Каков размах значений напряжения

Размах изменения напряжения определяется по формуле

Для каждого типа электрической сети установлены определенные характеристики (параметры качества). Соответствие между ними и действительными значениями определяет качество электрической энергии.

Изменения ПКЭ могут возникнуть вследствие потерь электроэнергии при передаче на расстояние, увеличением потребляемой нагрузки, электромагнитных явлений и т.д.

Для оценки качества электричества осуществляются замеры основных показателей КЭ. Подробно они расписаны в нормах ГОСТа 13109-97, а также в его новой редакции 13109 99, приведем выдержки с кратким описанием каждого показателя.

Отклонение частоты

Соблюдение частоты в определенных границах относится к необходимому требованию потребителя. При снижении показателя на 1 %, потери составляют более 2 %. Это выражается в экономических затратах, снижение производительности предприятий. Для обычного человека это приводит к повышенным суммам в квитанциях по оплате за электричество.

Скорость вращения асинхронного двигателя напрямую зависит от частоты питающей сети. Нагревающие ТЭНы имеют меньшую производительность при снижении параметра меньше 50 ГЦ. При завышенных значениях может происходить повреждение потребителей либо других механизмов, не рассчитанных на высокий момент вращения.

Читайте также: Испытание мощных трансформаторов и реакторов — Опыт холостого хода

Отклонение частоты может повлиять на работу электроники. Так на экране телевизора возникают помехи при изменении показателя на ±0,1Гц. Кроме визуальных дефектов, возрастает риск вывода из строя микроэлементов. Методом борьбы с отклонениями качества электроэнергии выступает введение резервных питающих узлов, позволяющих в автоматическом режиме восстанавливать напряжение в установленные промежутки времени.

Основные показатели качества электроэнергии

Поскольку идеального соответствия номинальным параметрам добиться невозможно, в нормировании показателей предусмотрены отклонения. Они могут быть допустимыми и предельно допустимыми. Ниже перечислены основные показатели качества и указаны приемлемые нормы для каждого из них

Отклонение напряжения

Данный показатель определяется при помощи специального коэффициента, характеризующего установившиеся отклонения по отношению к номинальным. Для расчета используется следующая формула: δUуст = 100% * (Uт — Uн)/Uн , где Uт – текущий показатель , Uн – номинальный. Измерения показателей качества производится на приемниках электроэнергии. Осцилограмма данного процесса представлена ниже.

Установившееся отклонение и колебания напряжения

Рис. 1. Установившееся отклонение и колебания напряжения

Такие отклонения качества характерны при существенных изменениях нагрузки или больших потерях в процессе передачи электроэнергии. Допустимыми считаются показатели при Uуст не более 5,0%, предельно допустимые – 10,0%.

Колебания напряжения

Данный параметр характеризует временные отклонения амплитуды колебаний электротока. Осцилограмма процесса представлена на рисунке 1. Это составной параметр качества электроэнергии, поскольку для характеристики колебаний напряжения необходимо учитывать:

  • размах изменений;
  • дозу колебаний (частоту повторений) ;
  • длительность отклонений.

Для первых двух пунктов необходимо дать небольшие пояснения.

Размах изменения напряжения.

Данный параметр качества электроэнергии описывается разностью между максимальными и минимальными отклонениями. Коэффициент размаха определяется следующей формулой: (UPmax — UPmin)/Uном , где UPmax – максимальная величина размаха, UPmin – минимальная, Uном – номинальное значение. Допустимое значение для коэффициента размаха – не более 10%.

Доза колебаний напряжения.

Данный критерий служит для описания частоты, с которой происходят отклонения. Следует учитывать, что если временной период между колебаниями меньше 30,0 миллисекунд, то их необходимо рассматривать как одно отклонение.

Для расчета используется следующее выражение: Fповт = m/T , при этом m определяет количество изменений за определенный временной период измерений – Т, равный 10-ти минутам. Нормы этого показателя напрямую связаны с дозой фликера, она будет описана ниже.

Отклонение частоты

В системах общего назначения для этого параметра установлено значение 50,0 Гц. Нормы стандарта допускают увеличение или уменьшение частоты на 2,0% или 4,0% (допустимые и предельные показатели, соответственно). Превышение допустимых отклонений частоты приводит выходу из строя импульсных БП, сбоям в работе электрогенераторов.

Читайте также: Коэффициент стабилизации стабилизатора определение

Доза фликера

Данный параметр описывает влияние на человека, производимое мерцанием источников света по причине изменения амплитуды электротока. Измерения производятся при помощи специальных приборов, определяющих допустимое мерцание.

Коэффициент временного перенапряжения

Эта характеристика определяет насколько текущая амплитуда выше предельно допустимого порога. Такие отклонения характерны при КЗ или коммутационных процессах. Случайный характер отклонений не позволяет нормировать показатель, но собранная статистика используется при определении качества электроэнергии однофазной или трехфазной сети.

Осцилограмма перенапряжения и провала напряжения

Осцилограмма перенапряжения и провала напряжения

Провал напряжения

Под этим параметром подразумевается значительное снижение амплитуды (более 10,0% от номинального), с последующим восстановлением. Причиной провалов напряжения может быть КЗ, резкое увеличение нагрузки.

Характеристики для данного показателя качества электроэнергии описываются следующими составляющими:

  • Глубина «проседания» напряжения, в некоторых случаях она может стремиться к нулю.
  • Количеством отклонений за определенный промежуток времени.
  • Продолжительностью.

Последнее требует пояснения.

Длительность провала напряжения.

По этому критерию можно судить как о качестве, так и надежности электроснабжения. «Проседание» с минимальной продолжительностью может не вызвать сбоев в работе электрических и электронных устройств. При длительности в несколько секунд, велика вероятность отключения оборудования с электрическими или электронными схемами управления. Помимо этого возрастает реактивная составляющая электродвигателей, что приводит к снижению коэффициента мощности.

В связи со случайной природой явления, его нормирование не предусмотрено.

Импульсное напряжение

Проявляется в виде краткосрочного (до 10-ти миллисекунд) увеличения амплитуды электроэнергии. Вызвать такой резкий скачок могут коммутационные процессы или грозовые разряды. Поскольку такие состояния сети носят случайный характер, нормирование импульсов не предусмотрено.

Импульс высокого напряжения

Импульс высокого напряжения

Для описания высокочастотных импульсов используются следующие характеристики:

  • Параметр максимальной амплитуды. В сетях до 1-го кВ, при прямом попадании разряда молнии, амплитуда выброса может достигать 6-ти кВ.
  • Длительность. Продолжительность высокоамплитудного (грозового) импульса, как правило, не превышает нескольких миллисекунд.

Несимметрия напряжений в трехфазной системе

К такому явному ухудшению качества электроэнергии может привести неправильно распределенная нагрузка между фазами одной цепи, КЗ на землю, обрыв нейтрали, подсоединение потребителя с несимметричной нагрузкой.

Характерный перекос фаз

Характерный перекос фаз

В связи с этим установлено требование, согласно которому разница нагрузки между фазами одной цепи не должна быть более 30,0% в пределах одного электрощита и 15,0% в начальной точке питающей линии.

Читайте также: Схема и сборка самодельного блока питания с регулировкой напряжения и тока

Для определения показателей несимметрии используются коэффициенты нулевой и обратной последовательностей. Первый рассчитывается по формуле: Кнп = 100% * Uнп / Uном, второй: Коп = 100% * Uоп / Uном, где Uнп – амплитуда нулевой последовательности, Uоп — обратной.

Согласно установленным нормам регулирования напряжения в сетях до 1-го кВ значение Uнп и Uоп должны быть не более 2% и 4% (допустимое и предельное значения).

Несинусоидальность формы кривой напряжения

Данный вид некачественной электроэнергии связан с наличием сторонних гармоник. Чем выше частотность паразитной составляющей, тем больше величина искажения. Это видно если сравнить гармонику тока высокого (см. рис. 5) и третьего порядка (рис. 6).

Гармоника высокого порядка

Рис 5. Гармоника высокого порядка

Причина такого отклонения – подключение к сети потребителя с нелинейной ВАХ. Характерный пример – преобразователь на тиристорах.

Гармоника третьего порядка

Рис. 6. Гармоника третьего порядка

Для описания данного отклонения от качественных показателей используется коэффициент синусоидальных искажений, который определяется формулой Kи = ⎷∑UN2 / Uном * 100%, где U – амплитуда гармоник.

Допустимые и предельно допустимые нормы, характеризующие качественную или некачественную электроэнергию для различных сетей, приведены в таблице ниже.

Допустимые коэффициент искажения синусоидальности для различных электросетей

Допустимые коэффициент искажения синусоидальности для различных электросетей

Размах изменения напряжения.

