Мощность трансформатора напряжения 6 кв

Выбор трансформаторов тока и трансформаторов напряжения: формулы, расчет, схемы

Выбор трансформаторов тока и трансформаторов напряжения: формулы, расчет, схемы

Для контроля за режимом работы электроприемников, а также для производства денежного расчета с энергоснабжающей организацией применяются контрольно-измерительные приборы на подстанциях, присоединяемые к цепям высокого напряжения через измерительные трансформаторы тока и напряжения.

Выбор трансформаторов тока

Трансформаторы тока выбираются по номинальному напряжению, номинальному первичному току и проверяются по электродинамической и термической стойкости к токам короткого замыкания. Особенностью выбора трансформаторов тока является выбор по классу точности и проверка на допустимую нагрузку вторичной цепи.

Классы точности трансформаторов тока

  • Трансформаторы тока для присоединения счетчиков, по которым ведутся денежные расчеты, должны иметь класс точности 0,5.
  • Для технического учета допускается применение трансформаторов тока класса точности 1;
  • Для включения указывающих электроизмерительных приборов — не ниже 3;
  • Для релейной защиты — класса 10(Р).

Чтобы погрешность трансформатора тока не превысила допустимую для данного класса точности, вторичная нагрузка Z2 не должна превышать номинальную нагрузку Z2ном, задаваемую в каталогах.

Индуктивное сопротивление таковых цепей невелико, поэтому принимают Z2р = г2р. Вторичная нагрузка г2 состоит из сопротивления приборов г приб, соединительных проводов гпр и переходного сопротивления контактов гк:

Выбор трансформаторов тока и трансформаторов напряжения: формулы, расчет, схемы

Для определения сопротивления приборов, питающихся от трансформаторов тока, необходимо составить таблицу — перечень электроизмерительных приборов, устанавливаемых в данном присоединении.

Суммарное сопротивление приборов, Ом, рассчитывается посуммарной мощности:

Выбор трансформаторов тока и трансформаторов напряжения: формулы, расчет, схемы

В РУ 6—10 кВ применяются трансформаторы с /2ном = 5А; в РУ 110 — 220 кВ — 1 или 5 А. Сопротивление контактов ГК принимают 0,05 Ом при двухтрех приборах и 0,10 — при большем количестве приборов. Сопротивление проводов рассчитывается по их сечению и длине. Для алюминиевых проводов минимальное сечение — 4 мм2; для медных — 2,5 мм2.

Расчетная длина провода зависит от схемы соединения трансформатора тока и расстояния l от трансформатора до приборов:

  • при включении трансформаторов тока в неполную звезду;
  • 21 — при включении всех приборов в одну фазу;
  • l — при включении трансформаторов тока в полную звезду.

При этом длина l может быть принята ориентировочно для РУ 6—10 к В:

  • при установке приборов в шкафах КРУ / = 4… 6 м;
  • на щите управления /= 30…40 м;
  • для РУ 35 кВ / = 45…60 м;
  • для РУ ПО — 220 кВ/ = 65…80 м.

Если при принятом сечении провода вторичное сопротивление цепи трансформаторов тока окажется больше ZHOU для заданного класса точности, то необходимо определить требуемое сечение проводов с учетом допустимого сопротивления вторичной цепи:

Выбор трансформаторов тока и трансформаторов напряжения: формулы, расчет, схемы

где р — удельное сопротивление.

Полученное сечение округляется до большего стандартного сечения контрольных кабелей: 2,5; 4; 6; 10 мм2.

Условия выбора трансформатора тока приведены в табл. 7.5. Дополнительно могут быть заданы: КТН = 1т.тн/УР21ном — кратность тока динамической стойкости трансформатора тока; КТ = /Т//|„ОМ — кратность тока термической стойкости; /i„OM — номинальный ток первичной обмотки трансформатора тока.

Выбор трансформаторов тока и трансформаторов напряжения: формулы, расчет, схемы

Выбора трансформаторов напряжения

Трансформаторы напряжения, предназначенные для питания катушек напряжения измерительных приборов и реле, устанавливают на каждой секции сборных шин. Их выбирают по форме исполнения, конструкции и схеме соединения обмоток, номинальному напряжению, классу точности и вторичной нагрузке.

Условия выбора трансформаторов напряжения

  • конструкция, схема соединения;
  • соблюдение условия Uc.ном = U1ном (где Uc.ном— номинальное напряжение сети, к которой присоединяется трансформатор напряжения, кВ;
  • U1.ном— номинальное напряжение первичной обмотки трансформатора, кВ);
  • класс точности;
  • соблюдение условия S2 рас
  • S2 ном— номинальная мощность вторичной цепи трансформатора напряжения, обеспечивающая его работу в заданном классе точности, В*А).

