Напряжение обратной последовательности формула

Что такое напряжение нулевой последовательности? Схемы, применение, физический смысл

Система трехфазных напряжений в нормальном режиме работы является симметричной. Но, стоит произойти короткому замыканию, как симметрия нарушается. Для удобства распознавания видов КЗ и проведения расчетов применяется метод симметричных составляющих. Согласно ему любую трехфазную систему с момента КЗ можно, для удобства расчетов, представить в виде суммы напряжений трех симметричных систем:

  • прямой последовательности;
  • обратной последовательности;
  • нулевой последовательности.

Все они являются мнимыми величинами, не существующими на самом деле. Но с помощью некоторых ухищрений их можно сделать реально осязаемыми, и применить на практике.

Устройства, выделяющие из системы трехфазных напряжений напряжение нужной последовательности, называют фильтрами. Рассмотрим одно из таких устройств, применяемое на практике для фиксации замыканий на землю.

Назначение дополнительных обмоток ТН

Особенностью напряжения нулевой последовательности (3Uo) является тот факт, что оно не появляется в результате междуфазных замыканий, а является только следствием КЗ на землю. Причем, не важно, где происходит замыкание: в электроустановке с изолированной или глухозаземленной нейтралью.

Фильтром для выделения этой величины являются специальные обмотки трансформаторов напряжения (ТН).

Этот процесс происходит по-разному в зависимости от конструкции трансформаторов. Если используются три одинаковых ТН, у каждого из них имеется специальная обмотка, выводы которой обозначены буквами «Ад» и «Хд». Эти обмотки соединяются между собой последовательно, с обязательным соблюдением направления. Провод от вывода «Хд» фазы «А» идет на вывод «Ад» фазы «В» и так далее. Такая схема включения называется разомкнутым треугольником.

Читайте также: Замер сопротивления изоляции электропроводки от 7500 рублей с отчетом

В итоге на оставшихся разомкнутыми выводах «Ад» первой фазы и «Хд» последней в любого случае повреждения в сети, связанного с замыканием на землю, появится 3Uo. Можно его измерить, а также использовать для работы сигнализации, подключив к обмотке реле напряжения. Можно использовать и для работы защит, но об этом – немного позднее.

В трансформаторах напряжения, объединяющих обмотки трех фаз в одном корпусе, не требуется выполнять внешние соединения для фильтра 3Uo. Все уже выполнено заранее, внутри корпуса трансформатора.

Если в предыдущем случае выделение 3Uo происходит путем последовательного сложения векторов напряжений за счет коммутации проводников, то внутри трехфазного ТН это происходит за счет сложения магнитных потоков в сердечнике. Поэтому, в зависимости от его формы, внутренняя схема соединений обмоток Ад-Хд может отличаться.

Но сути это не меняет: в итоге на корпусе рядом с выводами основных обмоток, использующихся для учета, измерения и защиты, появляется выводы от объединенной дополнительной обмотки 3Uo. Обозначается она точно так же, как и на однофазных ТН.

Интересное видео о ТЗНП смотрите ниже:

Определение симметричных составляющих в фазных и междуфазных напряжений: расчет, формулы

Обратная последовательность

На рис. П6.1 изображены в виде звезды системы векторов междуфазных напряжений UАВ, UВC, UCA и напряжений прямой UАВ (1), UВC (1), UCA (1) и обратной UАВ (2), UВC (2), UCA (2) последовательностей. За действительную ось принят вектор UАВ (1). Вектор UАВ (2) сдвинут относительно вектора UАВ (2) на угол ϕ2 . Вектора UВC (2) и UCA (2) сдвинуты относительно векторов UВC (1) и UCA (1) на углы ϕ2 – 120° и ϕ2 + 120° соответственно.

