Напряжение насыщения коллектор эмиттер

ГОСТ 18604.22-78 Транзисторы биполярные. Методы измерения напряжения насыщения коллектор-эмиттер и база-эмиттер

Текст ГОСТ 18604.22-78 Транзисторы биполярные. Методы измерения напряжения насыщения коллектор-эмиттер и база-эмиттер

ГОСТ 18604.22-78*
(CT СЭВ 4289-83)

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

Методы измерения напряжения насыщения
коллектор-эмиттер и база-эмиттер

Transistors bipolar.
Methods for measuring collector-emitter
and base-emitter saturation voltage

Дата введения 1980-01-01

Постановлением Государственного комитета стандартов Совета Министров СССР от 5 июля 1978 г. N 1816 срок введения установлен с 01.01.80

Проверен в 1984 г. Постановлением Госстандарта от 25.06.84 N 2078 срок действия продлен до 01.01.90**

** Ограничение срока действия снято постановлением Госстандарта СССР от 17.09.91 N 1455 (ИУС N 12, 1991 год). — .

ВЗАМЕН ГОСТ 13852-68

* ПЕРЕИЗДАНИЕ (декабрь 1985 г.) с Изменением N 1, утвержденным в октябре 1984 г. (ИУС 1-85).

Настоящий стандарт распространяется на биполярные транзисторы и устанавливает методы измерения напряжения насыщения коллектор-эмиттер и напряжения насыщения база-эмиттер в схеме с общим эмиттером на постоянном и импульсном токах.

Общие условия при измерении напряжения насыщения коллектор-эмиттер и база-эмиттер транзисторов должны соответствовать требованиям ГОСТ 18604.0-83.

Стандарт полностью соответствует СТ СЭВ 4289-83.

(Измененная редакция, Изм. N 1)

1. МЕТОД ИЗМЕРЕНИЯ НАПРЯЖЕНИЯ НАСЫЩЕНИЯ
КОЛЛЕКТОР-ЭМИТТЕР И БАЗА-ЭМИТТЕР НА ПОСТОЯННОМ ТОКЕ

1.1. Принцип и условия измерения

1.1.1. Измерение заключается в определении напряжения между выводами транзистора в режиме насыщения при заданных постоянных токах коллектора и базы.

1.1.2. Напряжение питания коллектора должно быть меньше граничного напряжения или равно ему.

Если значение не нормируют, то напряжение питания коллектора не должно превышать максимально допустимого значения постоянного напряжения коллектор-эмиттер.

1.1.3. Значения тока базы и тока коллектора , значение граничного напряжения указывают в нормативно-технической документации на транзисторы конкретных типов.

1.1.4. Допускается задавать токи базы и коллектора от генераторов тока. При этом выходное сопротивление генератора тока базы должно удовлетворять условию

,

а выходное сопротивление генератора тока коллектора должно удовлетворять условию

,

где и — максимальные значения напряжения насыщения коллектор-эмиттер и база-эмиттер, которые могут быть измерены на данной установке;

и — минимальные значения токов коллектора и базы, которые могут быть установлены на данной установке.

1.2.1. Напряжение насыщения коллектор-эмиттер и база-эмиттер на постоянном токе следует измерять на установке, структурная схема которой приведена на черт.1.

, — измерители постоянных токов базы и коллектора; — измеритель постоянного напряжения;
и ; , — резисторы; — измеряемый транзистор; — переключатель

1.2.2. Основные элементы, входящие в схему, должны удовлетворять следующим требованиям.

1.2.2.1. Входное сопротивление измерителя постоянного напряжения должно удовлетворять соотношениям

;

.

1.2.2.2. Измеритель постоянного напряжения может быть компенсационного типа. В этом случае требования к входному сопротивлению не предъявляют.

1.2.2.3. Допускается использование общего источника питания для задания токов базы и коллектора. Регулировку токов в этом случае осуществляют подбором резисторов и .

1.2.2.4. Взамен резисторов и могут быть использованы внутренние сопротивления источников питания базы или коллектора.

Резисторы , и измерители и могут полностью или частично отсутствовать, если каким-либо способом обеспечивается точность установки режима.