2018-01-08 1671
Размах изменения напряжения представляет собой разность между амплитудными или действующими значениями напряжения до и после одиночного изменения напряжения и определяется по формуле:

где Uiи Ui+1— значения следующих друг за другом экстремумов или экстремума и горизонтального участка огибающей амплитудных значений напряжения.

К размахам изменения напряжения относят одиночные изменения напряжения любой формы с частотой повторения от двух раз в минуту (1/30 Гц) до одного раза в час, имеющие среднюю скорость изменения напряжения более 0,1% в секунду (для ламп накаливания) и 0,2% в секунду для остальных приемников.

Быстрые изменения напряжения вызываются ударным режимом работы двигателей металлургических прокатных станов тяговых установок железных дорог, луговых сталеплавильных печей, сварочной аппаратуры, а также частыми пусками мощных короткозамкнутых асинхронных электродвигателей, когда их пусковая реактивная мощность составляет несколько процентов мощности короткого замыкания.

Число изменений напряжения в единицу времени, т. е. частота изменения напряжения, находится по формуле F = m/T, где m — число изменений напряжения за время Т, Т — общее время наблюдения размахов напряжения.

Основные требования, предъявляемые к колебаниям напряжения, обусловливаются соображениями защиты зрения человека. Установлено, что наибольшая чувствительность глаза к мерцанию света находится в области частоты, равной 8,7 Гц.

Поэтому для ламп накаливания, обеспечивающих рабочее освещение при значительных зрительных напряжениях, размах напряжения допускается не более 0,3%, для ламп накачивания в быту — 0,4%, для люминесцентных ламп и других электроприемников — 0,6.

Доза колебаний напряжения.

Доза колебаний напряжения идентична размаху изменения напряжения и в действующих электрических сетях вводится по мере их оснащения соответствующими приборами. При использовании показателя «доза колебаний напряжения» оценка допустимости размаха изменения напряжения может не производиться, так как рассматриваемые показатели взаимозаменяемы.

Доза колебаний напряжения также представляет собой интегральную характеристику колебаний напряжения, вызывающих у человека накапливающееся за установленный период времени раздражение из-за миганий света в диапазоне частот от 0,5 до 0,25 Гц.

Допустимое максимальное значение дозы колебаний напряжения (ψ, (%) 2 ) в электрической сети, к которой присоединяются осветительные установки, не должно превосходить: 0,018 — с лампами накаливания в помещениях, где требуется значительное зрительное напряжение; 0,034 — с лампами накаливания во всех других помещениях; 0,079 — с люминесцентными лампами.

Как проверить и измерить качество электрической энергии?

Прежде, чем приступать к измерениям, определяющим качество электрсети, следует принять во внимание, что ПКЭ должны быть зафиксированы представителями поставщика электроэнергии. По результатам проверки составляется акт, на основании которого можно предъявлять претензию.

Для проверки всех характеристик электроэнергии на соответствие требованиям ГОСТ 53144-2013, ГОСТ Р 54149-2010 и другим нормативным документам, потребуется специальная измерительная техника. Но часть основных показателей можно измерить, используя обычный мультиметр или определить несоответствие по косвенным признакам.

Коэффициенты

Для нормальной работы питающей сети введен контроль следующих коэффициентов:

Несинусоидальности кривой напряжения. Искажение синусоиды происходит за счет мощных потребителей: ТЭНов, конвекционных печей, сварочных аппаратов. При отклонениях этого параметра снижается срок службы обмоток двигателей, нарушается работа релейной автоматики, выходят из строя приводные системы на тиристорном управлении. Временного перенапряжения является количественной оценкой импульсного изменения входной величины. N-ой гармоники является характеристикой синусоидальности получаемой на входе характеристики напряжения

Читайте также: Что такое мощность рассеяния резистора от чего она зависит

Расчетные значения получают из табличных данных для каждой гармоники. Несимметрия входной величины по обратной или нулевой последовательности важно учитывать для исключения случаев неравномерного распределения фаз. Такие условия возникают чаще при обрыве питающей сети, подключенной по схеме звезды или треугольника.

Как самостоятельно выявить снижение качества электроэнергии?

Перечислим показатели, которые можно проверить, используя мультиметр в режиме измерения переменного напряжения:

  1. Устоявшееся отклонение.
  2. Перенапряжение (включая перекос фаз).
  3. Провалы.

Второй и третий пункт довольно условны, длительность искажения может быть недостаточной для реакции прибора, а перепады напряжения будет сложно отличить от перенапряжений и провалов.

К косвенным методам определения качества электроэнергии относится анализ состояния сети по работе лампы с нитью накала. Слишком яркое свечение укажет на повышенное напряжение, тусклое – будет свидетельствовать о «проседании», мигание засвидетельствует перепады.

Нехарактерная работа электрооборудования также свидетельствует о недостаточном качестве электроэнергии. Например, компрессор холодильника постоянно функционирует, нестабильная работа электроники, самопроизвольное отключение бытовой техники, все это указывает на недостаточное напряжение в бытовой сети. Превышение напряжения вызовет срабатывание реле защиты, если оно было установлено.

Ощутимые перепады

Измерения качества электроэнергии предусматривают замеры такой составляющей, как импульсы питающего напряжения. Он объясняется резкими спадами и подъемами электричества в пределах выбранного интервала. Причинами такого явления может быть одновременная коммутация большого числа потребителей, влияние электромагнитных помех из-за грозы.

Установлены периоды восстановления напряжения, не влияющие на работу потребителей:

  • Причины перепадов — это гроза и другие природные электромагнитные помехи. Период восстановления равен не более 15 мкс.
  • Если импульсы появились из-за неравномерной коммутации потребителей, то период намного больше и равен 15 мс.

Наибольшее число аварий на подстанциях происходит по причине удара молнии в установку. Сразу страдает изоляция проводников. Величина перенапряжения может достигать сотен киловольт. Для этого предусмотрены защитные приспособления, но иногда они не выдерживают, и наблюдается остаточный потенциал. В эти моменты неисправность не возникает благодаря прочности изоляции.

Список использованной литературы

  • И.И.Карташев «Управление качеством электроэнергии» 2017
  • В.Ф.Ермаков «Качество электроэнергии» 2008
  • Белоусов В.Н. «Основные положения порядка сертификации электрической энергии в системах электроснабжения общего назначения» 2007
  • Ананичева С.С., Алексеев А.А., Мызин А.Л. «Качество электроэнергии регулирование напряжения и частоты в энергосистемах» 2012
  • Куско А., Томпсон М. «Качество энергии в электрических сетях» 2008
  • К. Г. Коноплев «Повышение качества электрической энергии в автономных электрических системах при импульсном регулировании» 2006

Виды защиты от непредсказуемых изменений в питающей сети

Повышение качества электроэнергии нужно проводить в определенные законом сроки. Но защиту своего оборудования потребитель вправе выстраивать применением следующих средств:

  • Стабилизаторы питания гарантируют поддержание входной величины в указанных границах. Достигается качественная энергия даже при отклонениях входной величины более чем на 35 %.
  • Источники бесперебойного питания предназначены для поддержания работоспособности потребителя в течение установленного промежутка времени. Питание приборов происходит за счет накопленной энергии в собственной батарее. При отключении электричества, бесперебойники способны поддерживать работоспособность аппаратуры целого офиса в течение нескольких часов.
  • Приборы защиты от скачков напряжения работают по принципу реле. После превышения входной величины установленного предела происходит размыкание цепи.

Все виды защиты приходится комбинировать для обеспечения полной уверенности в том, что дорогостоящая техника останется целой во время аварии на подстанции.

Перенапряжение в многоквартирных домах

В последнее время перенапряжение в многоквартирных домах, построенных до начала 90-х годов, стало настоящим бедствием. Когда эти дома строились, в проектную нагрузку не вносились микроволновые печи, холодильники (два), компьютеры, домашние солярии и т.д.

Но, тем не менее, потребители пользуются этими благами цивилизации. Что в итоге происходит? В электроэнергетике есть понятие, вечерние и утренние максимумы нагрузки. Именно в это время люди идут на работу, готовят, включают много электроприборов в общем.

По проводам и кабелям протекает рабочий ток который больше длительно допустимых токов этих проводов и кабелей, соответственно они греются. Потом охлаждается и заново. В итоге происходит ослабление контактов или отгорание нулевого проводника.

Если в нормальном режиме напряжение между фазным и нулевым проводником 230 В, то в данном случае нулевой проводник отсутствует и напряжение будет между фазами, т.е. 380 В. В итоге напряжение «гуляет» по стояку. Его величина зависит от включенной в сеть нагрузки и может быть в диапазоне 140 – 380 В от места отгорания нулевого проводника.

Что происходит с потребителями при отклонении нормальных режимов питания?