Для однофазных трансформаторов, соединенных в звезду, в качестве U необходимо взять суммарную мощность всех трех фаз, а для соединенных по схеме неполного открытого треугольника — удвоенную мощность одного трансформатора. В выбранном классе точности, если нагрузка (вторичная) превышает номинальную мощность, часть приборов подключают к дополнительно установленному трансформатору напряжения. Вторичная нагрузка ТН — это мощность приборов и реле, подключенных к ТН.

Для упрощения расчетов расчетную нагрузку можно не разделять по фазам, тогда

Выбор трансформаторов тока и трансформаторов напряжения: формулы, расчет, схемы

При определении вторичной нагрузки сопротивление соединительных проводов не учитывается, так как оно мало. Однако ПУЭ требует оценить потерю напряжения, которая в проводах от трансформаторов к счетчикам не должна превышать 0,5 %, а в проводах к щитовым измерительным приборам — 3 %. Сечение провода, выбранное по механической прочности, как правило, отвечает требованиям потерь напряжения.

Выбор типа трансформатора напряжения определяется его назначением. Если от ТН получают питание расчетные счетчики, то целесообразно использовать на напряжениях 6, 10, 35 кВ два однофазных трансформатора типа НОМ или НОЛ, соединенных по схеме открытого неполного треугольника.

Два однофазных ТН обладают большей мощностью, чем один трехфазный, а по стоимости на напряжения 6 и 10 кВ они примерно равноценны. Если одновременно с измерением необходимо производить контроль изоляции в сетях 6—10 кВ, то устанавливают трехфазные трехобмоточные пятистержневые трансформаторы напряжения серии НТМИ или группу из трех однофазных трансформаторов серии ЗНОМ или ЗНОУТ, если мощность НТМИ недостаточна.

При использовании трех однофазных трансформаторов, соединенных в звезду, нейтральная точка обмотки высокого напряжения ТН должна быть заземлена для правильной работы приборов контроля состояния изоляции

Для напряжения 110 кВ и выше применяют каскадные трансформаторы НКФ.

Надежность измерительных трансформаторов напряжения в сетях с изолированной нейтралью

Электрические сети 6-35 кВ Украины и стран СНГ выполнены с изолированной нейтралью. Эти сети при определенных токах замыкания на землю (для Uн=35 кВ – 10 А; Uн=10 кВ – 20 А; Uн=6 кВ – 30 А) должны иметь, как правило, реакторную или резистивную компенсацию нейтрали.

надежность трансформаторов тока

Основным преимуществом сетей с изолированной нейтралью является возможность обеспечивать длительное время потребителей электроэнергией даже при наличии «земли» в сети без их отключения. В то же время одним из основных недостатков является опасность возникновения (при малых токах замыкания на землю, равных 0,5-3,5 А) феррорезонансных процессов с последующим повреждением электромагнитных трансформаторов напряжения (ТН).

Феррорезонансные процессы (ФРП) в таких сетях, как показывает опыт эксплуатации и исследования, проведенные учеными «Львовской политехники», возникают во время появления и обрыва «земли» в сети (срабатывание разрядников, касание ветвями деревьев, обрыв троса фаз ЛЭП, стекание капель росы по изоляторам, особенно загрязненным, некоторым коммутационным переключениям, приводящим к изменению емкости в сети и т.д.).

В большинстве случаев эти ФРП проходят при частотах 17 и 25 Гц и сопровождаются протеканием через первичную обмотку ТН сверхтоков, которые на порядок и больше превышают допустимые для ТН токи, из-за чего первичные обмотки перегорают в течение нескольких минут. В эксплуатации имеют место случаи, когда первоначально по два-три раза (после замены) перегорает высоковольтный предохранитель 35 кВ, рассчитанный на номинальный ток срабатывания 2 А (это при том, что допустимый ток первичной обмотки ТН не превышает 60 мА), при этом повреждается ТН. Таким образом, имеют место неоднократные протекания больших токов через об-мотку ТН сверх допустимых, которые постепенно, за счет перегрева внутренних слоев, приводят к разложению изоляции и повреждению ТН.

В настоящее время, если судить по публикациям российских журналов, проводится большая работа по защите ТН от их повреждений в сетях.

Однако каждый из предлагаемых методов имеет свои недостатки и не в состоянии полностью решить проблему защиты ТН от воздействия ФРП. Кроме того, отсутствует возможность фиксации появления ФРП на участке сети с ТН.

С этой точки зрения наиболее эффективным способом подавления (а главное фиксацией времени и длительности) ФРП является устройство подавления резонанса (УПР), разработанное на кафедре электрических сетей «Львовской политехники», типа ПЗФ-5 (рис. 1, 2).

надежность трансформаторов тока

При возникновении феррорезонанса на выводах обмотки «разомкнутого треугольника» трехфазного ТН (или группы трех однофазных ТН) возникает напряжение нулевой последовательности 3U0 ? 100 В с субгармонической частотой (чаще всего 20-25 Гц).