1.2.2.5. Следует принимать меры к устранению погрешности измерения и за счет падения напряжения на соединительных проводах и контактах путем разделения контактов и соединительных проводов на токовые и потенциальные.

1.2.2.6. Значение наводок на измерителе напряжения должно быть не более 2% шкалы.

1.3. Подготовка и проведение измерения

1.3.1. При измерении напряжения насыщения коллектор-эмиттер и база-эмиттер транзистор включают в схему измерения. По шкале следует установить значение тока базы, а по шкале — значение тока коллектора, указанные в нормативно-технической документации на транзисторы конкретных типов или рассчитанные по заданной степени насыщения.

В положении 1 переключателя измеритель измеряет напряжение насыщения .

В положении 2 переключателя измеритель измеряет напряжение насыщения .

1.3.2. Допускается одновременное измерение напряжений насыщения и двумя приборами (без переключателя ), если режим измерения этих параметров одинаков.

1.4. Показатели точности измерения

1.4.1. Основная погрешность измерительных установок, в которых используются стрелочные приборы, должна находиться в пределах ±5% конечного значения рабочей части шкалы.

1.4.2. Основная погрешность измерительных установок, в которых используются цифровые приборы, должна находиться в пределах ±5% измеряемого значения ±1 знак младшего разряда дискретного отсчета.

2. МЕТОД ИЗМЕРЕНИЯ НАПРЯЖЕНИЯ НАСЫЩЕНИЯ
КОЛЛЕКТОР-ЭМИТТЕР И БАЗА-ЭМИТТЕР НА ИМПУЛЬСНОМ ТОКЕ

2.1. Принцип и условия измерения

2.1.1. Измерение заключается в определении напряжения между выводами транзистора в режиме насыщения при заданных постоянном токе коллектора и импульсном токе базы.

2.1.2. Напряжение питания коллектора, значения тока базы и тока коллектора устанавливают в соответствии с требованиями пп.1.1.2 и 1.1.3.

2.1.3. Измерение напряжения следует начинать с задержкой относительно начала базового импульса и закончить до окончания базового импульса (черт.2) по формулам

;

,

где — длительность импульса в цепи базы;

— максимальное значение статического коэффициента передачи тока в схеме с общим эмиттером;

— максимальное значение коэффициента передачи тока в режиме малого сигнала;

— граничная частота коэффициента передачи тока.

Значения статического коэффициента передачи тока в схеме с общим эмиттером, коэффициента передачи тока в режиме малого сигнала и граничной частоты коэффициента передачи тока указывают в нормативно-технической документации на транзисторы конкретных типов. Для транзисторов, у которых значение не нормируется, используют значение предельной частоты коэффициента передачи тока или ,

где — частота, на которой измеряют модуль, коэффициента передачи тока на высокой частоте . Значение указывают в нормативно-технической документации на транзисторы конкретных типов.

2.1.4. Допускается подавать напряжение коллектора в виде импульса, начинающегося не позднее базового импульса и заканчивающегося раньше базового импульса.

Время подключения пикового вольтметра к выводам в этом случае не ограничивают.

2.1.5. Допускается измерение напряжений насыщения коллектор-эмиттер и база-эмиттер при постоянном токе базы и импульсном напряжении коллектора.

2.1.6. Допускается одновременная подача базового и коллекторного импульсов, если пиковый вольтметр подключается на позднее начала базового импульса.

2.1.7. Допускается задавать токи базы и коллектор от импульсных генераторов тока. При этом выходные сопротивления генераторов тока базы и тока коллектора должны соответствовать требованиям п.1.1.4.

2.2.1. Напряжение насыщения коллектор-эмиттер и база-эмиттер на импульсном токе следует измерять на установке, структурная схема которой приведена на черт.3.

, , — пиковые вольтметры; — генератор однополярных импульсов; , — резисторы;
, — калибровочные резисторы; — переключатель; — конденсатор;
— измеряемый транзистор

2.2.2. Основные элементы, входящие в схему, должны удовлетворять следующим требованиям.

2.2.2.1. Пиковый вольтметр должен измерять ток базы по падению напряжения на резисторе . Его входное сопротивление должно быть больше или равно 100.

