготавливать силовые трансформаторы для своих разработок и собираемых конструкций.
В этой статье я попробую объяснить, как правильно выбрать, или рассчитать силовой трансформатор для своей конструкции.
Нового я здесь ничего не открою, и постараюсь как можно проще и на примерах, объяснить Вам то, что уже давно доказано и решено. Просто в силу каких либо обстоятельств, не все это могут знать.

Силовой трансформатор

В основном радиолюбителю приходится изготавливать силовые трансформаторы средней мощности 50 — 300 Вт.
КПД таких трансформаторов достигает 0,88 — 0,92. У более мощных промышленных трансформаторов, при мощностях более 1 кВт, КПД может достигать 0,97-0,98, так как обмотки их намотаны толстым проводом и потери в них на активное сопротивление минимальны.
У менее мощных трансформаторов, с мощностью до 40 Вт, КПД понижается и обычно не превышает 0,8 — 0,85.

Чтобы правильно рассчитать трансформатор, нужны довольно сложные вычисления, радиолюбители-же пользуются для этих целей упрощёнными формулами и радиолюбительскими программами, которые в принципе тоже довольно точно позволяют это сделать, поэтому я тоже постараюсь не отходить от этой традиции и всё попробую объяснить на практических примерах и готовых расчётах, используя по минимуму формулы и вычисления.

Как обычно производится расчёт силового трансформатора.
Зная напряжение и ток, который должна давать вторичная (или несколько вторичных) обмотка (U2 и I2), находим мощность вторичной цепи: При наличии нескольких вторичных обмоток мощность подсчитывают путем сложения мощностей отдельных обмоток.
Мощность вторичной обмотки Р2 по Закону Ома равна;

Мощность вторичной обмотки

Отсюда можно найти и мощность первичной обмотки, где для трансформаторов средней мощности к нашим расчётам мы берём КПД трансформатора 0,9 (90%). Для трансформаторов меньшей мощности соответственно и КПД берётся меньше (0,8).
Мощность первичной обмотки Р1 (мощность трансформатора) в этом случае будет равна;

Мощность трансформатора

То есть поясню, если расчётная мощность вторичной (вторичных) обмотки у нас получилась например 100 Вт, то общая мощность трансформатора будет равна 111,1 Вт (100/0,9). Это ещё не учитывая ток холостого хода, который тоже прибавляется к общей мощности трансформатора.

Как определить мощность первичной обмотки мы уяснили, теперь как правильно определить мощность вторичной обмотки?
Для этого у нас имеется какая либо нагрузка, которая потребляет определённый ток при определённом напряжении. Например имеется нагрузка, потребляющая ток 2 Ампера при напряжении 15 Вольт.
Кажется что может быть проще, по Закону Ома умножаем 2 на 15 и вуаля — получаем 30 Вт. Да, это так, ток отдаваемый вторичной обмоткой будет равен току потребления нагрузкой, но только тогда, когда вторичная обмотка нагружена на активную нагрузку! Например обмотка накала ламп.
Если же вторичная обмотка нагружена на нагрузку через элементы выпрямителя, или выпрямителя и фильтра, то ситуация приобретает совсем другой оборот. Ток отдаваемый вторичной обмоткой будет больше тока, потребляемого нагрузкой!
Почему так, давайте попробуем вместе с этим разобраться.
Работа вторичной обмотки на активную нагрузку мы рассматривать не будем, здесь всё ясно, давайте пойдём дальше.

Работа выпрямителя на активную нагрузку.

Однополупериодный выпрямитель.

Поставим перед нагрузкой выпрямительный диод. То есть у нас получился однополупериодный выпрямитель.

Соберём такую же схемку. Трансформатор у меня тороидальный, мощностью 60 Вт, с напряжением ХХ вторичной обмотки около 20 вольт (номинальный ток нагрузки 3,8 А, номинальное напряжение 16,5 Вольт), ток ХХ трансформатора 7 мА.
В разрыв первичной обмотки, для измерения её тока, я поставил резистор, величиной 1,0 Ом, в разрыв вторичной (последовательно с нагрузкой) резистор, величиной 0,1 Ом. Для измерения в цепях переменного и пульсирующего тока и напряжения, я использовался среднеквадратичный (RMS) микровольтметр В3-57, ну и для измерения в цепях постоянного тока — цифровой мультиметр «Mastech MY64».

Измерение тока вторичной обмотки

Для безопасности измерений, вся эта конструкция подключалась через разделительный трансформатор. В качестве нагрузочных резисторов использовались проволочные переменные сопротивления различных величин, мощностью 25 Вт.
Действующий ток нагрузки был установлен 0,5 ампер (рисунок выше). Предел измерения 100 мВ, шунт во вторичной цепи 0,1 Ом.
Сопротивление переменного резистора получилось 19 Ом, действующее напряжение на нагрузке 9,5 вольт. То есть мощность потребляемая нагрузкой получилась 4,75 Вт.
Измерим ток, потребляемый первичной обмоткой.

Измерение тока первичной обмотки

Ток первичной обмотки получился 97 мА, минус 7 мА ХХ, итого 90 мА. Напряжение на первичной обмотке 215 вольт. Мощность потребляемая первичной обмоткой получилась 19,35 Вт, то есть в 4 (четыре) раза больше мощности потребляемой нагрузки. Почему так? Кому интересны все подробности происходящих процессов в трансформаторе, рекомендую почитать первоисточники, приведённые в конце статьи, кому лень читать, попробую объяснить по простому.