После появления напряжения с субгармонической частотой устройство ПЗФ-5 с заданной задержкой времени однократно подключает к выводам обмотки «разомкнутого треугольника» резистор 5-6 Ом на время, заданное для гашения ФРП. Подключенный резистор обеспечивает срыв (погашение) феррорезонансных колебаний в течение t ?0,3 с, что исключает возможность термического повреждения обмоток ВН ТН феррорезонансными процессами.

У устройства ПЗФ-5 предусмотрено однократное его включение на заданное время с повторной готовностью к срабатыванию через заданное время. При длительном феррорезонансе предусмотрено повторное однократное срабатывание устройства с последующим запретом (блокированием) импульса гашения вплоть до ликвидации феррорезонанса, после чего устройство снова будет готово к работе. Это обеспечивает термическую стойкость резистора при многократных частых пусках устройства (например, при перемежающей дуге, частыми замыканиями на землю проводов сети ветками деревьев, порывами ветра и т.д.). Устройство формирует архив и отражает на дисплее 5 последних режимов феррорезонанса (срабатываний устройства). В «архиве аварий» устройства накапливается информация о дате и времени возникавших аварийных состояний, что дает эксплуатационным службам дополнительную информацию о состоянии сети в том или ином режиме. По анализу «архива» появляется возможность принять меры по повышению надежности сети в целом.

В настоящее время в системах установлено около 60 УПР. В сетях, где они установлены, информации о повреждениях ТН и неправильной работе ПЗФ не поступало.

Устройство представляет собой металлический ящик размерами 240х185х80 мм, к которому подводится питание ТН 100 В, 50 Гц и напряжение 3U0 от «разомкнутого треугольника», по которому и определяется наличие резонанса в сети. Устройство потребляет не более 10 ВА, устанавливается на панели релейной защиты и может работать при температуре окружающей среды от -55 0С до +60 0С. УПР ПЗФ-5 имеет кнопки вызова – ввода информации (с контролем информации по цифровому индикатору), проверки исправности (тестирования), а также контакты для запуска реле сигнализации при срабатывании (пуске) защиты или потере питания. Масса устройства 3 кг (рис. 3).

Прибор типа ПЗФ-5 обеспечивает защиту трансформатора напряжения от повреждения при феррорезонансных процессах. Вместе с этим нужно учитывать, что ПЗФ-5 может защитить ТН от повреждения только в том случае, если не менее 60% ТН в электрически связанной сети будет оборудовано устройством защиты от ФРП. Наиболее благоприятными условиями для предотвращения ФРП является оборудование такими устройствами 80-90% ТН в электрически связанной сети. Это необходимо потому, что вывод в ремонт одного ТН, оборудованного устройством ПЗФ, приведет к уменьшению общего процента оборудованных ТН, и условия для предотвращения ФРП соответственно ухудшатся.Разработчики и изготовители ТН, так же как и эксплуатационники, заинтересованы в безаварийной работе ТН и было бы целесообразно провести проверку работы устройства ПЗФ-5 в наиболее проблемных сетях, обобщить опыт работы и на его основе принять окончательное решение о целесообразности применения ПЗФ-5.

Выбор числа и мощности трансформаторов: принципы и правила

Выбор числа и мощности трансформаторов: принципы и правила

Выбор числа и мощности трансформаторов на подстанциях определяется величиной и характером электрических нагрузок (требуемой надежностью электроснабжения и характером потребления электроэнергии), территориальным размещением нагрузок, их перспективным изменением и при необходимости обосновывается техникоэкономическими расчетами.

Основные принципы выбора трансформатора

Как правило, в системах электроснабжения применяются одно и двухт рансформаторные подстанции. Применение трех трансформаторных подстанций вызывает дополнительные капитальные затраты и повышает годовые эксплуатационные расходы. Трехтрансформаторные подстанции используются редко, как вынужденное решение при реконструкции, расширении подстанции, при системе раздельного питания силовой и осветительной нагрузок, при питании резкопеременных нагрузок.

На крупных подстанциях (ГПП) применяются в основном два трансформатора (два независимых источника питания), так как через такие подстанции должны обеспечиваться электроэнергией электроприемники I, II и III категорий надежности электроснабжения.

При нескольких пунктах приема электроэнергии на предприятии на ГПП, а также при питании предприятия по схеме глубокого ввода наПГВ допускается применять по одному трансформатору при обеспечении послеаварийного питания нагрузок по связям вторичного напряжения с соседними подстанциями (ПГВ, ГПП), с ТЭЦ или другими ИП. При магистральном питании однотрансформаторных ПГВ по линиям 35—220 кВ ближайшие подстанции рекомендуется присоединять к разным линиям или цепям с последующим использованием в послеаварийных режимах связей на вторичном напряжении.

Однотрансформаторные ТП 6—10/0,4—0,23 кВ применяются при питании нагрузок, допускающих перерыв электроснабжения на время не более одних суток, необходимых для ремонта или замены поврежденного элемента (питание электроприемников III категории), а также для питания электроприемников II категории, при условии резервирования мощности по перемычкам на вторичном напряжении или при наличии складского резерва трансформаторов.