Параметры качества электроэнергии влияют на длительность работы подключаемых устройств, часто это становится критично на производствах. Падает производительность линий, увеличивается расход энергии. Так на валу двигателей снижается вращающий момент при падении значений показателей питающей сети. Укорачивается срок службы ламп освещения, световой поток ламп становится меньше либо мерцает, что сказывается на выпускаемой продукции в теплицах. Существенное влияние оказывается на процессы других биохимических реакций.

Согласно законам физики снижение напряжения при неизменной нагрузке на валу двигателя приводит к стремительному росту тока. Это, в свою очередь, приводит к сбоям в работе защитных выключателей. В результате плавится изоляция, в лучшем случае горят плавкие предохранители, в худшем безвозвратно портятся обмотки двигателей, элементы электроники. При аналогичных обстоятельствах электросчетчик начинает вращаться с большей скоростью. Хозяин помещения терпит убытки.

Диапазоны отклонений напряжения в точках передачи электроэнергии. Необходимость дифференцирования

Для каждого типа электрической сети установлены определенные характеристики (параметры качества). Соответствие между ними и действительными значениями определяет качество электрической энергии.

Изменения ПКЭ могут возникнуть вследствие потерь электроэнергии при передаче на расстояние, увеличением потребляемой нагрузки, электромагнитных явлений и т.д.

Для оценки качества электричества осуществляются замеры основных показателей КЭ. Подробно они расписаны в нормах ГОСТа 13109-97, а также в его новой редакции 13109 99, приведем выдержки с кратким описанием каждого показателя.

Лекция. Колебания напряжения

Содержание лекции: колебания напряжения, влияние колебания напряжения на работу электрооборудования, способы снижения колебания напряжения.
Цель лекции: изучить основные формулы расчета колебания напряжения и способы снижения колебания напряжения.

Колебания напряжения – быстрые изменения действующего значения напряжения, происходящие со скоростью 1-2% в секунду и более. Колебания напряжения амплитудой (размахом изменения напряжения), частотой и интервалами между следующими друг за другом изменениями напряжения [4].

Читайте также: Регулирование оборотов коллекторного двигателя постоянного тока

Причина возникновения колебания напряжения – электроприемники с быстропеременными режимами работы

Колебания напряжения действуют на: увеличение потерь в сети; утомление зрения, снижение производительности, травматизм; снижение срока службы электронной аппаратуры; выход из строя конденсаторных батарей; неустойчивая работа систем возбуждения синхронных генераторов и двигателей; вибрации аппаратуры; возможны отпадания контакторов.

При работе ЭП с резкопеременной ударной нагрузкой в электросети возникают резкие толчки потребляемой мощности. Это вызывает изменения напряжения сети, размахи которых могут достигнуть больших значений. Эти явления имеют место при работе прокатных электродвигателей, дуговых электропечей, сварочных машин и т.д. Указанные обстоятельства крайне неблагоприятно отражаются на работе всех ЭП, подключенных к данной сети, в том числе и ЭП, вызывающих эти изменения.

Так, например, если время сварки у контактных машин в пределах от 0,02 до 0,4 с, то колебания напряжения даже малой длительности сказываются на качестве сварки.

При колебаниях напряжения, в результате которых напряжение снижается более чем на 15% ниже номинального, возможно отключение магнитных пускателей, работающих электродвигателей.

На предприятиях с существенной синхронной нагрузкой колебания напряжения могут приводить к выпадению привода из синхронизма и расстройству технологического процесса.

Колебания напряжения отрицательно сказывается на работе осветительных приемников. Они приводят к миганиям ламп, которые при превышении порога раздражительности могут отражаться на длительном восприятии людей.

Колебания напряжения, имеющие место при работе крупных синхронных двигателей с резкопеременной нагрузкой, определяются с учетом переходных процессов, т.к. при этом мощность, потребляемая ЭД, значительно отличается от мощности установившегося режима.

В соответствующих точках системы колебание напряжения, вызываемое изменениями (набросами) активной нагрузки на DР и реактивной нагрузки на DQ, может быть ориентировочно определено по формуле [4, 8]:

где DU – потеря напряжения, о.е.

DР, DQ – изменения (набросы) активной и реактивной трехфазной мощности ЭП, (МВт и Мвар);

R, X – активное и реактивное сопротивление на фазу (см. таблицу 4.1), Ом;

Z – полное сопротивление, Ом;

SK – мощность к.з. в точке, в которой проверяется колебания напряжения, МВА.

Основные показатели качества электроэнергии

Поскольку идеального соответствия номинальным параметрам добиться невозможно, в нормировании показателей предусмотрены отклонения. Они могут быть допустимыми и предельно допустимыми. Ниже перечислены основные показатели качества и указаны приемлемые нормы для каждого из них

Читайте также: Как подключить блок питания к компьютеру для чайников схема

Отклонение напряжения

Данный показатель определяется при помощи специального коэффициента, характеризующего установившиеся отклонения по отношению к номинальным. Для расчета используется следующая формула: δUуст = 100% * (Uт — Uн)/Uн , где Uт – текущий показатель , Uн – номинальный. Измерения показателей качества производится на приемниках электроэнергии. Осцилограмма данного процесса представлена ниже.

Установившееся отклонение и колебания напряжения

Рис. 1. Установившееся отклонение и колебания напряжения

Такие отклонения качества характерны при существенных изменениях нагрузки или больших потерях в процессе передачи электроэнергии. Допустимыми считаются показатели при Uуст не более 5,0%, предельно допустимые – 10,0%.

Колебания напряжения

Данный параметр характеризует временные отклонения амплитуды колебаний электротока. Осцилограмма процесса представлена на рисунке 1. Это составной параметр качества электроэнергии, поскольку для характеристики колебаний напряжения необходимо учитывать:

  • размах изменений;
  • дозу колебаний (частоту повторений) ;
  • длительность отклонений.

Для первых двух пунктов необходимо дать небольшие пояснения.

Размах изменения напряжения.

Данный параметр качества электроэнергии описывается разностью между максимальными и минимальными отклонениями. Коэффициент размаха определяется следующей формулой: (UPmax — UPmin)/Uном , где UPmax – максимальная величина размаха, UPmin – минимальная, Uном – номинальное значение. Допустимое значение для коэффициента размаха – не более 10%.

Доза колебаний напряжения.

Данный критерий служит для описания частоты, с которой происходят отклонения. Следует учитывать, что если временной период между колебаниями меньше 30,0 миллисекунд, то их необходимо рассматривать как одно отклонение.

Для расчета используется следующее выражение: Fповт = m/T , при этом m определяет количество изменений за определенный временной период измерений – Т, равный 10-ти минутам. Нормы этого показателя напрямую связаны с дозой фликера, она будет описана ниже.

Отклонение частоты

В системах общего назначения для этого параметра установлено значение 50,0 Гц. Нормы стандарта допускают увеличение или уменьшение частоты на 2,0% или 4,0% (допустимые и предельные показатели, соответственно). Превышение допустимых отклонений частоты приводит выходу из строя импульсных БП, сбоям в работе электрогенераторов.

Доза фликера

Данный параметр описывает влияние на человека, производимое мерцанием источников света по причине изменения амплитуды электротока. Измерения производятся при помощи специальных приборов, определяющих допустимое мерцание.

Коэффициент временного перенапряжения

Эта характеристика определяет насколько текущая амплитуда выше предельно допустимого порога. Такие отклонения характерны при КЗ или коммутационных процессах. Случайный характер отклонений не позволяет нормировать показатель, но собранная статистика используется при определении качества электроэнергии однофазной или трехфазной сети.

Осцилограмма перенапряжения и провала напряжения

Осцилограмма перенапряжения и провала напряжения

Провал напряжения

Под этим параметром подразумевается значительное снижение амплитуды (более 10,0% от номинального), с последующим восстановлением. Причиной провалов напряжения может быть КЗ, резкое увеличение нагрузки.

Читайте также: Обозначение транзисторов на принципиальных схемах. Маркировка транзисторов. Классификация транзисторов.

Характеристики для данного показателя качества электроэнергии описываются следующими составляющими:

  • Глубина «проседания» напряжения, в некоторых случаях она может стремиться к нулю.
  • Количеством отклонений за определенный промежуток времени.
  • Продолжительностью.

Последнее требует пояснения.

Длительность провала напряжения.

По этому критерию можно судить как о качестве, так и надежности электроснабжения. «Проседание» с минимальной продолжительностью может не вызвать сбоев в работе электрических и электронных устройств. При длительности в несколько секунд, велика вероятность отключения оборудования с электрическими или электронными схемами управления. Помимо этого возрастает реактивная составляющая электродвигателей, что приводит к снижению коэффициента мощности.

В связи со случайной природой явления, его нормирование не предусмотрено.

Импульсное напряжение

Проявляется в виде краткосрочного (до 10-ти миллисекунд) увеличения амплитуды электроэнергии. Вызвать такой резкий скачок могут коммутационные процессы или грозовые разряды. Поскольку такие состояния сети носят случайный характер, нормирование импульсов не предусмотрено.