2.2.2.2. Пиковый вольтметр должен измерять мгновенные значения напряжений. Требования к его входному сопротивлению должны соответствовать требованиям п.1.2.2.1.

2.2.2.3. Пиковый вольтметр должен измерять ток коллектора по падению напряжения на резисторе . Его входное сопротивление должно быть больше или равно 100.

2.2.2.4. Взамен резистора может быть использовано внутреннее сопротивление генератора , а резистора — внутреннее сопротивление источника питания коллектора.

Резисторы и могут отсутствовать, если токи базы и коллектора задают от импульсных генераторов тока.

2.2.2.5. Резисторы и должны обеспечивать измерение токов и на рабочих участках шкал приборов и . Номинальные сопротивления резисторов выбирают с допускаемым отклонением от номинального в пределах ±1%.

2.2.2.6. Резисторы , и пиковые вольтметры , могут отсутствовать, если каким-либо способом обеспечивается точность установки режима.

2.2.2.7. Частоту следования импульсов генератора следует выбирать такой, чтобы скважность импульсов была более 10.

2.2.2.8. Емкость конденсатора следует выбирать из соотношения

,

если источник питания коллектора рассчитан на ток ,

где — скважность импульсов базы.

Значение емкости конденсатора может быть уменьшено или конденсатор может быть отключен, если источник питания коллектора рассчитан на ток и при импульсном напряжении питания коллектора.

2.3. Подготовка и проведение измерения

2.3.1. Подготовка и проведение измерения — в соответствии с п.1.3.

2.4. Показатели точности измерения

2.4.1. Основная погрешность измерительных установок, в которых используются стрелочные приборы, должна находиться в пределах ±5% конечного значения рабочей части шкалы.

2.4.2. Основная погрешность измерительных установок, в которых используются цифровые приборы, должна находиться в пределах ±5% измеряемого значения ±1 знак младшего разряда дискретного отсчета.

2.4.1, 2.4.2. (Измененная редакция, Изм. N 1).

Электронный текст документа
и сверен по:

Транзисторы биполярные.
Методы измерений: Сб. ГОСТов. —
М.: Издательство стандартов, 1986

allgosts.ru

Превью ГОСТ 18604.22-78 Транзисторы биполярные. Методы измерения напряжения насыщения коллектор-эмиттер и база-эмиттер

Биполярный транзистор

Приветствую вас дорогие друзья! Сегодня речь пойдет о биполярных транзисторах и информация будет полезна прежде всего новичкам. Так что, если вам интересно что такое транзистор, его принцип работы и вообще с чем его едят, то берем стул по удобнее и подходим поближе.

Биполярный транзистор - принцип работы для чайников

Продолжим, и у нас тут есть содержание, будет удобнее ориентироваться в статье ?

Виды транзисторов

Транзисторы бывают в основном двух видов: биполярные транзисторы и полевые транзисторы. Конечно можно было рассмотреть все виды транзисторов в одной статье, но мне не хочется варить кашу у вас в голове. Поэтому в этой статье мы рассмотрим исключительно биполярные транзисторы а о полевых транзисторах я расскажу в одной из следующих статей. Не будем все мешать в одну кучу а уделим внимание каждому, индивидуально.

Биполярный транзистор

Биполярный транзистор это потомок ламповых триодов, тех что стояли в телевизорах 20 -го века. Триоды ушли в небытие и уступили дорогу более функциональным собратьям — транзисторам, а точнее биполярным транзисторам.

Триоды за редким исключением применяют в аппаратуре для меломанов.

Биполярные транзисторы выглядеть могут так.

Tranzistory` (2)

Как вы можете видеть биполярные транзисторы имеют три вывода и конструктивно они могут выглядеть совершенно по разному. Но на электрических схемах они выглядят простенько и всегда одинаково. И все это графическое великолепие, выглядит как-то так.

Проводимость транзисторов

Это изображение транзисторов еще называют УГО (Условное графическое обозначение).

Причем биполярные транзисторы могут иметь различный тип проводимости. Есть транзисторы NPN типа и PNP типа.