При установке диода последовательно с нагрузкой, у нас получается однополупериодный выпрямитель. На нагрузку подаётся импульс напряжения (тока) только в положительный полупериод, а в отрицательный ничего нет (пауза). В результате чего среднее напряжение на нагрузке уменьшается более, чем в два раза (точнее в 2,2) по сравнению с напряжением на вторичной обмотке. Средний ток через диод соответствует току нагрузки, а действующий ток диода и самой вторичной обмотки — больше тока нагрузки в 1,57 раза.
Давайте подсчитаем мощность вторичной обмотки;
Ток нагрузи 0,5 А, умножаем на 1,57=0,785 (ток вторичной обмотки). Полученный ток умножаем на напряжение вторичной обмотки (19 Вольт) 0,785х19=14,9 Вт — это получается отдаваемая мощность вторичной обмотки, плюс сюда ещё добавляются и переходные процессы при работе диода (вентиля), плюс реактивные токи, которые просто нагревают обмотку, в итоге мощность трансформатора получается минимум в 3,5 раза больше мощности потребляемой нагрузкой.
Ещё при работе этой схемы во вторичной обмотке возникает постоянная составляющая (из-за того, что ток в обмотке протекает только в одном направлении в один полупериод), которая намагничивает сердечник трансформатора и тем больше, чем больше ток нагрузки. Из-за этого свойства сердечника ухудшаются и увеличивается ток ХХ, в последствии чего повышается потребляемая мощность трансформатора (у нас получилась мощность в 4 раза больше).

Например уже при токе нагрузки в 1,0 Ампер, напряжение на нагрузке получилось 9,0 Вольт, сопротивление нагрузки 9,0 Ом, мощность нагрузки 9,0 Вт. Ток первичной обмотки получился 230 мА (минус 7 мА) итого 223 и напряжение на первичной обмотке 210 вольт. Итоговая потребляемая мощность трансформатора 46,83 Вт, то есть больше мощности потребляемой нагрузкой уже в 5,2 раза. Сильно увеличился ток ХХ с увеличением тока нагрузки (от которого увеличилось намагничивание сердечника).

Двухполупериодный выпрямитель.

Ну, с однополупериодным выпрямителем разобрались, давайте пойдём дальше. Посмотрим как ведёт себя двухполупериодная схема.
Что из себя представляет двухполупериодная схема выпрямителя. Это два однополупериодных выпрямителя, которые работают на общую нагрузку. Каждый выпрямитель имеет свою обмотку, но в отличии от другого — противофазную, в результате чего выпрямляются (поступают в нагрузку) оба полупериода, за счёт чего эффективность такого выпрямителя, по сравнению с однополупериодным, повышается два раза.

Посмотрим, как он себя ведёт. Соберём схему двухполупериодного выпрямителя. Для этой схемы нужен трансформатор с отводом от средней точки вторичной обмотки. Трансформатор другой, вторичная обмотка имеет напряжение 193-193 Вольт, ток ХХ у него 36 мА (какой нашёл).
Проволочными резисторами выставил ток нагрузки 150 мА.

Ток нагрузки

Нагрузочный резистор получился с сопротивлением 1,17 кОм, измеренное напряжение на нём 175 Вольт. Мощность потребляемая нагрузкой получилась 26,17 Вт. Смотрим ток первичной обмотки.

Ток первички

Ток первичной обмотки 210 мА, минус ток ХХ (36) итого 174 мА. Мощность потребляемая трансформатором получилась 38,28 Вт. Это больше мощности потребляемой нагрузкой в 1,46 раз.
Как видите, здесь показатели гораздо лучше, чем у однополупериодного выпрямителя.
Идём дальше.

Мостовая схема выпрямителя.

Проверим, как поведёт себя мостовая схема выпрямителя.
Для этого соберём следующую схему.

Трансформатор возьмём тот, что был и раньше, с одной вторичной обмоткой из первого рассматриваемого случая для однополупериодного выпрямителя.
Ток нагрузки я выставил 0,5 А, проволочное переменное сопротивление получилось величиной 32 Ома. Напряжение на нагрузке 16 Вольт. Мощность потребляемая нагрузкой получилась 8 Вт.

Измерение тока нагрузки

Смотрим ток потребляемый первичной обмоткой.

Ток потребляемый первичкой

Ток первички 53 мА минус ток ХХ (7 мА) = 45 мА. Мощность потребляемая первичной обмоткой получилась 9,9 Вт. Это в 1,23 раза больше, чем мощность потребляемая нагрузкой.
Как видите, здесь показатели ещё лучше, чем у двухполупериодного выпрямителя, не говоря уже об однополупериодном.

Работа выпрямителя на нагрузку с ёмкостной реакцией.

В основном радиолюбители используют в своей практической деятельности выпрямители с сглаживающими фильтрами, начинающимися с ёмкости (конденсатора), то есть нагрузка с ёмкостной реакцией.
Переписывать учебники не имеет смысла, кому интересно, список литературы в конце статьи. Просто я здесь дальше кратко изложу основные схемы выпрямителей применяемых радиолюбителями, их особенности и приближённые электрические характеристики, и как они влияют на общую мощность трансформатора.