Определение симметричных составляющих в фазных и междуфазных напряжений: расчет, формулы

Рис. П6.1. Междуфазные напряжения и их симметричные составляющие

Связь модулей междуфазных напряжений UАВ ≠ UВC ≠ UCA и модулей напряжений прямой U1 = UАВ (1) = UВC (1) = UCA (1) и обратной U2 = = UАВ (2) = UВC (2) = UCA (2) последовательностей выражается системой трех уравнений, содержащих три неизвестных – U1 , U2 и ϕ2 :

Возводя каждое уравнение системы (П6.1) в квадрат и используя тригонометрические формулы для косинусов и синусов сумм и разностей аргументов:

получим систему уравнений:

Для исключения величин U1 2 и U2 2 вычтем третье уравнение из первого и второго уравнения и получим систему двух уравнений:

Читайте также: Сильно искрят щетки двигателя электроинструмента причина

Определяя из каждого уравнения (П6.4) величину U2 и приравнивая полученные выражения, получим:

откуда непосредственно следует:

Если знаменатель формулы (П6.6) меньше нуля, к углу ϕ2 надо прибавить 180°.

Для упрощения записи последующих уравнений введем следующие обозначения:

Из соотношения тригонометрических функций и с учетом принятых обозначений имеем:

Из второго уравнения (П6.4) имеем:

Подставив (П6.9) в первое уравнение (П6.4), получим выражение для cos ϕ2 через другие величины:

Приравнивая (П6.8) и (П6.10), получим связь величин U1 и U2 :

Подставив (П6.8) и второе уравнение (П6.11) в первое уравнение системы (П6.3), получим биквадратное уравнение:

решение которого дает окончательную формулу:

Если подставить в (П6.3) не второе, а первое уравнение (П6.11), то получим формулу для U2 , правая часть которой полностью совпадает с (П6.13). Это не удивительно, так как формулы (П6.3) инвариантны по отношению к величинам U1 и U2 : при одновременной замене U1 на U2 и U2 на U1 формулы не изменяются. Поэтому при знаке «+» перед внутренним корнем в формуле (П6.13) по ней 402 определяется величина, имеющая большее значение, а при знаке «–» – меньшее. Так как физически U1 > U2 , то общая формула имеет вид (8.6). Данные формулы были впервые выведены в 1985 г. [44].

Для проверки правильности полученных формул примем в качестве примера значения междуфазных напряжений, соответствующие U1 = 400 В; U2 = 40 В и ϕ2 = 30°. Подставив эти значения в формулы (П6.1), получим: UAB = 435,1 В; UBC = 402,0 В; UCA = 365,9 В.

Приняв эти напряжения в качестве исходных данных, по формулам (8.6) и (8.7) получим: U1 = 400 В; U2 = 40 В; ϕ 2 = 30° , что говорит о правильности формул.

Преобразования уравнений (П6.1) могут проводиться различными способами. Например, в [45] приведена формула для напряжения обратной последовательности, также использующая величины (П6.7) и определяющая значение U2 в процентах от U1 (формула для U1 в [45] не приведена, поэтому значение U2 в вольтах оказывается не определенным):

Подставив в формулу значения a4 и a2 , получим U2 (%) = 10 %.

Нулевая последовательность

В фазных напряжениях содержатся все три последовательности. Система уравнений, связывающая модули фазных напряжений с модулями напряжений прямой, обратной и нулевой последовательности, имеет вид:

Читайте также: Светодиоды – как работает, полярность, расчет резистора

В уравнениях (П6.15) пять неизвестных: U1ф, U2ф, U0 , ϕ2ф и ϕ0 . Получить выражения для них из системы трех уравнений невозможно. Поэтому рассчитать составляющие прямой, обратной и нулевой последовательностей фазных напряжений на основании измерения только фазных напряжений нельзя. Необходимо использовать полученные из расчета междуфазных напряжений составляющие прямой и обратной последовательности фазных напряжений: U1ф = = U1 / 3 и U2ф = U2 / 3 . Угол ϕ 2ф между U2ф и U1ф связан с углом 403 между U2 и U1 . соотношением ϕ 2ф = ϕ 2 + 60°, то есть также является известным. При этом в (П6.15) остается только два неизвестных: U0 и ϕ 0 . Система уравнений оказывается избыточной – достаточно использовать два любых уравнения. Тем не менее продолжим операции со всеми тремя уравнениями, так как вывод окончательных формул оказывается проще.