Импульс высокого напряжения

Импульс высокого напряжения

Для описания высокочастотных импульсов используются следующие характеристики:

  • Параметр максимальной амплитуды. В сетях до 1-го кВ, при прямом попадании разряда молнии, амплитуда выброса может достигать 6-ти кВ.
  • Длительность. Продолжительность высокоамплитудного (грозового) импульса, как правило, не превышает нескольких миллисекунд.

Несимметрия напряжений в трехфазной системе

К такому явному ухудшению качества электроэнергии может привести неправильно распределенная нагрузка между фазами одной цепи, КЗ на землю, обрыв нейтрали, подсоединение потребителя с несимметричной нагрузкой.

Характерный перекос фаз

Характерный перекос фаз

В связи с этим установлено требование, согласно которому разница нагрузки между фазами одной цепи не должна быть более 30,0% в пределах одного электрощита и 15,0% в начальной точке питающей линии.

Для определения показателей несимметрии используются коэффициенты нулевой и обратной последовательностей. Первый рассчитывается по формуле: Кнп = 100% * Uнп / Uном, второй: Коп = 100% * Uоп / Uном, где Uнп – амплитуда нулевой последовательности, Uоп — обратной.

Согласно установленным нормам регулирования напряжения в сетях до 1-го кВ значение Uнп и Uоп должны быть не более 2% и 4% (допустимое и предельное значения).

Несинусоидальность формы кривой напряжения

Данный вид некачественной электроэнергии связан с наличием сторонних гармоник. Чем выше частотность паразитной составляющей, тем больше величина искажения. Это видно если сравнить гармонику тока высокого (см. рис. 5) и третьего порядка (рис. 6).

Гармоника высокого порядка

Рис 5. Гармоника высокого порядка

Причина такого отклонения – подключение к сети потребителя с нелинейной ВАХ. Характерный пример – преобразователь на тиристорах.

Гармоника третьего порядка

Рис. 6. Гармоника третьего порядка

Для описания данного отклонения от качественных показателей используется коэффициент синусоидальных искажений, который определяется формулой Kи = ⎷∑UN2 / Uном * 100%, где U – амплитуда гармоник.

Допустимые и предельно допустимые нормы, характеризующие качественную или некачественную электроэнергию для различных сетей, приведены в таблице ниже.

Допустимые коэффициент искажения синусоидальности для различных электросетей

Допустимые коэффициент искажения синусоидальности для различных электросетей

Размах изменения напряжения.

Размах изменения напряжения представляет собой разность между амплитудными или действующими значениями напряжения до и после одиночного изменения напряжения и определяется по формуле:

δUt = ((Ui — Ui+1)/√2Uн) х 100%

где Uiи Ui+1- значения следующих друг за другом экстремумов или экстремума и горизонтального участка огибающей амплитудных значений напряжения.

К размахам изменения напряжения относят одиночные изменения напряжения любой формы с частотой повторения от двух раз в минуту (1/30 Гц) до одного раза в час, имеющие среднюю скорость изменения напряжения более 0,1% в секунду (для ламп накаливания) и 0,2% в секунду для остальных приемников.

Быстрые изменения напряжения вызываются ударным режимом работы двигателей металлургических прокатных станов тяговых установок железных дорог, луговых сталеплавильных печей, сварочной аппаратуры, а также частыми пусками мощных короткозамкнутых асинхронных электродвигателей, когда их пусковая реактивная мощность составляет несколько процентов мощности короткого замыкания.

Читайте также: Делаем проходной выключатель своими руками

Число изменений напряжения в единицу времени, т. е. частота изменения напряжения, находится по формуле F = m/T, где m — число изменений напряжения за время Т, Т — общее время наблюдения размахов напряжения.

Основные требования, предъявляемые к колебаниям напряжения, обусловливаются соображениями защиты зрения человека. Установлено, что наибольшая чувствительность глаза к мерцанию света находится в области частоты, равной 8,7 Гц.

Поэтому для ламп накаливания, обеспечивающих рабочее освещение при значительных зрительных напряжениях, размах напряжения допускается не более 0,3%, для ламп накачивания в быту — 0,4%, для люминесцентных ламп и других электроприемников — 0,6.

Доза колебаний напряжения.

Доза колебаний напряжения идентична размаху изменения напряжения и в действующих электрических сетях вводится по мере их оснащения соответствующими приборами. При использовании показателя «доза колебаний напряжения» оценка допустимости размаха изменения напряжения может не производиться, так как рассматриваемые показатели взаимозаменяемы.

Доза колебаний напряжения также представляет собой интегральную характеристику колебаний напряжения, вызывающих у человека накапливающееся за установленный период времени раздражение из-за миганий света в диапазоне частот от 0,5 до 0,25 Гц.

Допустимое максимальное значение дозы колебаний напряжения (ψ, (%)2) в электрической сети, к которой присоединяются осветительные установки, не должно превосходить: 0,018 — с лампами накаливания в помещениях, где требуется значительное зрительное напряжение; 0,034 — с лампами накаливания во всех других помещениях; 0,079 — с люминесцентными лампами.

Как проверить и измерить качество электрической энергии?

Прежде, чем приступать к измерениям, определяющим качество электрсети, следует принять во внимание, что ПКЭ должны быть зафиксированы представителями поставщика электроэнергии. По результатам проверки составляется акт, на основании которого можно предъявлять претензию.

Для проверки всех характеристик электроэнергии на соответствие требованиям ГОСТ 53144-2013, ГОСТ Р 54149-2010 и другим нормативным документам, потребуется специальная измерительная техника. Но часть основных показателей можно измерить, используя обычный мультиметр или определить несоответствие по косвенным признакам.

Как самостоятельно выявить снижение качества электроэнергии?

Перечислим показатели, которые можно проверить, используя мультиметр в режиме измерения переменного напряжения:

  1. Устоявшееся отклонение.
  2. Перенапряжение (включая перекос фаз).
  3. Провалы.

Второй и третий пункт довольно условны, длительность искажения может быть недостаточной для реакции прибора, а перепады напряжения будет сложно отличить от перенапряжений и провалов.

К косвенным методам определения качества электроэнергии относится анализ состояния сети по работе лампы с нитью накала. Слишком яркое свечение укажет на повышенное напряжение, тусклое – будет свидетельствовать о «проседании», мигание засвидетельствует перепады.

Нехарактерная работа электрооборудования также свидетельствует о недостаточном качестве электроэнергии. Например, компрессор холодильника постоянно функционирует, нестабильная работа электроники, самопроизвольное отключение бытовой техники, все это указывает на недостаточное напряжение в бытовой сети. Превышение напряжения вызовет срабатывание реле защиты, если оно было установлено.

Перенапряжение в многоквартирных домах

В последнее время перенапряжение в многоквартирных домах, построенных до начала 90-х годов, стало настоящим бедствием. Когда эти дома строились, в проектную нагрузку не вносились микроволновые печи, холодильники (два), компьютеры, домашние солярии и т.д.

Но, тем не менее, потребители пользуются этими благами цивилизации. Что в итоге происходит? В электроэнергетике есть понятие, вечерние и утренние максимумы нагрузки. Именно в это время люди идут на работу, готовят, включают много электроприборов в общем.

перенапряжение в сети, много электроприборов

По проводам и кабелям протекает рабочий ток который больше длительно допустимых токов этих проводов и кабелей, соответственно они греются. Потом охлаждается и заново. В итоге происходит ослабление контактов или отгорание нулевого проводника.

Если в нормальном режиме напряжение между фазным и нулевым проводником 230 В, то в данном случае нулевой проводник отсутствует и напряжение будет между фазами, т.е. 380 В. В итоге напряжение «гуляет» по стояку. Его величина зависит от включенной в сеть нагрузки и может быть в диапазоне 140 – 380 В от места отгорания нулевого проводника.

Список использованной литературы

  • И.И.Карташев «Управление качеством электроэнергии» 2017
  • В.Ф.Ермаков «Качество электроэнергии» 2008
  • Белоусов В.Н. «Основные положения порядка сертификации электрической энергии в системах электроснабжения общего назначения» 2007
  • Ананичева С.С., Алексеев А.А., Мызин А.Л. «Качество электроэнергии регулирование напряжения и частоты в энергосистемах» 2012
  • Куско А., Томпсон М. «Качество энергии в электрических сетях» 2008
  • К. Г. Коноплев «Повышение качества электрической энергии в автономных электрических системах при импульсном регулировании» 2006

Может ли сила тока быть отрицательной

ЭлектроСтрой

В идеальном случае постоянный ток не меняет своего значения и направления со временем. В действительности постоянный ток не является постоянной величиной в выпрямительных устройствах, так как он содержит переменную составляющую (пульсации).