Однополупериодный выпрямитель.

Начнём как обычно с однополупериодного выпрямителя.

Однополупериодная схема выпрямителя

У такого выпрямителя конденсатор фильтра заряжается до амплитудного значения напряжения вторичной обмотки (при отсутствии нагрузки). То есть если напряжение вторички 10 Вольт, то конденсатор зарядится до 10х1,41=14,1 Вольта (это без падения напряжения на диоде).
Достоинства выпрямителя;
Простота схемы, используется всего один вентиль (диод, кенотрон).
Недостатки;
Большая зависимость выходного напряжения от тока нагрузки, пониженная частота пульсаций по отношению с другими схемами, что требует применение конденсаторов в два раза большей ёмкости, плохое использование трансформатора (низкий КПД), присутствует вынужденное намагничивание сердечника. При пробое вентиля, переменное напряжение поступает на конденсатор, что ведёт его к выходу из строя и взрыву.
Особенности схемы;
Применяется радиолюбителями для питания слаботочных цепей. Обратное напряжение в этой схеме прикладываемое к вентилю, приблизительно в три раза больше напряжения вторичной обмотки (точнее в 2,82 раза), почему так происходит — попробуйте сами определить. То есть если у Вас вторичка имеет напряжение 100-110 Вольт, то диод необходимо ставить на обратное напряжение не менее 400 Вольт, на 300 Вольт может пробить.
Средний ток через вентиль здесь соответствует току нагрузки, а действующее значение тока через вентиль в два раза больше тока нагрузки.

Вторичная обмотка для однополупериодного выпрямителя выбирается в 1,8 -1,9 раз больше по току (лучше в 2 раза), чем ток потребления нагрузки. К общей расчётной мощности трансформатора, если есть ещё другие обмотки, добавьте мощность этой Вашей нагрузки умноженной на 2.

Двухполупериодный выпрямитель.

Двухполупериодная схема выпрямителя

Двухполупериодный выпрямитель обладает гораздо лучшими параметрами, чем однополупериодный. Выходное напряжение этого выпрямителя (напряжение на конденсаторе) в 1,41 раз выше, чем напряжение вторичной обмотки (половины). Это при отсутствии нагрузки.

Достоинства выпрямителя;
Малое количество используемых вентилей (2). Среднее значение тока через вентиль почти в два раза меньше тока нагрузки. Уровень пульсаций у этой схемы в 2 раза меньше по сравнению с однополупериодной схемой выпрямления. Емкость конденсатора при одинаковом с однополупериодной схемой коэффициенте пульсаций, может быть в 2 раза меньше. Отсутствует вынужденное намагничивание сердечника, но это зависит от конструкции трансформатора и способа намотки обмоток, о чём будет сказано ниже.
Недостатки;
Сложная конструкция трансформатора, вторичная обмотка состоит из двух половин, откуда не рациональное использование меди. Обратное напряжение на один вентиль здесь также больше напряжения (половины) вторичной обмотки в 2,82 раза. Плохое использование трансформатора, так как общая расчётная мощность всей вторичной обмотки получается в 2,2 раза больше мощности потребляемой нагрузкой.
Особенности схемы;
Так как за один период, в этой схеме работают обе половины вторичной обмотки по очереди, соответственно и вентили (диоды) тоже работают по очереди, то среднее значение тока через один вентиль (за период) здесь получается почти в два раза меньше, чем ток нагрузки. То есть например, если поставить в эту схему диоды с допустимым постоянным током на 5 Ампер, то снять с этого выпрямителя можно будет 7-8 Ампер без особого риска выхода из строя диодов, естественно обеспечив им необходимое охлаждение. Действующий же ток через вентиль и вторичную обмотку здесь будут в 1,1 раза больше тока нагрузки.
Провод для вторичной обмотки в этой схеме, можно выбирать на 30-40% меньше по току (сечение), чем ток нагрузки, так как половины вторичной обмотки так же работают по очереди и среднее значение тока вторичной обмотки получается меньше тока нагрузки. Но лучше, если позволяют размеры трансформатора и возможности, мотать вторичку проводом соответствующего сечения с током нагрузки.

Насчёт вынужденного намагничивания сердечника. Если сердечник трансформатора Ш-образный, броневой, и все обмотки размещены на одном каркасе, то вынужденного намагничивания сердечника здесь не будет.
Если сердечник трансформатора стержневой и в конструкции трансформатора предусмотрены два каркаса, на которых размещены обмотки, и сетевая обмотка состоит из двух половин, размещённых на разных стержнях (ТС-180, ТС250), то вторичную обмотку в таких трансформаторах необходимо выполнять следующим образом;
Каждая половина вторичной обмотки делится ещё раз пополам и наматывается на разных стержнях, потом всё соединяется последовательно, сначала четверти одной половины, затем другой. Как ниже на рисунке. Иначе будет намагничивание сердечника.