Для упрощения записи (П6.15) произведения и суммы уже известных величин и являющихся при выводе соотношений для U0 постоянными, обозначим:

Определение симметричных составляющих в фазных и междуфазных напряжений: расчет, формулы

Для упрощения дальнейших преобразований исключим величину U0 2 . Для этого вычтем из первого уравнения второе, а из второго третье уравнение и получим систему из двух уравнений:

Величины в круглых скобках формул (П6.20), являющиеся постоянными, для упрощения записи обозначим:

При этом формулы (П6.20) приобретут вид:

Выражая из каждого уравнения U0 и приравнивая правые части полученных формул, получим:

Равенство правых частей формулы (П6.23) запишем в виде:

Разделив числитель и знаменатель правой части равенства на cos ϕ0 , получим:

После определения угла ϕ0 значение U0 определяют, подставляя его в любое из уравнений (П6.23).

Приведенный алгоритм вычисления предполагает определение U0 после предварительного определения ϕ0 . Подставив (П6.25) в соотношения

и затем в (П6.23), можно получить формулу, непосредственно определяющую U0 через фазные и междуфазные напряжения, однако она получается чрезмерно громоздкой. Поэтому целесообразнее использовать последовательно формулы (П6.25) и (П6.23).

Подставив в (П6.21) выражения (П6.16), получим формулы, непосредственно связывающие величины a, b, c, d, e, f с определенными на первом этапе параметрами прямой и обратной последовательности (как в фазных, так и в междуфазных напряжениях):

Определение симметричных составляющих в фазных и междуфазных напряжений: расчет, формулы

Для проверки правильности полученных формул примем в качестве примера значения фазных напряжений, соответствующие U0 = 20 В, ϕ0 = 60° и полученным ранее из расчета междуфазных напряжений U1ф = 400 / 3 , U2ф = 40 / 3 и ϕ2ф = ϕ2 + 60° = 30° + 60° = 90°. Подставив эти значения в формулы (П6.15), получим:

По (П6.26) вычисляем коэффициенты:

Подставив эти данные последовательно в (П6.24), (П6.25) и (П6.23), получим:

что подтверждает правильность расчетных формул.

Все приведенные выше формулы получены исходя из первоначальных систем уравнений, связывающих фазные и междуфазные напряжения с напряжениями симметричных составляющих и углами между ними. Другой способ вывода подобных формул основан на использовании соотношений между сторонами и углами косоугольных треугольников.

Известны формулы, выведенные Ф. Ф. Карповым (приведены в «Методических указаниях по контролю и анализу качества электроэнергии в электрических сетях общего назначения», опубликованных в [46]), в соответствии с которыми параметры напряжения прямой и обратной последовательности определяют следующим образом:

где U′ и U″ с соответствующими нижними индексами – продольная и поперечная составляющие векторов U1 и U2 ; ϕ1(2)–AB – углы векторов U1 и U2 по отношению к вектору UBA. Если U′ 1(2) < 0, к ϕ1–AB и ϕ2–AB надо прибавить 180°. Угол вектора U2 относительно вектора U1 определяется разностью ϕ2–1 = ϕ2–AB – ϕ 1–АB.

Для определения значений U 1(2) и U  1(2) вначале рассчитывают вспомогательные величины:

а затем подставляют их в формулы:

В формулах (П6.29) при определении составляющих вектора U1 принимают знак «+», а вектора U2 – знак «–». Значения прямой и обратной последовательности, определенные по этим выражениям для условий примера, полностью совпадают с определенными выше, при этом углы ϕ1–АB = –2°40′; ϕ2–AB = 27°20′ и ϕ2 = ϕ2–AB – ϕ1–АB = 30°.

Параметры напряжения нулевой последовательности в соответствии с [46] определяют по формулам:

Для определения значений U′ 0 и U″ 0 дополнительно к величинам (П6.28) рассчитывают вспомогательные величины:

Читайте также: Таблица обозначения видов проводов и кабелей для электропроводки: описание, разновидности, назначение

а затем подставляют все вспомогательные величины в формулы:

При преобразовании соотношений между сторонами и углами косоугольных треугольников могут использоваться различные приемы. Полученные при этом расчетные формулы могут иметь различный внешний вид, однако если при их выводе не использовались допущения (например, пренебрежение какими-либо составляющими вследствие их заведомой малости по сравнению с остальными), то все формулы дают идентичные результаты.