Отличие n-p-n транзистора от p-n-p транзистора состоит лишь в том что является «переносчиком» электрического заряда (электроны или «дырки» ). Т.е. для p-n-p транзистора электроны перемещаются от эмиттера к коллектору и управляются базой. Для n-p-n транзистора электроны идут уже от коллектора к эмиттеру и управляются базой. В итоге приходим к тому, что для того чтобы в схеме заменить транзистор одного типа проводимости на другой достаточно изменить полярность приложенного напряжения. Или тупо поменять полярность источника питания.

У биполярных транзисторов есть три вывода: коллектор, эмиттер и база. Думаю, что по УГО будет сложно запутаться, а вот в реальном транзисторе запутаться проще простого.

Обычно где какой вывод определяют по справочнику, но можно просто прозвонить транзистор мультиметром. Выводы транзистора звонятся как два диода, соединенные в общей точке (в области базы транзистора).

Слева изображена картинка для транзистора p-n-p типа, при прозвонке создается ощущение (посредством показаний мультиметра ), что перед вами два диода которые соединены в одной точке своими катодами. Для транзистора n-p-n типа диоды в точке базы соединены своими анодами. Думаю после экспериментов с мультиметром будет более понятно.

транзистор как диод

Принцип работы биполярного транзистора

Транзистор как человек

А сейчас мы попробуем разобраться как работает транзистор. Я не буду вдаваться в подробности внутреннего устройства транзисторов так как эта информация только запутывает. Лучше взгляните на этот рисунок.

Это изображение лучше всего объясняет принцип работы транзистора. На этом изображении человек посредством реостата управляет током коллектора. Он смотрит на ток базы, если ток базы растет то человек так же увеличивает ток коллектора с учетом коэффициента усиления транзистора h21Э. Если ток базы падает, то ток коллектора также будет снижаться — человек подкорректирует его посредством реостата.

Эта аналогия не имеет ничего общего с реальной работой транзистора, но она облегчает понимание принципов его работы.

Для транзисторов можно отметить правила, которые призваны помочь облегчить понимание. (Эти правила взяты из книги П. Хоровица У.Хилла «Искусство схемотехники»).

  1. Коллектор имеет более положительный потенциал , чем эмиттер
  2. Как я уже говорил цепи база — коллектор и база -эмиттер работают как диоды
  3. Каждый транзистор характеризуется предельными значениями, такими как ток коллектора, ток базы и напряжение коллектор-эмиттер.
  4. В том случае если правила 1-3 соблюдены то ток коллектора Iк прямо пропорционален току базы Iб. Такое соотношение можно записать в виде формулы.

Из этой формулы можно выразить основное свойство транзистора — небольшой ток базы управляет большим током коллектора.

-коэффициент усиления по току.

Его также обозначают как

Исходы из выше сказанного транзистор может работать в четырех режимах:

  1. Режим отсечки транзистора — в этом режиме переход база-эмиттер закрыт, такое может произойти когда напряжение база-эмиттер недостаточное. В результате ток базы отсутствует и следовательно ток коллектора тоже будет отсутствовать.
  2. Активный режим транзистора — это нормальный режим работы транзистора. В этом режиме напряжение база-эмиттер достаточное для того, чтобы переход база-эмиттер открылся. Ток базы достаточен и ток коллектора тоже имеется. Ток коллектора равняется току базы умноженному на коэффициент усиления.
  3. Режим насыщения транзистора — в этот режим транзистор переходит тогда, когда ток базы становится настолько большим, что мощности источника питания просто не хватает для дальнейшего увеличения тока коллектора. В этом режиме ток коллектора не может увеличиваться вслед за увеличением тока базы.
  4. Инверсный режим транзистора — этот режим используется крайне редко. В этом режиме коллектор и эмиттер транзистора меняют местами. В результате таких манипуляций коэффициент усиления транзистора очень сильно страдает. Транзистор изначально проектировался не для того, чтобы он работал в таком особенном режиме.

Для понимания того как работает транзистор нужно рассматривать конкретные схемные примеры, поэтому давайте рассмотрим некоторые из них.