Перекрёстная намотка вторичной обмотки

Так как кенотроны обладают большим внутренним сопротивлением, то при выборе кенотронной схемы выпрямителя, напряжение вторичной обмотки (половины) выбирается в среднем примерно на 10-15% меньше планируемого выходного напряжения выпрямителя. Это ещё зависит от тока нагрузки. Чем больше ток нагрузки, тем меньше должна быть разница.
Ещё запомните, что во всех выпрямителях и с кенотронами и с диодами, конденсаторы фильтра при отсутствии нагрузки, всегда заряжаются до амплитудного напряжения вторичной обмотки (UC = U2 x 1,41). Это учитывайте при выборе напряжения конденсаторов фильтра.

Как примерно определить здесь, какая мощность добавится к общей мощности трансформатора? Не углубляясь глубоко в теорию, так как там очень много зависящих друг от друга факторов, можно поступить следующим образом;

Зная расчётный ток нагрузки, умножаем его на 1,7 (схема с кенотронами), или на 1,6 (схема с диодами), потом полученный результат умножаем на напряжение нагрузки. Это будет приблизительный результат полученной мощности, которая добавится к общей мощности трансформатора. Большой ошибки здесь не будет.

Мостовой выпрямитель.

Мостовая схема выпрямителя

Мостовой выпрямитель, так же как и двухполупериодный, обладает гораздо лучшими параметрами, чем однополупериодный и немного получше КПД, чем у двухполупериодного. Поэтому это наиболее распространённая схема.

Достоинства выпрямителя;
Среднее значение тока через вентиль почти в два раза меньше тока нагрузки. Уровень пульсаций у этой схемы в 2 раза меньше по сравнению с однополупериодной схемой выпрямления. Емкость конденсатора при одинаковом с однополупериодной схемой коэффициенте пульсаций, может быть в 2 раза меньше. Отсутствует вынужденное намагничивание сердечника. Используется всего одна вторичная обмотка.
Недостатки;
Плохое использование трансформатора, так как приходится увеличивать расчётную мощность вторичной обмотки на величину амплитудного значения напряжения вторичной обмотки, т.е. в 1,41 раз. Увеличенное число используемых вентилей (4) и необходимость их шунтирования резисторами, для выравнивания обратного напряжения на каждом их них. Хотя это уже не столь актуально при современном качестве их исполнения. Ещё в два раза большее падение напряжения, по сравнению с другими схемами, так как выпрямляемый ток проходит по двум вентилям последовательно. Но это заметно только при низком выходном напряжении и больших токах нагрузки.
Особенности схемы;
В этой схеме так же, как и в двухполупериодной, среднее значение тока через один вентиль (за период) получается почти в два раза меньше, чем ток нагрузки. То есть также можно использовать диоды с меньшим рабочим током (на 30-40%), чем ток нагрузки.
А вот действующий ток вторичной обмотки всегда будет выше, чем ток нагрузки, минимум на 1,41. Поэтому провод для вторичной обмотки в этой схеме нужно выбирать в 1,5 раза больше по току (сечение), чем ток нагрузки. Почему, потому что выпрямитель всегда будет заряжать конденсатор фильтра до амплитудного значения напряжения вторичной обмотки, и от величины этого напряжения и подсчитывается мощность. А так, как по закону сохранения энергии она никуда не пропадает, то вторичной обмотки ничего не остаётся, как постоянно восполнять эту разницу. То есть у нас например вторичная обмотка имеет напряжение 14 Вольт. На конденсаторе фильтра будет напряжение около 20-ти Вольт. Нагрузили мы её током 0,5 Ампер. Мощность получилась 10 Вт. Значит и вторичка должна отдавать 10 Вт, а при выходном напряжении 14 Вольт это будет ток примерно 0,71 Ампера, то есть больше тока нагрузки в 1,41 раз.

Вторичная обмотка в мостовой схеме выпрямителя, всегда будет отдавать энергию на заряд конденсатора до амплитудного значения напряжения, а нагрузка разряжать его. То есть это как повышающий преобразователь, где низковольтная часть — это вторичная обмотка, а высоковольтная — конденсатор фильтра. Поэтому и ток вторичной обмотки всегда будет выше тока нагрузки на эту разницу напряжений, то есть минимум в 1,41 раз.

Например нашли Вы трансформатор с выходным напряжением 24 Вольта и током нагрузки 5 Ампер (120 Вт). Собрали линейный регулируемый блок питания, подключили к нему нагрузку 12 Вольт и током потребления 5 Ампер (60 Вт). Вроде всё нормально должно быть. Погоняли с полчаса-час, запахло палёным, потрогали трансформатор — обожглись. Как так?

Давайте проверим что у нас было с трансформатором;
Ток нагрузки 5 Ампер, напряжение на конденсаторе фильтра в режиме ХХ будет 24х1,41=33,84 Вольта. Мощность потребляемая нагрузкой будет 33,84х5=169,2 Вт, притом это не зависит от выходного напряжения Вашего БП, хоть 5 Вольт, хоть 25. Остальная мощность просто потеряется на регулирующем транзисторе.
И вот оказывается, что в течении часа наш транс отдавал мощность нагрузке 170 Вт. хотя его мощность 120.

Вывод; Для схемы мостового выпрямителя, сечение провода вторичной обмотки необходимо выбирать на 50% или в 1,5 раза больше планируемого тока нагрузки для обеспечения нормальных условий работы трансформатора, или же выбирать трансформатор для своей конструкции с током вторичной обмотки выше планируемого на такую же величину, так как ток нагрузки на трансформаторах указан для активной нагрузки.