В частности, в ГОСТ 13109–97 [47] приведены формулы (в формуле для U0 исправлены знаки перед X и Y):

К сожалению, к этим относительно простым по виду выражениям нет формул для определения углов между векторами симметричных составляющих. Для целей сопоставления рассчитанных величин с нормами стандарта углы не нужны, однако при выборе средств симметрирования режима (например, расчета мощности конденсаторов по фазам) без них обойтись нельзя.

Все приведенные выше формулы являются точными алгебраическими выражениями, дающими абсолютно идентичные результаты. При экспресс-оценке симметричных составляющих по результатам измерения без применения сложных формул можно использовать приближенные соотношения:

При различных значениях угла ϕ2 коэффициент во второй формуле не выходит за пределы 0,575–0,665, поэтому максимальная погрешность приближенного определения U2 не превышает 7,3 %. Погрешность приближенного определения U1 еще меньше, причем среднее значение междуфазных напряжений всегда несколько больше фактического значения U1 . Это превышение зависит от значения U2 и хорошо аппроксимируется формулой δU1 (%) = 0,0025 U2 (%) 2 . Например, при U2 = 2 % превышение составит всего 0,01 %, а при U2 = 10 % – 0,25 %.

Для приведенного примера по формулам (П6.35) получаем: U1 = = 401 В и U2 = 42,9 В (U2 (%) = 10,7 %). Если уточнить значение U1 вычитанием превышения δU1 = 0,0025 ∙ 10,72 ∙ 401 = 1,15 В, то U1 = 399,85 В, то есть U1 определяется с погрешностью менее 0,04 %.

Балансировка фазных и междуфазных напряжений

Необходимость такой балансировки обоснована в п. 8.1.2. Вид уравнений корректировки измеренных напряжений с целью приведения их к физически существующей системе зависит от принятого критерия балансировки. Возможны следующие критерии.

  1. Оставить пять напряжений неизменными, а последнее фазное напряжение изменить так, чтобы оно пришло в нулевую точку, определенную двумя другими фазными напряжениями (см. рис. 8.4, в). Обоснованность такого подхода сомнительна, так как неясно, по какому условию должно выбираться единственное «неточное» напряжение, требующее корректировки.
  2. Осуществлять корректировку всех фазных напряжений, оставив неизменными междуфазные напряжения. В этом случае встает вопрос, почему междуфазные напряжения следует считать точными, а фазные – неточными?
  3. Так как все шесть напряжений измерены с погрешностью, представляется более логичным, что все они должны быть подвергнуты корректировке. При этом направленность корректировки фазных 409 и междуфазных напряжений оказывается различной. В случае, изображенном на рис. 8.4, а, междуфазные напряжения должны быть несколько увеличены, а фазные уменьшены, а в случае, изображенном на рис. 8.4, б, – наоборот. Считая, что все напряжения измерены прибором с одинаковой относительной погрешностью δ, представляется логичным, что все шесть напряжений должны быть изменены в одинаковой пропорции (хотя и в разные стороны). При таком подходе встает вопрос: почему предполагается, что при измерении всех междуфазных напряжений погрешность проявилась в одну сторону, а при измерении всех фазных напряжений – в другую?

К каждому из подходов имеются вопросы, которые, как кажется, полностью демонстрируют нелогичность рассмотренных подходов. Тем не менее задача состоит не в опровержении подходов, а в предложении хотя бы одного приемлемого, так как проводить расчеты симметричных составляющих для физически несуществующей системы исходных векторов еще более нелогично.

Условием физического существования системы является равенство ϕАВ + ϕВС + ϕСА = 360° (на рис. 8.4, а сумма фактических углов больше 360°, а на рис. 8.4, б – меньше 360°).