Выбор числа и мощности трансформаторов: принципы и правила

Одно трансформаторные ТП

Однотрансформаторные ТП выгодны еще и потому, что если работа предприятия сопровождается периодами малых нагрузок, то за счет наличия перемычек между ТП на вторичном напряжении можно отключать часть трансформаторов, создавая этим экономически целесообразный режим работы. Под экономичным понимается такой режим работы, который обеспечивает минимальные потери мощности в трансформаторах.

В данном случае решается задача выбора оптимального количества работающих трансформаторов.

Такие ТП могут быть экономичны и в плане максимального приближения напряжения 6—10 кВ к электроприемникам, поскольку за счет децентрализации трансформирования электрической энергии уменьшается протяженность сетей до 1 кВ. В этом случае вопрос решается в пользу применения двух однотрансформаторных по сравнению с одной двухтрансформаторной подстанцией.

Двух трансформаторные ТП

Двухтрансформаторные ТП применяются при преобладании электроприемников I и II категорий. При этом мощность трансформаторов выбирается такой, чтобы при выходе из работы одного Другой трансформатор с учетом допустимой перегрузки принял бы на себя нагрузку всех потребителей (в этой ситуации можно временно отключить электроприемники III категории). Такие подстанции желательны и независимо от категории потребителей, но при наличии неравномерного суточного или годового графика нагрузки.

В этих случаях выгодно менять присоединенную мощность трансформаторов, например, при наличии сезонных нагрузок, одно или двухсменной работы со значительными изменениями загрузки смен.

Электроснабжение населенного пункта, микрорайона города, цеха, группы цехов или всего предприятия может быть обеспечено от одной или нескольких ТП. Целесообразность сооружения одно или двухтрансформаторных подстанций определяется в результате техникоэкономического сравнения нескольких вариантов системы электроснабжения. Критерием выбора варианта является минимум приведенных затрат на сооружение системы электроснабжения. Сравниваемые варианты должны обеспечивать требуемый уровень надежности электроснабжения.

В системах электроснабжения промышленных предприятий наиболее распространены следующие единичные мощности трансформаторов: 630, 1000,1600 кВА, в электрических сетях городов — 400, 630 кВА. Практика проектирования и эксплуатации показала необходимость применения однотипных трансформаторов одинаковой мощности, так как разнообразие их создает неудобства в обслуживании и вызывает дополнительные затраты на ремонт.

Выбор мощности трансформатора

В общем случае выбор мощности трансформаторов производится на основании следующих основных исходных данных: расчетной нагрузки объекта электроснабжения, продолжительности максимума нагрузки, темпов роста нагрузок, стоимости электроэнергии, нагрузочной способности трансформаторов и их экономичной загрузки.

Основным критерием при выборе единичной мощности так же, как и количества трансформаторов, является минимум приведенных затрат, полученный на основе техникоэкономического сравнения вариантов.

Ориентировочно выбор единичной мощности трансформаторов может выполняться по удельной плотности расчетной нагрузки (кВА/м2) и полной расчетной нагрузки объекта (кВА).

При удельной плотности нагрузки до 0,2 ВА/м2 и суммарной нагрузке до 3000 кВА целесообразно применять трансформаторы 400; 630; 1000 кВА — с вторичным напряжением 0,4/0,23 кВ. При удельной плотности и суммарной нагрузке выше указанных значений более экономичны трансформаторы мощностью 1600 и 2500 кВА.

Однако эти рекомендации не являются достаточно обоснованными вследствие быстроменяющихся цен на электрооборудование, и в частности, ТП.

В проектной практике трансформаторы ТП часто выбирают по расчетной нагрузке объекта и рекомендуемым коэффициентам.

Важное значение при выборе мощности трансформаторов является правильный учет их нагрузочной способности. Под нагрузочной способностью трансформатора понимается совокупность допустимых нагрузок, систематических и аварийных перегрузок из расчета теплового износа изоляции трансформатора. Если не учитывать нагрузочную способность трансформаторов, то можно необоснованно завысить при выборе их номинальную мощность, что экономически нецелесообразно.

Выбор числа и мощности трансформаторов: принципы и правила

На значительном большинстве подстанций нагрузка трансформаторов изменяется и в течение продолжительного времени остается ниже номинальной. Значительная часть трансформаторов выбирается с учетом послеаварийного режима и поэтому нормально они остаются длительное время недогруженными. Кроме того, силовые трансформаторы рассчитываются на работу при допустимой температуре окружающей среды, равной +40 °С. В действительности они работают в обычных условиях при температуре среды до 20… 30 °С.

Следовательно, силовой трансформатор в определенное время может быть перегружен с учетом рассмотренных выше обстоятельств без всякого ущерба для установленного ему срока службы (20.. .25 лет).