Ну и соответственно мощность вторичной обмотки подсчитывается так: Ток нагрузки умножаем на напряжение вторичной обмотки и полученный результат умножаем на 1,5.

Схема удвоения напряжения.

Схема удвоения напряжения

Схема удвоения напряжения, тоже довольно часто применяется на практике. Схема состоит из двух однополупериодных выпрямителей, включенных последовательно и работающих на общую нагрузку. Особенностью данной схемы является то, что в одном полупериоде от вторичной обмотки “заряжается” один конденсатор, а во втором полупериоде от той же обмотки – другой. Поскольку конденсаторы включены последовательно, то результирующее напряжение на обоих конденсаторах (на нагрузке) в два раза выше, чем можно получить от той же вторичной обмотки в схеме с однополупериодным выпрямителем. То есть максимальное выходное напряжение ХХ выпрямителя равно U2 х 2,82 , почти в три раза больше напряжения вторичной обмотки.

Достоинства выпрямителя;
Вторичную обмотку трансформатора можно рассчитывать на значительно меньшее напряжение. Отсутствует вынужденное намагничивание сердечника. Используется всего одна вторичная обмотка.
Недостатки;
Большая зависимость выходного напряжения от тока нагрузки. Значительные токи через вентили выпрямителя и вторичную обмотку. Уровень пульсаций значительно выше, чем в схемах двухполупериодных выпрямителей.
Особенности схемы;
Схемы эти на практике применяются для получения высоких напряжений при малых токах нагрузки. Например вполне можно использовать такую схему для питания анодных цепей в маломощных ламповых усилителях, если нет подходящего трансформатора а перематывать лень, в предварительных каскадах мощных ламповых усилителях, сеточных цепей, и т.д.. Пульсации на нагрузке здесь такие же, как в мостовой или двухполупериодной схеме выпрямителей. Ток протекающий через вентиль соответствует току нагрузки. Обратное напряжение на вентиль равно амплитудному значению напряжения вторичной обмотки.

Действующий ток вторичной обмотки здесь больше тока нагрузки почти в три раза (2,82). Мощность вторичной обмотки подсчитывается так, ток нагрузки умножаем на 2,9 и полученный результат умножаем на напряжение вторичной обмотки. Сечение провода вторичной обмотки для этой схемы, выбирается по току в три раза больше, чем ток потребляемый нагрузкой.

Почему так, теперь Вы сами вполне сможете догадаться. Если напряжение ХХ вторичной обмотки например 10 Вольт, то при положительном полупериоде конденсатор С1 здесь зарядится до какого напряжения? Правильно, до 14,1 вольта (до амплитудного значения напряжения вторичной обмотки, которое больше действующего в 1,41 раз). При отрицательном полупериоде конденсатор С2 так же зарядится до 14,1 вольт. Какое будет итоговое напряжение на нагрузке (R), 28,2 Вольта, то есть в 2,82 раза больше напряжения вторичной обмотки. Отсюда и вторичке ничего не остаётся, как всё время компенсировать эту разницу.

Удачи Вам в конструировании!

  • Терентьев Б.П. «Электропитание радиоустройств» (1958).
  • Белопольский И.И. «Электропитание радиоустройств» (1965).
  • Рогинский В. «Электропитание радиоустройств» (1970).

—>Категория : Начинающим | —>Просмотров : 232965 | —>Добавил : spb-nik

Понравилась статья — нажми на кнопку!

ВЫПРЯМИТЕЛИ

В этой статье мы разберем какие бывают выпрямители, для какой цели служат, в чем заключаются особенности того или иного выпрямителя. Если мы решаем собрать какое-либо устройство или просто необходимо запитать готовое, то мы можем использовать питание от гальванических элементов (батареек), либо воспользоваться для этих целей аккумуляторами. Но как быть, если радиоустройство не планируется носить с собой и оно потребляет значительный ток? В таких случаях запитывают устройство от сети 220 вольт.

Фото трансформаторный блок питания

Фото трансформаторный блок питания

Напрямую запитать от 220 вольт, разумеется, мы не можем, напряжение слишком высокое и ток переменный, а для питания электронных устройств почти всегда необходим постоянный ток и более низкое напряжение. Необходим так называемый сетевой адаптер.

Фото трансформатора

Понизить напряжение мы можем с помощью трансформатора, о нем мы поговорим в одной из следующих статей, пока нам достаточно знать, что с помощью трансформатора мы можем понизить или повысить напряжение при переменном токе. Далее нам необходимо сделать из переменного тока постоянный, для этих целей и служит выпрямитель. Существуют три основных типа выпрямителей.