Из известных соотношений сторон и углов косоугольных треугольников угол ϕАВ определяется по формуле

Аналогичные выражения могут быть записаны и для углов ϕВС и ϕСА . Сумма половинных углов, естественно, должна быть равна 180°. Определенная же по измеренным напряжениям, она всегда будет отличаться от этой величины. Степень отличия охарактеризуем соотношением:

Значения напряжений в формуле (П6.37) необходимо скорректировать таким образом, чтобы определенные по (П6.37) углы удовлетворяли условию kϕ = 1. Это условие может быть обеспечено при различном изменении углов, входящих в сумму. Критерий корректировки углов неочевиден: корректировать ли все углы в одинаковой степени или в большей пропорции изменять меньшие углы (или наоборот)? Из описанных выше подходов наименьшие недостатки присущи третьему. Выведем соотношения для корректировки напряжений исходя из этого подхода и условия корректировки всех углов в одинаковой степени: к / i i k ϕ =ϕ ϕ .

Для того, чтобы угол ϕАВ, определяемый по формуле (П6.37), стал равным к ϕAB , необходимо изменить напряжения UAB, UA, UB в соответствии с равенством

Определение симметричных составляющих в фазных и междуфазных напряжений: расчет, формулы

Аналогичные коэффициенты могут быть определены и для двух других треугольников. Коэффициенты будут отличаться друг от друга, что объясняется принятым допущением о корректировке всех углов в одинаковой пропорции. Вместе с тем в каждом треугольнике две стороны являются общими для смежных треугольников и не могут корректироваться по-разному. Единственным видимым выходом является применение ко всем напряжениям среднего коэффициента корректировки kU = (kU AB + kU BC + kU CA ) / 3.

Для примера предположим, что в результате измерений получены следующие напряжения:

Вычислив по формуле (П6.37) и подобным формулам для других треугольников соответствующие углы, получим:

Сумма углов составляет 196,2°, то есть система соответствует случаю рис. 8.4, б. Необходимо уменьшить углы, разделив их на коэффициент kϕ = 196,2 / 180 = 1,09. При этом значения углов к / 2 ϕAB и соответствующих им тангенсов составят:

Подставляя эти значения tg ϕ в формулу (П6.40) и в подобные формулы, записанные для других междуфазных и фазных напряжений, получим:

Применив kU ср к измеренным напряжениям, получим:

Если определить по формулам типа (П6.37) углы для этой системы напряжений, то их сумма составит (65,1° + 64,8° + 48,3°) = = 178,2°, то есть вместо превышения на 16,2° сумма стала ниже необходимой на 1,8°. При желании можно сделать еще одну итерацию.

Для получения формулы корректировки напряжений для случая, когда начальная сумма углов оказывается меньше 180° (рис. 8.4, а), необходимо в формуле (П6.39) заменить деление на kU умножением, и наоборот. Однако, в связи с небольшим отличием значений kU от единицы, результат будет отличаться несущественно. Поэтому и в этом случае можно пользоваться формулой (П6.40); при этом значения kU окажутся чуть меньше единицы и приведут к необходимому увеличению междуфазных и уменьшению фазных напряжений.

При использовании приведенного алгоритма поставленная цель – создание физически существующей системы векторов – достигается. Однако остаются вопросы об обоснованности принятого критерия – изменение фазных и междуфазных напряжений в разные стороны. Учитывая случайный характер измеренных величин, представляется наиболее обоснованным использовать критерий минимума суммы квадратов отклонений относительных значений скорректированных напряжений от их измеренных значений:

при одновременном соблюдении условия, накладываемого на сумму углов. Решение такой системы уравнений в настоящее время отсутствует.

В целом алгоритм вычисления параметров симметричных составляющих состоит из следующих этапов:

  • проводят балансировку фазных и междуфазных напряжений;
  • вычисляют параметры прямой и обратной последовательности междуфазных напряжений по формулам (8.6) и (8.7) или другим аналогичным формулам;
  • по формулам (8.8) вычисляют коэффициенты a, b, c, d, e, f; по формулам (8.9) – (8.11) вычисляют параметры нулевой последовательности.

Сигнализация о замыкании на землю

В сетях 6-10 кВ, где нейтраль изолирована, работа с «землей» возможна некоторое время. Но замыкание нужно активно искать. И чем раньше начнется поиск, тем лучше.

Для контроля изоляции используются вольтметры, подключенные к обмоткам ТН на фазные напряжения.