На основании исследований различных режимов работы трансформаторов разработан ГОСТ 1420985, регламентирующий допустимые систематические нагрузки и аварийные перегрузки силовых масляных трансформаторов общего назначения мощностью до 100 мВА включительно с видами охлаждения М, Д, ДЦ и Ц с учетом температуры охлаждения среды.

Температура охлаждающей среды для определения допустимых систематических нагрузок принимается как эквивалентное значение для данной местности, вычисленное в соответствии с [24]. Для областных городов России, эквивалентная температура находится в пределах: 9,4…11 °С — годовая,3,4…6,7 °С — зимняя и 15,1…17,9 °С — летняя. При определении допустимых аварийных перегрузок температура охлаждающей среды принимается во время возникновения аварийной перегрузки.

Для определения систематических нагрузок и аварийных перегрузок в соответствии с необходимо также знать начальную нагрузку, предшествующую перегрузке, и продолжительность перегрузки.

Эти данные определяются по реальному исходному графику нагрузки (полной мощности или току), преобразованному в эквивалентный в тепловом отношении прямоугольный двух или многоступенчатый график.

В связи с необходимостью иметь реальный исходный график нагрузки расчет допустимых нагрузок и перегрузок в соответствии с может быть выполнен для действующих подстанций.

На стадии проектирования подстанций можно использовать типовые графики нагрузок или в соответствии с рекомендациями, также предлагаемыми в, выбирать мощность трансформаторов по условиям аварийных перегрузок согласно табл. 3.3.

Тогда для подстанций, на которых возможна аварийная перегрузка трансформаторов (двухтрансформаторные, однотрансформаторные с резервными связями по вторичной стороне), если известна расчетная нагрузка объекта Sp и коэффициент допустимой аварийной перегрузки Кзав (табл. 3.3), номинальная мощность трансформатора определяется какСледует также отметить, что нагрузка трансформатора свыше его номинальной мощности допускается только при исправной и полностью включенной системе охлаждения трансформатора.

Выбор числа и мощности трансформаторов: принципы и правила

Что касается типовых графиков, то на сегодняшний день они разработаны для ограниченного количества узлов нагрузок.

Частично типовые графики отдельных видов потребителей (коммунально бытовых и сельскохозяйственных) обработаны и для практического удобства сведены в табл. 3.4, 3.5 [25].
Выбор числа и мощности трансформаторов: принципы и правилаВ этих таблицах в сокращенном виде соответственно указаны интервалы допустимых нагрузок и аварийных перегрузок трансформаторов с естественным масляным охлаждением, напряжением 10/0,4 кВ, мощностью до 630 кВА для некоторых видов потребителей с учетом климатических условий России.
Выбор числа и мощности трансформаторов: принципы и правила
По табл. 3.4 для необходимого вида нагрузки находится интервал минимальной и максимальной границы допустимой систематической нагрузки трансформатора (Samm…Samg), в котором находится величина расчетной нагрузки трансформатора Sp (для трансформаторов,определяет номинальную мощность трансформатора по допустимой нагрузке для нормального режима работы подстанции.

Выбор числа и мощности трансформаторов: принципы и правила

По табл. 3.5 для соответствующего вида нагрузки устанавливается номинальная мощность трансформатора по допустимой аварийной нагрузке исходя из условия:

Выбор числа и мощности трансформаторов: принципы и правила

В зависимости от возможных режимов работы трансформатора выбор мощности его осуществляется по табл. 3.4 или по табл. 3.4, 3.5.

Поскольку выбор количества и мощности трансформаторов, в особенности потребительских подстанций 6—10/0,4—0,23 кВ, определяется чаще всего экономическим фактором, то существенным при этом является учет компенсации реактивной мощности в электрических сетях потребителя.

Компенсируя реактивную мощность в сетях до 1 кВ, можно уменьшить количество ТП 10/0,4, их номинальную мощность.

Особенно это существенно для промышленных потребителей, в сетях до 1 кВ которых приходится компенсировать значительные величины реактивных нагрузок. Существующая методика по проектированию компенсации реактивной мощности в электрических сетях промышленных предприятий предполагает выбор мощности компенсирующих устройств и одновременно — количества трансформаторов подстанций и их мощности.