Однополупериодный выпрямитель

Схема однополупериодный выпрямитель

Схема однополупериодный выпрямитель

Этот выпрямитель работает только в течение положительного полупериода синусоиды. Это можно видеть на следующем графике:

Выпрямленный ток после однополупериодного выпрямителя

Выпрямленный ток после однополупериодного выпрямителя

На выходе после диода мы получаем пульсирующее напряжение, нам нужно сделать из него постоянное, то есть из пульсирующего тока получить постоянный. Для этих целей служит электролитический конденсатор большой емкости, подключенный параллельно выходу питания в соответствии с полярностью. На фотографии ниже можно увидеть внешний вид подобного конденсатора:

Электролитический конденсатор большой емкости

Электролитический конденсатор большой емкости

Такой конденсатор благодаря большой емкости разряжается в течении отрицательного полупериода синусоиды. Обычно для фильтрации напряжения в выпрямителях применяют электролитические конденсаторы от 2200 микрофарад. В усилителях и других устройствах, где важно чтобы напряжение не проседало при увеличении мощности нагрузки, ставят конденсаторы на большую емкость, чем 2200 микрофарад. Для устройств питающих бытовую аппаратуру обычно конденсаторов такой емкости бывает достаточно. На следующем графике (выделено красным), мы можем видеть, как конденсатор поддерживает напряжение стабильным во время прохождения отрицательной полуволны.

Выпрямленный ток в однополупериодном выпрямителе после конденсатора

Выпрямленный ток в однополупериодном выпрямителе после конденсатора

Двухполупериодный выпрямитель со средней точкой

Схема двухполупериодный выпрямитель со средней точкой

Схема двухполупериодный выпрямитель со средней точкой

Для этой схемы необходим трансформатор, с двумя вторичными обмотками. Напряжение на диодах в два раза выше, чем при включении схемы с однополупериодным выпрямителем или при включении мостовой схемы. В этой схеме попеременно работают оба полупериода. В течении положительного полупериода работает одна часть схемы обозначенная В1, во время отрицательного полупериода работает вторая часть схемы обозначенная В2. Эта схема является менее экономичной, чем мостовая схема, в частности у неё более низкий коэффициент использования трансформатора. В этой схеме после диодов получается также пульсирующее напряжение, но частота пульсаций в два раза выше. Что мы и можем видеть на следующем графике:

График двухполупериодного выпрямителя

График двухполупериодного выпрямителя

Двухполупериодный выпрямитель, мостовая схема

Схема двухполупериодный выпрямитель мостовая схема

Схема двухполупериодный выпрямитель мостовая схема

И наконец, рассмотрим схему мостового выпрямителя, самую распространенную схему, по которой сделана большая часть всех выпущенных трансформаторных блоков питания. Сейчас объясню принцип работы диодного моста:

Диодный мост рисунок

Диодный мост рисунок

Ток у нас на выходе с трансформатора переменный, а переменный ток, как известно, в течение периода дважды меняет свое направление. Говоря другими словам, конечно же упрощенно, при переменном токе с частотой 50 герц, ток у нас 100 раз в секунду меняет свое направление. То есть сначала он течет от вывода диодного моста под цифрой один, ко второму, потом в течение другой полуволны он течет от вывода под номером два к первому.

Объяснение работы диодного моста

Объяснение работы диодного моста

Рассмотрим, что происходит с диодным мостом при подаче напряжения, мы видим, на рисунке обозначен красным путь тока, напрямую пройти к выводу диодного моста соединенного с переменным током не позволит диод, который получается у нас включенный в обратном включении, а в обратном включении, как мы помним, диоды не пропускают ток. Току остается только один путь (выделено на рисунке синим), через нагрузку и через диод уйти в провод соединенный с выводом переменного тока. Когда у нас ток меняет свое направление, то вступает в действие вторая часть диодного моста, которая действует аналогично той, что описал выше. В итоге у нас получается на выходе такой же график напряжения, как и у двухполупериодного выпрямителя со средней точкой:

График мостого выпрямителя

График мостого выпрямителя

При сборке выпрямителя нужно учитывать полярность на выходе диодного моста, если мы подключим электролитический конденсатор неправильно, то рискуем испортить конденсатор и можно считать, что повезло, если этим все ограничится. Поэтому при сборке диодного моста важно помнить одно правило, плюс на выходе с моста всегда будет в точке соединения 2 катодов диодов, а минус в точке соединения анодов. Встречается и такое обозначение на схемах диодного моста:

Еще одно изображение диодного моста

Еще одно изображение диодного моста

Диодный мост можно собрать как из отдельных диодов, так и взять специальную сборку из 4 диодов, уже соединенных по мостовой схеме, и имеющий 4 вывода. В таком случае остается только подать переменный ток, идущий обычно с вторичной обмотки трансформатора на два вывода моста, а с оставшихся двух выводов снимать плюс и минус. Обычно на самой детали бывает обозначено, где какой вывод у моста. Так выглядит импортный диодный мост:

Фото импортного диодного моста

Фото импортного диодного моста

На фото далее изображен отечественный диодный мост КЦ405.

Фото диодный мост кц-405

Фото диодный мост кц405

Трехфазные выпрямители

Существуют и трехфазные трансформаторы. Обычным однофазным диодным мостом с такого трансформатора не получится на выходе постоянный ток. Конечно, если нагрузка небольшая можно подключиться к одной фазе и к нулевому проводу трансформатора, но экономичным такое решение не назовешь.

Фото трехфазного трансформатора

Фото трехфазного трансформатора

Для трехфазного тока существуют специальные схемы выпрямителей, две таких схемы приведены на рисунках ниже. Первая, известная как схема Миткевича, имеет низкий коэффициент габаритной мощности трансформатора. Эта схема применяется при небольших мощностях нагрузки.

Схема Миткевича

Вторая схема, известная как Схема Ларионова, нашла широкое применение в электротехнике, так как имеет лучшие технико-экономические показатели по сравнению со схемой Миткевича.