В сети без повреждений все они показывают одинаковую величину. Стоит случиться однофазному замыканию, как показания вольтметра поврежденной фазы снизятся. Вольтметр покажет ноль при полном устойчивом КЗ. Так определяется фаза с повреждением.

Но, чтобы взглянуть на вольтметры, нужно сгенерировать предупредительный сигнал.

Для этого используется контроль величины 3Uo с помощью реле.

При его срабатывании зажигается табло, привлекающее к себе внимание.

Величину 3Uo принято регистрировать с помощью самопишущих приборов, а также она обязательно записывается аварийными осциллографами или микропроцессорными терминалами в момент любой аварии, даже не связанной с замыканиями на землю.

Еще один пример применения сигнализации, работающей от 3Uo, связан с эксплуатацией установок компенсации емкостных токов.

Отключать разъединитель дугогасящей катушки запрещено при наличии «земли» в сети. Для этого рядом с коммутационным устройством устанавливается индикаторная лампа, либо блок-замок рукоятки блокируется при наличии 3Uo системой автоматики.

Прямое и обратное чередование фаз

Трехфазный переменный ток графически представляет собой три фазы в виде чередующихся синусоид на оси Х, сдвинутых по отношению друг к другу на 120°. Первую синусоиду можно представить как фазу А, следующую синусоиду как фазу B, сдвинутую на 120° относительно фазы А, и третью фазу C, также сдвинутую на 120° по отношению к фазе В.

Графическое отображение сдвига фаз на 120° трехфазной сети

Если фазы имеют порядок АВС, то такое следование фаз называется прямым чередованием. Следовательно, порядок фаз СВА будет означать обратное чередование. Всего возможно три прямых чередования фаз ABС, BCА, CАВ. Для обратного чередования фаз порядок будет выглядеть как CВА, BAC, ACB.

Читайте также: Как мультиметром быстро определить где плюс и минус

Проверить чередование фаз трехфазной сети можно фазоуказателем ФУ – 2. Он представляет собой небольшой корпус, на котором имеются три зажима для подключения трех фаз сети, алюминиевого диска с черной точкой на белом фоне и три обмотки. Принцип действия у него аналогичен работе асинхронного электродвигателя.

Если подключить фазоуказатель к трем фазам и нажать кнопку на корпусе, то диск начнёт вращаться в одну из сторон. Когда вращение диска совпадает со стрелкой на корпусе, тогда фазоуказатель показывает прямое чередование фаз, вращение диска в обратном направлении указывает на обратное чередование фаз.

Электрическая схема фазоуказателя ФУ-2

В каких случаях необходимо знать порядок чередования фаз. Во-первых, если дом подключен к трехфазной сети и установлен индукционный электросчётчик, тогда нужно соблюдать на нем прямое чередование фаз. При неправильном подключении такого электросчетчика возможен его самоход, что даст неправильные показания в сторону увеличения расхода электроэнергии.

Также, если в доме используются асинхронные электродвигатели, то направление вращения ротора будет зависеть от порядка чередования фаз. Меняя чередование фаз на асинхронном электродвигателе можно изменить направление вращения ротора в нужную сторону.

Использование 3Uo в составе защит

В сетях с изолированной нейтралью совместное использование напряжений и токов нулевой последовательности позволяет определить направление на точку короткого замыкания. Но в настоящее время существуют более эффективные методы точного определения места повреждения в этих сетях.

Гораздо большую пользу подобная схема приносит в сетях в глухозаземленной нейтралью (ЛЭП-110 кВ и выше).

Подключение напряжения 3Uo (нулевой последовательности) и тока 3Io к обмоткам реле направления мощности позволяет определить, произошло ли однофазное КЗ в линии или вне ее. Так обеспечивается селективность работы защиты от однофазных замыканий на землю.

Что такое фазировка трехфазной сети

Фазировку трех фаз проводят в трансформаторных подстанциях при параллельном подключении трансформаторов. Подключение двух трансформаторов к одной трехфазной сети осуществляется межсекционными автоматическими выключателями. Проверить одноименные фазы фазоуказателем не представляется возможным.

Однако можно определить одноименные фазы мультиметром или любым вольтметром с пределом измерения 500 В. При проведении фазировки, нужно соблюдать все меры безопасности и заранее проверить на работоспособность мультиметр. Перед нахождением одноименных фаз важно определить наличие фазного напряжения относительно «земли» на всех шинах (на случай обрыва).