Таким образом, с учетом вышеизложенного, а также сложностей непосредственных экономических расчетов, быстроменяющихся стоимостных показателей строительства подстанций и стоимости электроэнергии выбор мощности силовых трансформаторов при проектировании новых и реконструкции действующих потребительских подстанций 6—10/0,4—0,23 кВ может быть осуществлен следующим образом:

Выбор мощности в сетях промышленных предприятий

Выбор мощности в сетях промышленных предприятий осуществляется по следующим принципам:

  1. единичная мощность трансформаторов выбирается в соответствии с рекомендациями удельной плотности расчетной нагрузки и полной расчетной нагрузки объекта;
  2. количество трансформаторов подстанции и их номинальную мощность определяют согласно указаниям по проектированию компенсации реактивной мощности в электрических сетях промышленных предприятий [3] (см. также раздел 4.3);
  3. выбор мощности трансформаторов должен осуществляться с учетом рекомендуемых коэффициентов загрузки (табл. 3.2) и допустимых аварийных перегрузок трансформаторов (табл. 3.3);
  4. при наличии типовых графиков нагрузки выбор следует вести в соответствии с ГОСТ 1420985 и с учетом компенсации реактивной мощности в сетях до 1 кВ;

Выбор мощности в городских электрических сетях

  1. располагая типовыми графиками нагрузки подстанции, выбор мощности трансформаторов следует выполнять в соответствии с ГОСТ 1420985 ;
  2. зная вид нагрузки подстанции, при отсутствии типовых графиков ее целесообразно руководствоваться методическими указаниями института «Росэнергосетьпроект» , т.е. использовать данные табл. 3.4,3.5.

Силовые трансформаторы напряжением 6 – 10 кВ

Окна на века

Трансформаторы напряжения НОЛ-3, НОЛ-6, НОЛ-10 предназначены для применения в электрических цепях переменного тока частотой 50 Гц с номинальным напряжением от 3 до 10 кВ включительно с целью передачи сигнала измерительной информации приборам измерения, защиты, автоматики, сигнализации и управления.

Трансформаторы НОЛ-3, НОЛ-6, НОЛ-10 изготавливаются для электроэнергетики и предназначены для установки в открытые распределительные устройства (ОРУ).

Допускается длительная эксплуатация трансформаторов, как силовых, то есть вне гарантированного класса точности, при нагрузке, не превышающей предельную мощность.

Трансформаторы изготавливаются в климатическом исполнении «УХЛ» категории размещения 1 по ГОСТ 15150 и предназначен для эксплуатации в следующих условиях:

  • высота установки над уровнем моря — не более 1000 м;
  • температура окружающего воздуха от минус 60 °С до плюс 55 °С;
  • относительная влажность воздуха 100% при 25 °С;
  • давление воздуха — согласно нормам ГОСТ 15543.1;
  • окружающая среда невзрывоопасная, не содержащая агрессивных паров в концентрациях, разрушающих металлы и изоляцию (атмосфера типа II по ГОТС 15150);
  • степень загрязнения атмосферы согласно «Правил устройства электроустановок» — 3С3 для трансформатора с длиной пути утечки III по ГОСТ 9920;
  • рабочее положение трансформаторов в пространстве — вертикальное;

Ассортимент силовых трансформаторов

В зависимости от типа и мощности, трансформаторы могут использоваться в различных климатических условиях. Отдельные модели могут эксплуатироваться в химически активной среде, имеют соответствующий класс защиты. В ассортименте компании представлены следующие типы оборудования:

Читайте также: Как установить варочную панель

  • Силовые трансформаторы ТСЛ сухого типа входят в комплектацию подстанций, имеющих жесткие требования в части пожарной безопасности. Достоинствами оборудования являются компактные габариты, минимальные затраты на техническое обслуживание, отсутствие вредных выбросов и устойчивость к воздействию климатических факторов.
  • Масляные трансформаторы ТМГ с герметичным гофробаком используются для преобразования напряжения в необходимый для конечного потребителя уровень. Оборудование имеет высокий эксплуатационный ресурс и не требует периодического технического обслуживания.
  • Масляные двухобмоточные трансформаторы ТМ имеют общее назначение и широкий диапазон использования. Оборудование применяется для организации энергоснабжения производственных и жилых объектов, месторождений, контактных сетей на железных дорогах.
  • Силовые трансформаторы ТМН с естественным масляным охлаждением. Оборудование имеет общее назначение и возможность регулировки напряжения под нагрузкой.

Кроме трансформаторов, «ЭНЕРГОПРОМ-АЛЬЯНС» предлагает комплектные и распределительные подстанции, высоковольтное, низковольтное оборудование, электрокабельную арматуру и другую подобную продукцию.

Технические характеристики трансформаторов напряжения НОЛ-3, НОЛ-6, НОЛ-10.

Наименование параметров Значение
НОЛ-3 III НОЛ-6 III НОЛ-10 III
Класс напряжения, кВ 3 6 10
Наибольшее рабочее напряжение, кВ 3,6 7,2 12
Номинальное напряжение первичной обмотки, В 3000 3300 6000,6300 6600,6900 10000 11000
Номинальное напряжение вторичной обмотки, В 100 или 110*
Номинальная частота, Гц 50 или 60
Номинальная мощность, ВА, в классе точности**:
0,2** 15 30 50
0,5 30 50 75
1,0 50 75 150
3,0 75 200 300
Предельная мощность вне класса точности, В•А 150 400 30
Схема и группа соединения обмоток 1/1-0
Испытательное напряжение, кВ одноминутное
промышленной частоты 24 70 42
грозового импульса полного 40 60 75
грозового импульса срезанного 50 32 90
Масса, кг 35 37 39

Трансформаторы серии НОЛ для АСКУЭ поставляются по специальному заказу с одинаковым классом точности и номинальной мощностью, которые указываются в заказе.