Транзистор в ключевом режиме

Транзистор в ключевом режиме это один из случаев транзисторных схем с общим эмиттером. Схема транзистора в ключевом режиме применяется очень часто. К этой транзисторной схеме прибегают к примеру когда нужно управлять мощной нагрузкой посредством микроконтроллера. Ножка контроллера не способна тянуть мощную нагрузку, а транзистор может. Получается контроллер управляет транзистором, а транзистор мощной нагрузкой. Ну а обо всем по порядку.

Основная суть этого режима заключается в том, что ток базы управляет током коллектора. Причем ток коллектора гораздо больше тока базы. Здесь невооруженным взглядом видно, что происходит усиление сигнала по току. Это усиление осуществляется за счет энергии источника питания.

На рисунке изображена схема работы транзистора в ключевом режиме.

Схема транзисторного ключа

Для транзисторных схем напряжения не играют большой роли, важны лишь токи. Поэтому, если отношение тока коллектора к току базы меньше коэффициента усиления транзистора то все окей.

В этом случае даже если к базе у нас приложено напряжение в 5 вольт а в цепи коллектора 500 вольт, то ничего страшного не произойдет, транзистор будет покорно переключать высоковольтную нагрузку.

Главное чтобы эти напряжения не превышали предельные значения для конкретного транзистора (задается в характеристиках транзистора).

Чтож, теперь давайте попробуем рассчитать значение базового резистора.

На сколько мы знаем, что значение тока это характеристика нагрузки.

Мы не знаем сопротивления лампочки, но мы знаем рабочий ток лампочки 100 мА. Чтобы транзистор открылся и обеспечил протекание такого тока, нужно подобрать соответствующий ток базы. Ток базы мы можем корректировать меняя номинал базового резистора.

Так как минимальное значение коэффициента усиления транзистора равно 10, то для открытия транзистора ток базы должен стать 10 мА.

Ток который нам нужен известен. Напряжение на базовом резисторе будет Такое значение напряжения на резисторе получилось из-зи того, что на переходе база-эмиттер высаживается 0,6В-0,7В и это надо не забывать учитывать.

В результате мы вполне можем найти сопротивление резистора

Осталось выбрать из ряда резисторов конкретное значение и дело в шляпе.

Теперь вы наверное думаете, что транзисторный ключ будет работать так как нужно? Что когда базовый резистор подключается к +5 В лампочка загорается, когда отключается -лампочка гаснет? Ответ может быть да а может и нет.

Все дело в том, что здесь есть небольшой нюанс.

Лампочка в том случае погаснет, когда потенциал резистора будет равен потенциалу земли. Если же резистор просто отключен от источника напряжения, то здесь не все так однозначно. Напряжение на базовом резисторе может возникнуть чудесным образом в результате наводок или еще какой потусторонней нечисти ?

Чтобы такого эффекта не происходило делают следующее. Между базой и эмиттером подключают еще один резистор Rбэ. Этот резистор выбирают номиналом как минимум в 10 раз больше базового резистора Rб (В нашем случае мы взяли резистор 4,3кОм).

Когда база подключена к какому-либо напряжению, то транзистор работает как надо, резистор Rбэ ему не мешает. На этот резистор расходуется лишь малая часть базового тока.

В случае, когда напряжение к базе не приложено, происходит подтяжка базы к потенциалу земли, что избавляет нас от всяческих наводок.

Вот в принципе мы разобрались с работой транзистора в ключевом режиме, причем как вы могли убедиться ключевой режим работы это своего рода усиление сигнала по напряжению. Ведь мы с помощью малого напряжения в 5В управляли напряжением в 12 В.

Эмиттерный повторитель

Эмиттерный повторитель является частным случаем транзисторных схем с общим коллектором.

эмиттерный повторитель

Отличительной чертой схемы с общим коллектором от схемы с общим эмиттером (вариант с транзисторным ключем) является то, что эта схема не усиливает сигнал по напряжению. Что вошло через базу, то и вышло через эмиттер, с тем же самым напряжением.

Действительно допустим приложили к базе мы 10 вольт, при этом мы знаем что на переходе база-эмиттер высаживается где-то 0,6-0,7В. Выходит что на выходе (на эмиттере, на нагрузке Rн) будет напряжение базы минус 0,6В.