Форма составляющих постоянного тока

В гальванических элементах постоянный ток тоже не постоянен, его значение уменьшается на нагрузке с течением времени, таким образом, постоянный ток является условным определением и при его использовании, изменениями постоянной величины пренебрегают.

Параметры переменного тока и напряжения

Величина переменного тока, как и напряжения, постоянно меняется во времени. Количественными показателями для измерений и расчётов применяются их следующие параметры:

Период
T
— время, в течении которого происходит один полный цикл изменения тока в оба направления относительно нуля или среднего значения.

Читайте также: Подключение и настройка частотного преобразователя

Частота
f
— величина, обратная периоду, равная количеству периодов за одну секунду. Один период в секунду это один герц (1 Hz)

1
/T
Циклическая частота
ω
— угловая частота, равная количеству периодов за

секунд.

ω = 2πf = 2π/T

Обычно используется при расчётах тока и напряжения синусоидальной формы. Тогда в пределах периода можно не рассматривать частоту и время, а исчисления производить в радианах или градусах. T = 2π = 360°

Начальная фаза
ψ
— величина угла от нуля (
ωt
= 0) до начала периода. Измеряется в радианах или градусах. Показана на рисунке для синего графика синусоидального тока.

Начальная фаза может быть положительной или отрицательной величиной, соответственно справа или слева от нуля на графике.

Мгновенное значение

— величина напряжения или тока измеренная относительно нуля в любой выбранный момент времени
t
.

i = i(t); u = u(t)

Последовательность всех мгновенных значений в любом интервале времени можно рассмотреть как функцию изменения тока или напряжения во времени. Например, синусоидальный ток или напряжение можно выразить функцией:

i = Iampsin(ωt); u = Uampsin(ωt)

С учётом начальной фазы:

i = Iampsin(ωt + ψ); u = Uampsin(ωt + ψ)

Здесь Iamp

Читайте также: Принцип работы и разновидности преобразователей напряжения

и
Uamp
— амплитудные значения тока и напряжения.

Амплитудное значение

— максимальное по модулю мгновенное значение за период.

Iamp = max|i(t)|; Uamp = max|u(t)|

Может быть положительным и отрицательным в зависимости от положения относительно нуля. Часто вместо амплитудного значения применяется термин амплитуда

тока (напряжения) — максимальное отклонение от нулевого значения.

Среднее значение

(avg) — определяется как среднеарифметическое всех мгновенных значений за период
T
.

Среднее значение является постоянной составляющей DC

напряжения и тока. Для синусоидального тока (напряжения) среднее значение равно нулю.

Средневыпрямленное значение

— среднеарифметическое модулей всех мгновенных значений за период.

Для синусоидального тока или напряжения средневыпрямленное значение равно среднеарифметическому за положительный полупериод.

Среднеквадратичное значение (rms) — определяется как квадратный корень из среднеарифметического квадратов всех мгновенных значений за период.

Для синусоидального тока и напряжения амплитудой Iamp

(
Uamp
) среднеквадратичное значение определится из расчёта:

Среднеквадратичное — это действующее, эффективное значение, наиболее удобное для практических измерений и расчётов. Является объективным количественным показателем для любой формы тока. В активной нагрузке переменный ток совершает такую же работу за время периода, что и равный по величине его среднеквадратичному значению постоянный ток.

Постоянная составляющая тока (DС)

DC — это Direct Current в переводе как постоянный ток. Графически в форме тока можно увидеть его изменения во времени или пульсации. Такие пульсации возникают в форме постоянного тока в выпрямителях с фильтрами, где используются небольшие емкости. В выпрямительных устройствах без использования емкостей пульсация может быть большой.

Пульсирующий ток на выходе выпрямителя без емкостей иногда называют импульсным током. На графике пульсирующего тока отображены постоянная составляющая DC (прямая линия) и переменная AC (пульсации). Постоянная составляющая тока определяется как среднее значение тока в течение периода.

AVG — это среднее значение постоянного тока. Переменную составляющую AC можно рассматривать как изменение постоянного тока относительно средней величины . Пульсацию формы постоянного тока определяют по формуле.

Где Iac – среднее значение переменной составляющей AC, Idc — постоянная составляющая тока.

Всё вышесказанное также относится и к постоянному напряжению.

Постоянная составляющая тока.

⇐ ПредыдущаяСтр 3 из 9Следующая ⇒

Эксперименты показывают, что поведение дуги переменного тока вблизи моментов изменения направления дугового тока (или полярности дугового напряжения) существенно зависит от свойств материала электродов и условий в дуговом промежутке. При этом поведение дуги в эти моменты на тугоплавком и легкоплавком электродах совершенно различно и зависит от направления изменения тока (рис. 1.4).

Это хорошо прослеживаются в дуге переменного тока при сварке вольфрамовым электродом в аргоне изделий из алюминиевых сплавов. Характерной особенностью такой дуги является высокий пик напряжения повторного зажигания при переходе с прямой полярности (катод – вольфрамовый электрод) на обратную (катод – алюминиевое изделие) и незначительный пик этого напряжения при переходе с обратной полярности на прямую. Качественно это хорошо объясняется термоэмиссионной теорией неплавящегося катода и теорией автоэлектронной эмиссии из алюминиевого катода.

При переходе с обратной полярности на прямую разогретый в предыдущем полупериоде вольфрамовый электрод энергично эмитирует электроны. Ток эмиссии определяется только температурой электрода, которая из-за малой теплопроводности вольфрама не успевает заметно измениться. Поэтому ток в дуге возникает при сколь угодно малом восстанавливающемся напряжении и растет вместе с ростом напряжения. Наблюдающийся при этом небольшой пик напряжения зажигания обусловлен падающей характеристикой дуги при малых токах. Напряжение горения дуги в течение всего полупериода невелико.

Рис. 1.4. Напряжение на дуге при сварке переменным током вольфрамовым электродом алюминиевых сплавов.

Различие физических свойств электрода и изделия при сварке вольфрамовым электродом алюминиевых сплавов приводит к тому, что напряжение на дуге в одном полупериоде резко отличается от напряжения в другом полупериоде. Температура торца электрода в несколько раз выше температуры ванны с расплавленным алюминием.

Из-за того, что напряжение горения дуги в разных полупериодах существенно различаются, в сварочной цепи возникает постоянная составляющая тока. Постоянная составляющая тока при сварке на переменном токе отрицательно сказывается на работе источника питания, намагничивая трансформатор, и снижает качество сварного соединения.

1. Включение в сварочную цепь емкости (конденсатора).

2. Включение диодно-тиристорной цепочки.

Включение последовательно в сварочную цепь конденсатора приводит к уничтожению постоянной составляющей т.к. конденсатор не проводит постоянный ток. По такой схеме выполнены отечественные установки УДАР-300 и УДАР-500. Недостатком такого способа борьбы с постоянной составляющей является большие габариты и вес конденсаторной батареи и соответственно всей установки.

Включение диодно-тиристорной ячейки показано на рис. 1.5. Диод (см. рис. 1.6 – а) – это полупроводниковый прибор, пропускающий ток в одном направлении. Прибор состоит из двух электродов – катода «К» и анода «А». Диод пропускает ток в том случае, когда его анод положителен, а катод отрицателен. Если полярность на электродах противоположна (на катоде «+», а на аноде «-«), то диод закрыт и электрический ток не проходит. Тиристор (см. рис. 1.6 – б) отличается от диода наличием еще одного электрода – управляющего (УЭ). В отличие от диода тиристор пропускает ток, когда его анод положителен, катод отрицателен и на его управляющем электроде подан управляющий сигнал. Причем, управляющий сигнал может быть кратковременным (импульсным), достаточным для времени открывания тиристора (тира – дверь по-гречески). Тиристор остается открытым и после исчезновения управляющего сигнала. Закрывается он сменой полярности напряжения анод – катод, т.е. при подаче на анод отрицательного напряжения, а на катод – положительного.

Таким образом, при отрицательной полярности на изделии (обратная полярность) вся полуволна синусообразного напряжения подается на дуговой

Рис. 1.5. Включение диодно-тиристорной ячейки в сварочную цепь для подавления постоянной составляющей при сварке переменным током. 1 – выключатель; 2 – сварочный трансформатор; 3 – неплавящийся электрод; 4 – изделие; 5 – диод; 6 – тиристор.

Рис. 1.6. Изображение диода –А и тиристора – Б на принципиальных электрических схемах.

Рис. 1.7. Кривые напряжений на дуге и управляющего сигнала при включении диодно-тиристорной ячейки для подавления постоянной составляющей в сварочной цепи.

промежуток через диод 5 (рис.1.5). При положительной полярности на изделии (прямая полярность) на дуговой промежуток подается только часть синусоиды (рис. 1.7), начиная с момента подачи управляющего сигнала на тиристор 6.