Схема Ларионова

Схема Ларионова может использоваться как “звезда-Ларионов” и “треугольник-Ларионов”. Вид подключения зависит от схемы подключения трансформатора, либо генератора, с выходом которого соединен этот выпрямитель. Автор статьи – AKV.

Варианты схем двухполупериодных выпрямителей

Практически все электронные приборы работают от постоянного тока. Такой подход значительно снижает количество применяемых электронных компонентов, размер схемы и затраты на производство прибора.

Выпрямитель

Для преобразования переменного электрического напряжения в постоянное используются выпрямители. Статья даст подробное объяснение, что такое двухполупериодные выпрямители. Опишет их принцип работы, разновидности, основные преимущества и недостатки.

Назначение

Основное назначение однофазного двухполупериодного выпрямителя – это преобразование переменного тока в постоянный. Для того чтобы понять принцип действия такого выпрямителя, необходимо разобраться, что такое однополупериодное выпрямление.

Схема выпрямителя

Однополупериодный выпрямитель представляет собой устройство, которое состоит из трансформатора и одного диода (вентиля), подключенного ко вторичной обмотке трансформатора. Работает устройство следующим образом:

  1. Синусоидальный ток представляет собой цикл из 2 периодов: положительного и отрицательного.
  2. При протекании по цепи положительного полупериода, диод открывается и пропускает его дальше по цепи.
  3. При протекании отрицательного полупериода, диод не открывается и обрезает этот цикл.

Схема однополупериодного выпрямителя

Таким образом по цепи пропускается только ток с высокой пульсацией. Для того чтобы сгладить этот эффект, схема дополняется конденсатором с высокой емкостью. Основной недостаток такой схемы – большая потеря тока и необходимость использования мощных сглаживающих конденсаторов. Подобное устройство применяется, например, для зарядных блоков мобильных телефонов.

Блок питани на однополупериодном выпрямителе

Двухполупериодный однофазный выпрямитель построен примерно по схожей схеме. Главное отличие заключается в добавлении 2-х и более полупроводниковых диодов для сглаживания обоих полупериодов. Существуют следующие разновидности подобных элементов:

  1. Мостовой.
  2. Со средней точкой.

Каждое устройство использует различное количество преобразователей, а значит имеет различный принцип работы.

Схема со средней точкой

Двухполупериодный выпрямитель со средней точкой предполагает наличие трансформатора с двумя вторичными обмотками, имеющими центральный вывод. Так же может использоваться трансформатор с одной вторичной обмоткой, но он будет обязательно иметь вывод из центра обмотки. Кроме того в составе схемы имеются 2 диода. Выпрямитель с нулевым выводом работает за счет образования разных по направленности ЭДС. Обе эти ЭДС равны по величине сформированного напряжения относительно центра или 0 точки. При работе такого трансформатора, ток на обоих полуобмотках сдвинут по фазе на 180 градусов.

Схема со средней точкой

Принцип работы данного выпрямителя следующий:

  1. На трансформаторе имеются выводы «w21» и «w22», которые имеют противоположные значения .
  2. К этим выводам подключаются аноды вентилей «vd1» и «vd2».
  3. Напряжение, прикладываемое к каждому диоду, имеет противоположную фазу («u21»–«u22» на схеме).
  4. За первый полупериод ток протекает через открытый диод «vd1». Через его анод протекает ток только с положительным потенциалом. В этот полупериод диод «vd2» находится в состоянии обратного смещения. Он заперт и не пропускает ток от обмотки «w22».
  5. Во время второго полупериода, ток с положительным потенциалом находится на аноде «vd2», открывая при этом диод. Диод пропускает через себя ток от обмотки «w22». Диод «vd1» при этом остается закрытым.

Двухполупериодная схема с нулевой точкой работает за счет отсутствия момента подмагничивания. Каждая половина вторичной обмотки работает в свой полупериод, а значит трансформатор находится в состоянии постоянной нагрузки.

Плюсы

У схемы с нулевым выходом есть преимущества только перед моделью однопериодного выпрямителя. Основные достоинства такой схемы:

  1. Во время работы осуществляется передача тока обоих потенциалов, тем самым сохраняется до 90% исходной энергии.
  2. 2 диода равномерно распределяют нагрузку, продлевая свой срок службы и заметно занижая нагрузку на всю схему.
  3. Схема двухполупериодного выпрямителя предполагает сглаженную пульсацию тока, без использования высоковольтных, емкостных конденсаторов.

Несмотря на ряд преимуществ, однофазные выпрямители с двумя диодами имеют свои недостатки, о которых будет рассказано ниже.

Минусы

Для работы такой сцепи обязательно необходим специальный трансформатор с 2 вторичными обмотками или одной разделенной, с нулевым выходом. Такие устройства сильно повышают затраты на производство высоковольтных, мощных приборов.

Трансформатор со средней точкой

Также большим минусом является нагрузка обратным током. В схеме должны быть использованы диоды с номинальным напряжением до 1000 вольт и возможностью выдерживать температуру до +80 градусов. Если эти параметры не соблюдаются, то при закрытии диода будет формироваться повышенная температура и сопротивление. Превышения параметров приведет к пробою самого диода.