Получилось 9,4В, одним словом почти сколько вошло столько и вышло. Убедились, что по напряжению эта схема нам сигнал не увеличит.

«В чем же смысл тогда таком включении транзистора?»- спросите вы. А вот оказывается эта схема обладает другим очень важным свойством. Схема включения транзистора с общим коллектором усиливает сигнал по мощности. Мощность это произведение тока на напряжение, но так как напряжение не меняется то мощность увеличивается только за счет тока! Ток в нагрузке складывается из тока базы плюс ток коллектора. Но если сравнивать ток базы и ток коллектора то ток базы очень мал по сравнению с током коллектора. Получается ток нагрузки равен току коллектора. И в результате получилась вот такая формула.

Теперь я думаю понятно в чем суть схемы эмиттерного повторителя, только это еще не все.

Эмиттерный повторитель обладает еще одним очень ценным качеством — высоким входным сопротивлением. Это означает, что эта транзисторная схема почти не потребляет ток входного сигнала и не создает нагрузки для схемы -источника сигнала.

Для понимания принципа работы транзистора этих двух транзисторных схем будет вполне достаточно. А если вы еще поэкспериментируете с паяльником в руках то прозрение просто не заставит себя ждать, ведь теория теорией а практика и личный опыт ценнее в сотни раз!

Где транзисторы купить?

Как и все другие радиокомпоненты транзисторы можно купить в любом ближайшем магазине радиодеталей. Если вы живете где-нибудь на окраине и о подобных магазинах не слышали (как я раньше) то остается последний вариант — заказать транзисторы в интернет- магазине. Я сам частенько заказываю радиодетали через интернет-магазины ведь в обычном оффлайн магазине может чего-нибудь просто не оказаться.

Впрочем если вы собираете устройство чисто для себя то можно не париться а добыть из старой, отслужившей свое техники и так сказать вдохнуть в старый радиокомпонет новую жизнь.

Чтож друзья, а на этом у меня все. Все, что планировал я сегодня вам рассказал. Если остались какие-либо вопросы, то задавайте их в комментариях, если вопросов нет то все равно пишите комментарии, мне всегда важно ваше мнение. Кстати не забывайте, что каждый кто впервые оставит комментарий получит подарок.

Также обязательно подпишитесь на новые статьи, потому что дальше вас ждет много интересного и полезного.

Желаю вам удачи, успехов и солнечного настроения!

С н/п Владимир Васильев

P.S. Друзья, обязательно подписывайтесь на обновления! Подписавшись вы будете получать новые материалы себе прямо на почту! И кстати каждый подписавшийся получит полезный подарок!

Устройство и принцип работы биполярного транзистора.

Всем доброго времени суток, в сегодняшней статье мы положим начало обсуждению очень важной и обширной темы, посвященной транзисторам. Разберем теоретические аспекты, устройство, виды, рассмотрим принцип работы на практических примерах, методику расчета схем, в общем, постараемся затронуть по максимуму.

Чтобы обсуждение было максимально структурированным и понятным, материал будет разбит на четкие разделы и разные статьи. А, поскольку транзисторы сразу же можно разделить на два крупных класса, а именно — биполярные и полевые, то так и поступим — начнем с подробного разбора биполярных и, изучив их полностью, перейдем к полевым.

Устройство биполярного транзистора.

И для начала мы рассмотрим устройство биполярного транзистора и химические процессы, протекающие в нем. В этом нам очень поможет статья о p-n переходе (ссылка), поскольку ключевые понятия мы будем использовать те же самые. Ведь транзистор есть ни что иное как три полупроводниковые области, которые формируют между собой два p-n перехода.

Кстати транзистор называется биполярным, потому что в переносе заряда участвуют и дырки, и электроны.

Итак, биполярный транзистор состоит из 3-х полупроводниковых областей. Причем тип примесной проводимости у этих областей чередуется:

То есть мы получаем два вида биполярных транзисторов — n-p-n и p-n-p. Давайте дальше все обсуждение строить на примере n-p-n транзисторов, суть для p-n-p будет такой же:

Устройство биполярного транзистора.