Следовательно, при прямой полярности на дуговой промежуток подается пониженное напряжение, величина которого регулируется моментом подачи управляющего импульса. Угол, отсчитываемый от момента перехода синусоиды через нуль до момента подачи управляющего импульса на тиристор, называется углом управления тиристора. Таким образом, изменяя угол управления тиристором можно регулировать величину напряжения на дуговом промежутке при положительной полярности на изделии, выравнивая тем самым токи в обеих полуволнах напряжения на дуге. Импульс на управляющий электрод и момент его подачи формируется специальной электронной схемой.

Читайте также: Делитель напряжения

Такой способ борьбы с постоянной составляющей применен в отечественных установках для аргонодуговой сварки неплавящимся электродом алюминиевых сплавов УДГ – 301 и УДГ – 501.

Необходимо отметить, что повторное напряжение зажигания дуги при переходе тока через нуль с прямой полярности на обратную составляет несколько сотен вольт, которого явно не обеспечивает сварочный трансформатор. Поэтому в рассматриваемых установках применяют специальные устройства, подающие на дугу в этот момент короткие высоковольтные (до 600 В) импульсы, называемые стабилизирующими. Стабилизирующие импульсы помогают возбудиться дуге при смене полярности с прямой на обратную.

Трехфазная сварочная дуга.

Сварка трехфазной дугой проводится двумя электродами, причем две фазы подключаются к электродам, а третья к сварочному изделию, причем все три дуги горят в общем плавильном пространстве.

Последовательность и длительность горения каждой из этих дуг зависит от последовательности чередования фаз и параметров сварочной цепи (рис.1.8).

Рис.1.8. Трехфазная дуга, а – схема сварки; б – схема горения дуги через –каждые 1/6 периода; в – кривые токов и напряжений дуг; г – кривые линейных токов.

В каждый момент времени может гореть не более двух дуг. Это объясняется тем, что на торцах электродов не могут одновременно существовать анодное и катодное пятна.

Важнейшей технологической особенностью трехфазной сварочной дуги является возможность регулирования распределения мощности и теплоты, расходуемой на плавление электродов и основного металла. Это

достигается за счет изменения соотношения между токами напряжениями отдельных дуг.

Режимы трехфазной дуги и ее технологические возможности характеризуются соотношениями между действующими значениями токов и напряжений:

Km1 = Ic/Ia Km2 = Ic/Ib Ku1 = Uab/Ubc Ku2 = Uab/Uca .

Изменяя эти коэффициенты, можно существенно регулировать глубину проплавления основного металла и скорости плавления электродов. В пределе можно вообще исключить плавление основного металла.

В трехфазной сварочной дуге в любой момент времени горит, по крайней мере, одна дуга, вследствие чего ее устойчивость выше, чем однофазной дуги. Здесь значительно облегчены условия повторных возбуждений, т.к. непрерывно сохраняется достаточно высокая температура активных пятен и дуговой промежуток всегда ионизирован.

Сжатая дуга.

В последние годы получают развитие методы повышения температуры дугового разряда за счет принудительного сжатия столба дуги, которое производится в плазменных горелках или плазмотронах. С помощью этих устройств можно получить температуры, достигающие 300000С. Наиболее распространенный способ сжатия состоит в том, что диаметр столба дуги

ограничивают специальным соплом (рис.1.9).

Защитный газ, подаваемый внутрь горелки, вытекая через сопло, сжимает столб дуги, изолируя его от стенок, и выносит нагретые до высоких температур газы (плазму) за пределы горелки. Этот газ называется плазмообразующим. Чтобы сопло не плавилось, его выполняют из материала с высокой теплопроводностью (чаще всего из меди) и охлаждают проточной водой. В горелках типа анод – сопло (рис.1.9,б) дуга горит внутри замкнутой камеры, и образующаяся плазма выдувается из сопла (плазменная сварка косвенной дугой).

При горении дуги в узком водоохлаждаемом сопле наружные слои газа, соприкасающиеся со стенками сопла, имеют более низкую температуру, чем центральные слои. В результате проводимость наружных слоев гораздо ниже,

чем центральных, что приводит к увеличению плотности тока в центральной части плазменной струи. В свою очередь, это приводит к повышению температуры.

Степень ионизации газа в центральной части сопла при сильном сжатии дуги приближается к единице. Поэтому столб дуги как элемент электрической цепи по своим свойствам приближается к линейному сопротивлению, вольтамперная характеристика его имеет возрастающий характер.

В качестве плазмообразующего газа используются как инертные газы (аргон, гелий, азот) так и кислородсодержащие смеси (сжатый воздух).

Рис.1.9. Схемы плазмотронов, а – с изолированным соплом; б – сопло-анод; 1

— электрод; 2 – токоподводящий мундштук; 3 – сопло; 4 – плазменная струя; 5 – изделие.

В реальных условиях сварки или резки длина разрядного промежутка может изменяться в широких пределах. Поэтому применяются источники с крутопадающими характеристиками. В связи с высоким значением напряженности электрического поля в сжатой дуге требуются специальные источники питания с повышенным напряжением (до 500 В). Для первоначального возбуждения дуги в плазмотронах используются высоковольтные разряды высокой частоты (от осцилляторов), либо вспомогательные маломощные дуги, горящие между электродом и соплом горелки (дежурная дуга).

1.6 Устойчивость сварочной дуги и требования

Параметры постоянного тока и напряжения

Интенсивность электрического тока выражается в количестве зарядов перемещенных за промежуток времени через поперечное сечение проводника. Одним из важных параметров постоянного тока является величина тока, которая измеряется в Амперах. Интенсивность тока в 1 Ампер заключается в перемещении заряда один Кулон в течение 1 секунды.

Напряжение постоянного тока измеряется в Вольтах. Напряжение постоянного тока представляет собой разность потенциалов между двумя точками одной электрической цепи. Также важным параметром для постоянного напряжения является размах пульсации и коэффициент пульсации. Размах пульсации представляет собой разность между максимальной величиной пульсации и минимальной.

А коэффициент пульсации выражается в отношении действующей величины переменной составляющей (AC) тока к постоянному значению составляющей (DC). Также важным параметром постоянного тока является мощность P. Мощность постоянного тока можно характеризовать его работой за определенный промежуток времени. Мощность измеряется в Ваттах и определяется по формуле:

Согласно этой формуле одинаковую мощность можно получить при разных токах и напряжениях.

Комплексные токи и напряжения онлайн

Значение напряжения(комплексное выражение или через пробел амплитуда и фаза)
Значение тока(комплексное выражение или через пробел амплитуда и фаза)
Значение сопротивления(комплексное выражение или через пробел амплитуда и фаза)
Мгновенное значение напряжения
Действующее значение напряжение
Комплексное значение напряжения
Мгновенное значение тока
Действующее значение тока
Комплексное значение тока
Комплексное значение сопротивления
Комплексное значение проводимости
Угол сдвига фаз между напряжением и тока
Активная составляющая напряжения
Реактивная составляющая напряжения
Активная составляющая тока
Реактивная составляющая тока

В помощь тем, кто начал изучать электротехнику и иногда путается в расчетах комплексных токов и напряжений, и создан этот калькулятор.

Напомним, что мгновенное значения переменного тока может быть выражено в виде гармонического колебания

где — какой либо момент времени

Таким же способом можно представить и мгновенное значения напряжения

Если мы попытаемся оценить какой же среднее значение тока будет за какой то определенный период, мы столкнемся с определенными трудностями.

Так как мгновенный ток за период может принимать как положительные так и отрицательные значения, то сложив их, мы получим что среднее значения тока равно нулю. Но такого быть не может…

Читайте также: Определение падения напряжения

Ток прошедший за этот период, сделал же какую то работу, он же не мог исчезнуть без ничего, не оставив следов.

Какую же работу может сделать ток прошедший через проводник? Самый простой и ощущаемый процесс это нагревание проводника. А по закону Джоуля-Ленца, который определяет сколько же электрической энергии уходит в тепловую, есть связь между нагревом(выделением теплоты) и проходящим через проводник значением тока.

Таким образом экспериментально, а потом уже и теоретически определили, что между амплитудой тока и «средним» значением ( правильно его назвать действующим ) есть простое соотношение.

Именно действующее значении тока, выполняет работу и участвует в вычислениях мощности. Именно это значение показывает вольтметр когда мы измеряем напряжение переменного тока.

Такие же рассуждения насчет напряжения приводят нас к подобной формуле.

Мы также гармоническое колебание можем представить в комплексном виде ( показательной форме )

Это не наша прихоть. Это лишь желание упростить вычисления которые встречаются в электротехнике.

Например при сложении двух периодически изменяющихся значений тока, лучше использовать векторное сложение. А что такое векторное сложение, как не работа с комплексными числами? И так во всем в электротехнике.