* — Номинальное напряжение вторичной обмотки 110 В только для трансформаторов с номинальным напряжением первичной обмотки 6600 и 11000 В. ** — Высший класс точности указывается в заказе. *** — Высший класс точности 0,2 только для трансформаторов с номинальным напряжением вторичной обмотки 100 В.

Измерительные трансформаторы напряжения

Образец заполнения заявки на продукцию завода

Требования к оформлению заказов трансформаторов предназначенных на экспорт

Накладное предохранительное устройство НПУ-6(10)

! НОВИНКА !

Класс напряжения, кВ: 27 Номинальное напряжение вторичной обмотки, В: 100 Номинальная мощность, ВА, в классе точности: от 20 до 40

! НОВИНКА !

Класс напряжения, кВ: 6 или 10 Количество вторичных обмоток: 2 Напряжение вторичных обмоток, В: 100/√3; 100/3

Класс напряжения, кВ: 3-35 кВ Количество дополнительных обмоток: 2 или 3 Напряжение вторичных обмоток, В: 100/3; 100; 110/3; 110; 100/√3 Нагрузка в классе точности 0,5, ВА: 30-75

Класс напряжения, кВ: 3, 6 или 10 Количество дополнительных обмоток: 2 или 3 Напряжение вторичных обмоток, В: 100/3; 100; 110/3; 110; 100/√3

Класс напряжения, кВ: 6 или 10 Количество вторичных обмоток: 2 Напряжение вторичных обмоток, В: 100/3 или 100 или 100/√3

Класс напряжения, кВ: 10 Количество вторичных обмоток: 2 Напряжение вторичных обмоток, В: 100/√3; 100/3

Класс напряжения, кВ: 6 или 10 Напряжение основной вторичной обмотки, В: 100 Номинальная мощность, ВА, в классе точности: от 60 до 225

Читайте также: Почему греется электрический автомат?

Класс напряжения, кВ: 6 или 10 Напряжение основной вторичной обмотки, В: 100 Напряжение дополнительной вторичной обмотки, В: от 90 до 110 Номинальная мощность, ВА, в классе точности: от 90 до 900

Класс напряжения, кВ: 6 или 10 Напряжение основной вторичной обмотки, В: 100 Напряжение дополнительной вторичной обмотки, В: от 90 до 110 Номинальная мощность, ВА, в классе точности: от 30 до 270

Класс напряжения, кВ: 3, 6 или 10 Напряжение основной вторичной обмотки, В: 100/√3; 110/√3 Напряжение дополнительной вторичной обмотки, В: 100/3; 100; 110/3; 110; 100/√3 Номинальная мощность, ВА, в классе точности: от 15 до 300

Класс напряжения, кВ: 20 Количество вторичных обмоток: 3 Напряжение вторичных обмоток, В: 100/√3; 100/3

Класс напряжения, кВ: 27 или 35 Напряжение основной вторичной обмотки, В: 100/√3; 100 Напряжение дополнительной вторичной обмотки, В: 100/3; 127 Номинальная мощность, ВА, в классе точности: от 10 до 120

Класс напряжения, кВ: 27 или 35 Напряжение основной вторичной обмотки, В: 100/√3; 100 Напряжение дополнительной вторичной обмотки, В: 100/3; 127 Номинальная мощность, ВА, в классе точности: от 10 до 120

Класс напряжения, кВ: 35 Напряжение основной вторичной обмотки, В: 100/√3 Напряжение второй основной вторичной обмотки, В: 100/√3 (для четырех обмоточного трансформатора) Напряжение дополнительной вторичной обмотки, В: 100/3 Номинальная мощность, ВА: от 10 до 600

Класс напряжения, кВ: 3, 6 или 10 Напряжение основной вторичной обмотки, В: 100; 110 Номинальная мощность, ВА, в классе точности: от 15 до 300

Класс напряжения, кВ: 3, 6 или 10 Напряжение основной вторичной обмотки, В: 100; 110 Номинальная мощность, ВА, в классе точности: от 15 до 300

Класс напряжения, кВ: 6 или 10 Напряжение основной вторичной обмотки, В: 100 Номинальная мощность, ВА, в классе точности: от 20 до 200

Класс напряжения, кВ: 6 или 10 Напряжение основной вторичной обмотки, В: 100 Номинальная мощность, ВА, в классе точности: 20

! НОВИНКА !

Класс напряжения, кВ: 6 или 10 Напряжение основной вторичной обмотки, В: 100 Номинальная мощность, ВА, в классе точности: от 60 до 600

Класс напряжения, кВ: 6 или 10 Напряжение основной вторичной обмотки, В: 100; 110 Номинальная мощность, ВА, в классе точности: от 30 до 300

! НОВИНКА !