Следующим минусом является использование самого нулевого отвода. Подключение к нему предполагает только использования части доступной энергии, что сильно снижает потенциал таких устройств.

Диодный мост

Второй разновидностью является двухполупериодный мостовой выпрямитель. Данная модель наиболее распространена в цепях бытовых и промышленных электронных приборов. Состав электронного элемента:

  1. Трансформатор.
  2. 4 полупроводниковых диода.
  3. Конденсатор для сглаживания импульсов.
  4. Резистор как дополнительное сопротивление.

Диодный мост

Работает устройство по мостовой схеме следующим образом:

  1. 4 полупроводниковых диода соединяются между собой в контур. Иными словами, они образуют пары.
  2. Одна сторона каждой пары соединена с выводами вторичной обмотки трансформатора.
  3. Две другие стороны соединены с цепью (нагрузкой). В случае с представленной схемой, нагрузкой является резистор «Rн».
  4. При формировании первого полупериода, диоды «vd1-vd4» открываются и пропускают ток к нагрузочному резистору Rн. Диодная пара «vd2-vd3» закрыта.
  5. Во время второго полупериода, 1 пара диодов (vd1-vd4) закрыта. В работу вступают диоды «vd2-vd3». Они открываются и перенаправляют ток к резистору Rн.

Схема мостового выпрямителя

При такой работе остается эффект пульсации тока. Его сглаживают с помощью емкостного конденсатора.

Преимущества

Двухполупериодное мостовое выпрямление имеет одно неоспоримое преимущество перед схемами с меньшим количеством диодов. Оно заключается в величинах обратного выпрямленного тока и напряжения. Эти величины превышают те же параметры в других схемах в 2 и более раз. Тем самым, мостовая схема имеет значительно большее КПД.

Минусы

Недостатки диодного моста также заключены в количестве диодов. Каждые из 4 диодов сохраняют в закрытом положении величину обратного напряжения, которое равняется напряжению в однополупериодном выпрямителе. Тем самым, 4 диода не способствуют уменьшению нагрузки обратного тока на вторичную обмотку.

Несмотря на недостатки, схема мостового выпрямителя более распространенная. Она может монтироваться в качестве 4 диодов или в сборке. Сборка выглядит более практичным вариантом. Она занимает меньше места на печатной плате.

Сглаживание

Однофазный электрический двухполупериодный выпрямитель, независимо от того, сколько диодов он совмещает, требует дополнительного сглаживания выходного напряжения. Пульсация сильно влияет на работу самого устройства, для которого собран такой выпрямитель. Для сглаживания пульсации тока схема выпрямления дополняется фильтрами. Они могут быть собраны из:

  1. Высокоемкостного конденсатора. Такой фильтр является емкостным или «С-фильтром». В момент открытия диода, конденсатор заполняется током и играет роль емкости. В момент закрытия диода, происходит постепенная разрядка емкости, тем самым сглаживается напряжение без каких-либо скачков.Фильтр на конденсаторе
  2. Катушки индуктивности. Катушка индуктивности в качестве фильтра может использоваться в дополнение к конденсатору или вместо него. Работает такой фильтр по принципу отсутствия мгновенного изменения тока на катушке. При прохождении положительной полуволны по катушке, значение тока увеличивается плавно и медленно. При изменении полуволны на отрицательное значение, ток в катушке меняется с запаздыванием, что значительно снижает резкость пульсации.Выпрямитель с индуктивным фильтром

При проектировании диодных выпрямителей учитывается нагрузка последующих элементов цепи. Так, если сопротивление после выпрямителя значительно малое, то использование емкостного фильтра нецелесообразно. При малой нагрузке потребуется более емкостный конденсатор. Таким образом для подобных схем с малым сопротивлением, более рационально использовать индуктивный фильтр.

Расчет значения диодов

Диоды в двухполупериодных выпрямителях должны выдерживать нагрузку переменным током, нагревом, обратным напряжением. При подборе диода необходимо учесть:

  1. Выходное напряжение до диода должно быть выше на 15–25% необходимого значения. Например, если требуется снять 12 вольт постоянного напряжения, то вторичная обмотка трансформатора должна выдавать не менее 15–17 вольт.
  2. Рабочий порог тока должен быть в полтора-два раза выше тока выпрямителя. Максимальный ток каждого диода в цепи можно найти с использованием следующей формулы:Формула для вычисления значения тока диода
  3. Выведенную по формуле величину можно использовать для определения значения обратного напряжения в состоянии закрытия. Данное значение должно быть в два раза больше выходного напряжения трансформатора, иначе возможен обратный p-n пробой. Делается это по такой формуле:Формула для расчета обратного напряжения

Также стоит учитывать материал, который используется в качестве полупроводника. Кремневые элементы более устойчивы к нагрузке обратным током и способны работать при температуре до +150 градусов. Германиевые менее устойчивы, их устойчивость к обратному напряжению составляет около 400 вольт.

Заключение

Однофазная схема двухполупериодного выпрямителя используется практически во всех современных приборах. Такие элементы более дешевые, устойчивые к нагрузкам, позволяют применять диодные сборки, уменьшая при этом общий размер цепи. Так же такие схемы легко проектировать, ремонтировать и дополнять самостоятельно, зная только принцип работы этих устройств.

Видео по теме