Поэтому мы можем значение действительного тока выразить вот так

Тогда, зная комплексные значения тока или напряжения в виде ,мы можем узнать модуль действительной величины тока , а также начальную фазу

Периодический переменный ток[править | править код]

Развёрнутая диаграмма периодического переменного тока
Периодическим переменным током

называется такой электрический ток, который через равные промежутки времени повторяет полный цикл своих изменений, возвращаясь к своей исходной величине.

На представленной диаграмме мы видим, что через равные промежутки времени T график тока воспроизводится полностью без каких-либо изменений.

Время T , в течение которого переменный периодический ток совершает полный цикл своих изменений, возвращаясь к своей исходной величине, называется периодом переменного тока

Величина, обратная периоду, называется частотой

переменного тока:
f = 1 T >> , где f — частота переменного тока; T — период переменного тока.
Если выразить время T в секундах (sec

), то будем иметь:
f = 1 T [ 1 s e c ] >\left[>\right]> , то есть размерность частоты переменного тока выражается в 1/с
.

Частота переменного тока численно равна числу периодов в секунду.

За единицу измерения частоты переменного тока принят 1 герц (1 гц, 1 Гц, 1 Hz

Герц — единица Международной системы единиц (СИ

), названа в честь Генриха Герца. Через основные единицы СИ герц выражается следующим образом:
1 Гц = 1 −1
. Десятичные кратные и дольные единицы образуют с помощью стандартных приставок СИ.

Частота переменного тока равна одному герцу, если период тока равен одной секунде (один полный цикл за одну секунду).

Стандарты частоты[править | править код]

В большинстве стран в электротехнике применяются частоты 50 или 60 Гц (60 Гц — этот вариант принят в США и Канаде). В некоторых странах, например, в Японии, используются оба стандарта (см. Промышленная частота переменного тока)

Частота 16 ⅔ Гц до сих пор используется в некоторых европейских железнодорожных сетях (Австрия, Германия, Норвегия, Швеция и Швейцария), частота 25 Гц — на старых железнодорожных линиях США. (См. Электрификация железных дорог переменным током пониженной частоты).

В авиации и военной технике для снижения массы устройств или с целью повышения частоты вращения электродвигателей переменного тока применяется частота 400 Гц.
Число оборотов ротора n [ 1 m i n ] >\right]> синхронного электродвигателя определяется по формуле:
n = 60 f p

>> , где

f — частота переменного тока;

p — число пар полюсов.
Так как минимальное число пар полюсов равно единице, тогда синхронный электродвигатель, работающий на переменном токе частотой 50 герц разовьёт 3 000 оборотов в минуту, а электродвигатель, работающий на переменном токе частотой 400 герц, разовьёт 24 000 оборотов в минуту. Частота вращения ротора асинхронного электродвигателя меньше, чем частота питающего его тока и зависит от нагрузки. Скольжение — разность между частотой вращения вращающегося магнитного поля и частотой вращения ротора.
В технике связи применяются частоты более высокие, и в частности в радиотехнике — порядка миллионов и миллиардов герц.

Мощность постоянного тока

В электроцепях мощность находится в функциональной зависимости от напряжения и тока. Неудивительно, что она похожа на вышеприведённое уравнение P=IU.

Но тут P не пропорциональна току, умноженному на напряжение, а равняется ему. Исчисляется в ваттах, сокращённо Вт.

Важно знать, что ток и напряжение отдельно мощность не определяют, лишь их совокупность. Напряжение является работой на единицу электрического заряда, а ток – скоростью движения зарядов. Напряжение (эквивалент работы) подобно работе при подъёме веса в противодействие силе гравитации. Ток (эквивалентен скорости) подобен скорости подъёма веса. Их произведение и составляет мощность.

Как тракторный и мотоциклетный моторы, цепь с высоким напряжением и небольшим током способна быть одинаковой мощности с цепью невысокого напряжения и большим током. Напряжение и ток вне взаимосвязи не могут характеризовать мощность электроцепи.

Разомкнутая цепь с напряжением и нулевой силой тока работы не совершает, вне зависимости от высоты напряжения. Ведь, согласно формуле, что угодно, умноженное на 0, даёт 0: P = 0 U = 0. В замкнутой цепи из сверхпроводящего провода с нулевым сопротивлением можно достичь тока при напряжении, равном нулю, что также не приведёт к рассеиванию энергии: P = I 0 = 0.

Лошадиные силы и ватты обозначают одно и то же: количество работы, которую можно совершить за единицу времени. Эти единицы взаимосвязаны соотношением

мощность постоянного тока

Виды мощности постоянного тока

Любая мощностная величина определяется работой, которая совершается за определенную единицу времени. Чаще всего ею становится секунда. Она означает величину, характеризующую, насколько быстро совершается работа. Касаемо электрической мощности это расход электроэнергии за одну секунду.

Мощностная характеристика тока соответствует отношению его работы ко времени

Работой тока называется процесс превращения электроэнергии в какую-либо другую энергию (механическую, тепловую или световую). Именно по мощности, которая обозначается буквой «P» или «W», и оценивается работоспособность электротока.

К сведению! Вообще у тока постоянного значения нет активной и реактивной P. Для этого вида сети характерна только мгновенная характеристика.

Мгновенная мощность

Если говорить о сетях переменного электротока, то рассматриваемая величина в них, как и электроток или напряжение, регулярно меняет свои значения. Это напрямую влияет на другие параметры. При константном течении зарядов все остается неизменным. Именно поэтому и возникает термин «мгновенная мощность».

Силы в сети регулярного тока остаются неизменными и равняются мгновенным их значениям, взятым в произвольный момент времени. Такую характеристику можно высчитать по мгновенным значениям. Для этого подходит формула мощности постоянного тока в цепи: P = I * U.

Вам это будет интересно Особенности использования канифоли

Рассматриваемая величина может быть найдена из произведения силы электротока и напряжения

Если сеть пассивна и в ней соблюдается закон Ома, то справедливо равенство. В случае подключения источника ЭДС нужна другая формула: P = I * E, где E — это электродвижущая сила.

Активная мощность

Активная мощность — это среднее за период значение мгновенной P. При активной P происходит конвертация мощности тока в энергию любого вида (механическую, световую или тепловую). Подобный перевод электротока нельзя выполнить в обратном направлении. Активный тип также измеряется в ваттах. 1 Ватт равен 1 вольту умноженному на 1 ампер.

Работа неразрывно связана с определением мощностных характеристик

К сведению! В бытовых и уж тем более промышленных масштабах единицу измерения ватт никогда не используют. Для этих целей задействуют показатели на порядок выше: мегаватты в киловатты.

Реактивная мощность

Реактивная мощностная характеристика определяет нагрузку, которая создается электрическими устройствами определенными колебаниями энергии электромагнитного поля в сетях синусоидального тока переменной частоты. Она равна произведению среднеквадратичных значений напряжения и силы тока, умноженных на синус угла, на который сдвигается фаза между ними. Реактивный параметр неразрывно связан с полной P и активным параметром.

Все основные величины могут быть найдены с использованием закона Ома

Если говорить про физический смыл реактивности, то он представляет собой некую энергию, которая перекачивается из источника к реактивным элементам приемника (конденсатор, обмотка генератора, катушка индуктивности и т. д.), а потом возвращается обратно в источник за время одного периода колебаний.

Полная мощность

Полная P электротока представляет собой значение, соответствующее произведению силы электротока и напряжения в цепи. Она неразрывно связана с активной и реактивной величинами и определяется следующим уравнением: , где Sos = полная мощность, а P и Q — ее активная и реактивная характеристики соответственно.

Общая мощность, которую можно представить в виде кружки пива

Если говорить проще, то активная P есть везде, где присутствует нагрузка активного плана. Например, в спиральных нагревателях, сопротивлении проводов и т. д. Реактивный параметр характерен для реактивной нагрузки, которая имеется в элементах индуктивности или емкости.

Общее понятие о переменном токе[править | править код]

Так как переменный ток в общем случае меняется в электрической цепи не только по величине, но и по направлению, то одно из направлений переменного тока в цепи считают условно положительным, а другое, противоположное первому, условно отрицательным. В соответствии с этим и величину мгновенного значения переменного тока в первом случае считают положительной, а во втором случае — отрицательной.

Переменный ток — величина алгебраическая, знак его определяется тем, в каком направлении в рассматриваемый момент времени протекает ток в цепи — в положительном или отрицательном.

Величина переменного тока, соответствующая данному моменту времени, называется мгновенным значением переменного тока

Максимальное мгновенное значение переменного тока, которого он достигает в процессе своего изменения, называется амплитудой тока

I m > .
График зависимости переменного тока от времени называется развёрнутой диаграммой переменного тока.
Развёрнутая диаграмма переменного синусоидального тока

На рисунке приведена развёрнутая диаграмма переменного тока

, изменяющегося с течением времени по величине и направлению. На горизонтальной оси 0 t отложены в определённом масштабе отрезки времени, а по вертикальной оси — величины тока, вверх — от начальной точки 0 — положительные, вниз — отрицательные. Часть развёрнутой диаграммы тока, расположенная выше оси времени 0 t , характеризует изменение положительных величин во времени, а часть, расположенная ниже оси времени 0 t , — изменение отрицательных величин.