Читайте также: Как сделать переноску электрическую с лампочкой

Класс напряжения, кВ: 6 или 10 Напряжение основной вторичной обмотки, В: 100 Номинальная мощность, ВА, в классе точности: от 20 до 200

! НОВИНКА !

Класс напряжения, кВ: 6 или 10 Напряжение основной вторичной обмотки, В: 100 Номинальная мощность, ВА, в классе точности: от 20 до 200

Класс напряжения, кВ: 6 Напряжение основной вторичной обмотки, В: 100; 127; 220 Напряжение дополнительной вторичной обмотки, В: 100/3; 100; 110/3; 110; 100/√3 Номинальная мощность, ВА, в классе точности: от 30 до 250

Класс напряжения, кВ: 0.66, 6 или 10 Напряжение основной вторичной обмотки, В: 100; 127 Номинальная мощность, ВА, в классе точности: 30 Предназначен для использования на речных и морских судах

Класс напряжения, кВ: 20 или 35 Напряжение основной вторичной обмотки, В: 100 Номинальная мощность, ВА, в классе точности: от 10 до 600

Класс напряжения, кВ: 35 Напряжение основной вторичной обмотки, В: 100 Номинальная мощность, ВА, в классе точности: от 50 до 600

Класс напряжения, кВ: 6 или 10 Напряжение основной вторичной обмотки, В: 100 Напряжение дополнительной вторичной обмотки, В: от 97 до 103 Номинальная мощность, ВА, в классе точности: от 75 до 600

Трансформаторы напряжения НОЛ-СЭЩ-6, НОЛ-СЭЩ-10.

Трансформаторы напряжения НОЛ-СЭЩ-6, НОЛ-СЭЩ-10 заземляемые трансформаторы напряжения, предназначены для установки в комплектные распределительные устройства (КРУ) внутренней и наружной установки, в камеры одностороннего обслуживания (КСО), является комплектующими изделиями.

Трансформаторы НОЛ-СЭЩ-6, НОЛ-СЭЩ-10 обеспечивают питание приборов учета электроэнергии, контрольно-измерительной аппаратуры, релейных (микропроцессорных) защит, и используются для измерения напряжения сети 6, 10 соответственно.

Технические характеристики трансформаторов напряжения НОЛ-СЭЩ-6, НОЛ-СЭЩ-10.

Наименование параметра НОЛ-СЭЩ-6 НОЛ-СЭЩ-10
Класс напряжения по ГОСТ1516.3, кВ 6 10
Наибольшее рабочее напряжение 7,2 12**
Номинальное напряжение первичной обмотки, кВ 6 10
Номинальное напряжение основной вторичной обмотки, В 100
Номинальные классы точности основной вторичной обмотки 0,2; 0,5; 1,0; 3,0
Номинальная мощность основной вторичной обмотки, ВА в классах точности
0,2 10,15,25*
0,5 25,30,50,75*
1,0 50,75,100,150,200*
1,0 150,200*
Предельная мощность трансформатора вне класса точности, ВА
с двумя вторичными обмотками 630
с тремя вторичными обмотками 400
Номинальная частота, Гц 50 или 60
Группа соединения обмоток 1/1-0
Климатическое исполнение У2
Высота над уровнем моря, м 1000
Верхнее рабочее значение температуры окружающего воздуха, С +50°
Нижнее значение температуры окружающего воздуха для исполнения — 45°
Тип атмосферы II по ГОСТ 15150-69 (примерно соответствует атмосфере промышленных районов)
Масса, кг не более 30

Трансформаторы напряжения ЗНОЛ.06.

Трансформаторы напряжения ЗНОЛ.06 предназначены для установки в комплектные распределительные устройства (КРУ) внутренней установки или другие закрытые распределительные устройства (ЗРУ), а также для встраивания в токопроводы турбогенераторов и служат для питания цепей измерения, автоматики, сигнализации и защиты в электрических установках переменного тока частоты 50 или 60 Гц в сетях с изолированной нейтралью.

Допускается использование трансформаторов обоих исполнений при температуре окружающего воздуха в токопроводе до 65°С при нагрузке трансформаторов не превышающей номинальную мощность класса точности 0,5.

Трансформаторы ЗНОЛ.06 изготавливаются в климатическом исполнении «У» или «Т» категории размещения 3 по ГОСТ 15150, предназначены для эксплуатации при условиях:

  • высота установки над уровнем моря не более 1000 м;
  • температура окружающей среды с учетом превышения температуры воздуха в токопроводе или КРУ при нагрузке трансформаторов предельной мощностью: для исполнения «У3» от минус 45°С до плюс 50°С,
  • для исполнения «Т3» от минус 10°С до плюс 55°С;

Патентная защита Патент на изобретение No 2193252.

Внимание! При заказе трансформаторов напряжения для АИСКУЭ обязательно заполнение опросного листа.