Называются эти три полупроводниковые области:

Тип проводимости эмиттера и коллектора одинаковый, но технологически они отличаются довольно значительно. Во-первых, общая область перехода база-эмиттер намного меньше общей области перехода база-коллектор. Зачем так сделано мы разберемся чуть позже. И, во-вторых, область коллектора содержит намного меньше примесей, чем область эмиттера.

Транзисторы.

Принцип работы биполярного транзистора.

Итак, транзистор содержит два p-n перехода (эмиттер-база и база-коллектор). Если не прикладывать к выводам транзистора никаких внешних напряжений, то на каждом из p-n переходов формируются области, обедненные свободными носителями заряда. Все в точности так же как здесь:

Принцип работы биполярного транзистора.

В активном же режиме переход эмиттер-база (эмиттерный переход) имеет прямое смещение, а коллекторный переход — обратное.

Режимы работы биполярного транзистора.

Так как переход эмиттер-база смещен в прямом направлении, то внешнее электрическое поле будет перемещать электроны из области эмиттера в область базы. Там они частично будут вступать во взаимодействие с дырками и рекомбинировать.

Но большая часть электронов доберется до перехода база-коллектор (это связано с тем, что область базы конструктивно выполняется очень тонкой и содержит небольшой количество примесей), который смещен уже в обратном направлении. И в этом случае внешнее электрическое поле снова будет содействовать электронам, а именно помогать им проскочить в область коллектора.

В результате получается, что ток коллектора приблизительно равен току эмиттера:

I_к = \alpha I_э

Коэффициент \alpha численно равен 0.9. 0.99. В то же время:

I_э = I_б + I_к

А что произойдет, если мы увеличим ток базы? Это приведет к тому, что переход эмиттер-база откроется еще сильнее, и большее количество электронов смогут попасть в область коллектора (все по тому же маршруту, который мы обсудили). Давайте выразим ток эмиттера из первой формулы, подставим во вторую и получим:

I_э = \frac

\frac = I_б + I_к

Выражаем ток коллектора через ток базы:

I_к = \frac I_б = \beta I_б

Коэффициент \beta обычно составляет 100-500. Таким образом, незначительный ток базы управляет гораздо большим током коллектора. В этом по сути и заключается принцип работы биполярного транзистора.

Коэффициент, связывающий величину тока коллектора с величиной тока базы, называют коэффициентом усиления по току и обозначают h_ . Этот коэффициент является одной из основных характеристик биполярного транзистора. В следующих статьях мы будем рассматривать схемы включения транзисторов и подробнее разберем этот параметр и его зависимость от условий эксплуатации.

Режимы работы.

Итак, мы рассмотрели активный режим работы транзистора (переход эмиттер-база открыт, переход коллектор-база закрыт), не обойдем вниманием и другие.

Режим отсечки. Оба p-n перехода закрыты. Причем важно отметить, что переход эмиттер-база открывается начиная с некоторого значения приложенного прямого напряжения (не с нуля). Это напряжение обычно составляет около 0.6 В. То есть в режиме отсечки либо оба перехода смещены в обратном направлении, либо коллекторный переход — в обратном, а эмиттерный — в прямом, но величина напряжения не превышает 0.6 В.

В данном режиме переходы сильно обеднены свободными носителями заряда и протекание тока практически полностью прекращается. Исключение составляют только малые побочные токи переходов. В идеальном случае (без токов утечки) транзистор в режиме отсечки эквивалентен обрыву цепи.

Режим насыщения. Оба перехода открыты, и в результате основные носители заряда активно перемещаются из коллектора и эмиттера в базу. В базе возникает избыток носителей заряда, ее сопротивление и сопротивление p-n переходов уменьшается и между эмиттером и коллектором начинает течь ток. В идеальном случае транзистор в таком режиме эквивалентен замыканию цепи.

Барьерный режим. Его мы обязательно еще разберем подробнее, вкратце, идея заключается в том, что база напрямую или через небольшое сопротивление соединена с коллектором. Это эквивалентно использованию диода с последовательно подключенным сопротивлением.

Вот и все основные режимы работы биполярного транзистора. Еще очень многое предстоит обсудить в рамках изучения транзисторов, а на сегодня заканчиваем статью. Спасибо за внимание и ждем вас на нашем сайте снова ?