В начальный момент времени t = 0 ток равен нулю ( i = 0 ) . Затем он с течением времени растёт в положительном направлении, в момент времени t = T 4 >> достигает максимального значения, после чего убывает по величине и в момент времени t = T 2 >> становится равным нулю. Затем, пройдя через нулевое значение, ток меняет свой знак на противоположный, то есть становится отрицательным, затем растёт по абсолютной величине, затем достигает максимума при t = 3 4 T >T> , после чего убывает и при t = T становится равным нулю.

Какие факторы влияют на мощность тока

На постоянный ток влияют всего две величины: сила электротока (в амперах) и напряжение (в вольтах). Из формулы, описанной выше, становится понятно, что мощностная характеристика константного электротока высчитывается как произведение силы электротока в этой сети на напряжение.

Обратите внимание! В случае подключения к цепи источника электродвижущих сил P будет зависеть и от него, а если быть точнее, то он будет измеряться как сила тока, умноженная на ЭДС.

Вам это будет интересно Описание установленной и расчетной мощности

Что такое постоянный ток

Постоянный электрический ток — это такой ток, который не изменяет свое направление и величину с течением времени. Это своеобразная разновидность однонаправленного DC. Его мощностью называется значение, показывающее работу, которую он совершает в результате перемещения заряда на некоторое расстояние за единицу времени. Измеряется она, как и механическая или световая величина в ваттах.

Графики различных типов электрических токов

Что касается расстояния, то этот факт можно опустить, так как заряды в проводнике могут двигаться с очень большой скоростью, преодолевая огромные расстояния.

Постоянное течение зарядов не изменяет своей величины во времени

Периодический переменный ток

Развёрнутая диаграмма периодического переменного тока
Периодическим переменным током

называется такой электрический ток, который через равные промежутки времени повторяет полный цикл своих изменений, возвращаясь к своей исходной величине.

На представленной диаграмме мы видим, что через равные промежутки времени T график тока воспроизводится полностью без каких-либо изменений.

Время T , в течение которого переменный периодический ток совершает полный цикл своих изменений, возвращаясь к своей исходной величине, называется периодом переменного тока

Величина, обратная периоду, называется частотой

переменного тока:
f = 1 T >> , где f — частота переменного тока; T — период переменного тока.
Если выразить время T в секундах (sec

), то будем иметь:
f = 1 T [ 1 s e c ] >\left[>\right]> , то есть размерность частоты переменного тока выражается в 1/с.
.

Частота переменного тока численно равна числу периодов в секунду.

За единицу измерения частоты переменного тока принят 1 герц (1 гц, 1 Гц, 1 Hz

Герц — единица Международной системы единиц (СИ

), названа в честь Генриха Герца. Через основные единицы СИ герц выражается следующим образом:
1 Гц = 1 −1
. Десятичные кратные и дольные единицы образуют с помощью стандартных приставок СИ.

Частота переменного тока равна одному герцу, если период тока равен одной секунде (один полный цикл за одну секунду).

Стандарты частоты

В большинстве стран в электротехнике применяются частоты 50 или 60 Гц (60 Гц — этот вариант принят в США и Канаде). В некоторых странах, например, в Японии, используются оба стандарта (см. Промышленная частота переменного тока)

Частота 16 ⅔ Гц до сих пор используется в некоторых европейских железнодорожных сетях (Австрия, Германия, Норвегия, Швеция и Швейцария), частота 25 Гц — на старых железнодорожных линиях США. (См. Электрификация железных дорог переменным током пониженной частоты).

В авиации и военной технике для снижения массы устройств или с целью повышения частоты вращения электродвигателей переменного тока применяется частота 400 Гц.
Число оборотов ротора n [ 1 m i n ] >\right]> синхронного электродвигателя определяется по формуле:
n = 60 f p

>> , где

f — частота переменного тока;

p — число пар полюсов.
Так как минимальное число пар полюсов равно единице, тогда синхронный электродвигатель, работающий на переменном токе частотой 50 герц разовьёт 3 000 оборотов в минуту, а электродвигатель, рассчитанный на 400 герц, разовьёт 24 000 оборотов в минуту. Число оборотов ротора асинхронного электродвигателя меньше, чем ротора синхронного двигателя и зависит от нагрузки. Скольжение — разность между частотой вращения вращающегося магнитного поля и частотой вращения ротора.
В технике связи применяются частоты более высокие, и в частности в радиотехнике — порядка миллионов и миллиардов герц.

Законы Постоянного Тока

В 1800 г. произошло событие огромного значения. Алессандро Вольта (1745-1827) изобрел электрическую батарею и впервые получил с ее помощью устойчивый поток зарядов. Это открытие знаменовало начало новой эпохи, полностью преобразившей нашу цивилизацию, – вся современная электротехника основана на использовании электрического тока.

Электрическим током называют упорядоченное движение электрических зарядов. В различных средах электрический ток обусловлен движением различных зарядов, но за направление электрического тока условно выбрано направление движения положительных зарядов.

Постоянный ток в проводниках создается благодаря особым устройствам – источникам тока. Проводники – это такие тела, в которых имеются свободные частицы, обладающие электрическим зарядом, способные ускоряться и перемещаться под действием приложенных к ним электрических сил. Возьмем два тела, заряженных противоположными зарядами (рис. 44). Если их соединить проводником, то по нему пойдет ток. В результате выравнивания потенциалов ток прекращается.

Для того чтобы движение зарядов не прекратилось, необходимо каким-то образом положительные заряды с тела В перенести снова на тело А. Такой перенос силы электростатической природы сделать не могут. Следовательно, для поддержания тока должны существовать силы не кулоновской природы. Силы неэлектростатического происхождения, способные разделить электрические заряды, называются сторонними силами .

Источник тока – это устройство, в котором происходит разделение электрических зарядов под действием сторонних сил.

Общее понятие о переменном токе

Так как переменный ток в общем случае меняется в электрической цепи не только по величине, но и по направлению, то одно из направлений переменного тока в цепи считают условно положительным, а другое, противоположное первому, условно отрицательным. В соответствии с этим и величину мгновенного значения переменного тока в первом случае считают положительной, а во втором случае — отрицательной.

Переменный ток — величина алгебраическая, знак его определяется тем, в каком направлении в рассматриваемый момент времени протекает ток в цепи — в положительном или отрицательном.

Величина переменного тока, соответствующая данному моменту времени, называется мгновенным значением переменного тока

Максимальное мгновенное значение переменного тока, которое он достигает в процессе своего изменения, называется амплитудой тока

I m > .
График зависимости переменного тока от времени называется развёрнутой диаграммой переменного тока.

Развёрнутая диаграмма переменного синусоидального тока

На рисунке приведена развёрнутая диаграмма переменного тока

, изменяющегося с течением времени по величине и направлению. На горизонтальной оси 0 t отложены в определённом масштабе отрезки времени, а по вертикальной оси — величины тока, вверх — от начальной точки 0 — положительные, вниз — отрицательные. Часть развёрнутой диаграммы тока, расположенная выше оси времени 0 t , характеризует изменение положительных величин во времени, а часть, расположенная ниже оси времени 0 t , — изменение отрицательных величин.

В начальный момент времени t = 0 ток равен нулю ( i = 0 ) . Затем он с течением времени растёт в положительном направлении, в момент времени t = T 4 >> достигает максимального значения, после чего убывает по величине и в момент времени t = T 2 >> становится равным нулю. Затем, пройдя через нулевое значение, ток меняет свой знак на противоположный, то есть становится отрицательным, затем растёт по абсолютной величине, затем достигает максимума при t = 3 4 T >T> , после чего убывает и при t = T становится равным нулю.

Параметры постоянного тока

  • Размах пульсации напряжения (тока) — величина, равная разности между наибольшим и наименьшим значениями пульсирующего напряжения (тока) за определенный интервал времени
  • Коэффициент пульсации напряжения (тока) — величина, равная отношению наибольшего значения переменной составляющей пульсирующего напряжения (тока) к его постоянной составляющей. Коэффициент пульсации напряжения (тока) по действующему значению — величина, равная отношению действующего значения переменной составляющей пульсирующего напряжения (тока) к его постоянной составляющей
  • Коэффициент пульсации напряжения (тока) пo среднему значению — величина, равная отношению среднего значения переменной составляющей пульсирующего напряжения (тока) к его постоянной составляющей

Параметры пульсации определяются по осциллографу, либо с помощью двух вольтметров или амперметров (постоянного и переменного тока)