Проверка на обрыв и нахождение одноименных фаз в трехфазной сети

Далее, работая в резиновых перчатках, замеряют линейные напряжения на шинах разных трансформаторов. Если найдены шины, напряжение между которыми около нуля, то такие шины имеют одноименные фазы и их отмечают. Следом находят остальные две пары одноимённых шин и также отмечают.

Если напряжения между всеми шинами разных трансформаторов ниже линейного 380 В, но значительно отличаются от нуля, то фазировать такие трансформаторы нельзя, т. к. они имеют разные схемы соединения. Найденные одноимённые шины соединяют на разъединителях для параллельной работы.

Отличие фазного и линейного напряжения в трехфазной сети

Когда трансформатор имеет различные напряжения, при одинаковых схемах соединений, их подгоняют переключателем отводов обмоток трансформаторов до номинального значения. Фазировку высоковольтных линий проводят специальными высоковольтными индикаторами УВНФ.

Что такое токовая защита нулевой последовательности

Прямая обратная и нулевая последовательность фаз

Наиболее частой неисправностью в трёхфазной сети является замыкание на землю. Межфазные замыкания встречаются реже. В сетях 110 кВ от однофазных замыканий на землю используется токовая защита нулевой последовательности, сокращенно ТЗНП. В этой статье мы рассмотрим её устройство, принцип действия и назначение.

Напряжение прямой обратной и нулевой последовательности

Строительство

На чтение 14 мин. Опубликовано 12.12.2019

В высоковольтных сетях из-за каких-либо повреждений может нарушаться нормальная работа электроустановок. Достаточно частое повреждение – замыкание на землю, при котором возникает угроза как человеческой жизни за счет растекания потенциала, так и оборудованию за счет нарушения симметрии в сети. Чтобы предотвратить возможные последствия от таких повреждений на подстанциях и в других устройствах применяют токовую защиту нулевой последовательности (ТЗНП).

Что такое нулевая последовательность?

Преимущественное большинство сетей получают питание по трехфазной системе. Которая характеризуется тем, что напряжение каждой фазы смещено на 120º.

Рис. 1. Форма напряжения в трехфазной сети

Как видите из рисунка 1 на диаграмме б) показана работа сбалансированной симметричной системы. При этом если выполнить геометрическое сложение представленных векторов, то в нулевой точке результат сложения будет равен нулю. Это означает, что в системах 110, 10 и 6 кВ, для которых характерно заземление нейтралей трансформаторов, при нормальных условиях работы, какой-либо ток в нейтрали будет отсутствовать. Также следует отметить, что геометрически смена фаз может подразделяется на такие виды:

  • прямой последовательности, при которой их чередование выглядит как A – B – C;
  • обратной последовательности, при которой чередование будет C – B – A;
  • и вариант нулевой последовательности, соответствующий отсутствию угла сдвига.

Для первых двух вариантов угол сдвига будет составлять 120º.

Рис. 2. Прямая, обратная и нулевая последовательность

Посмотрите на рисунок 2, здесь нулевая последовательность, в отличии от двух других, показывает, что векторы имеют одно и то же направление, но их смещение в пространстве между собой равно 0º. Подобная ситуация происходит при однофазном кз, при этом токи двух оставшихся фаз устремляются в нулевую точку. Также эту ситуацию можно наблюдать и при междуфазных кз, когда две из них, помимо нахлеста, попадают еще и на землю, а в нуле будет протекать ток лишь одной фазы.

При возникновении трехфазных кз в нейтрали обмоток ток не будет протекать, несмотря на аварию. Потому что токи и напряжения нулевой последовательности по-прежнему будут отсутствовать. Несмотря на то, что фазные напряжения и токи в этой ситуации могут в разы возрасти, в сравнении с номинальными.

Принцип работы ТЗНП

Практически все релейные защиты, действие которых отстраивается от появления токов нулевой последовательности, имеют схожий принцип. Рассмотрите вариант такой схемы, демонстрирующей действие защиты.

Принципиальная схема простейшей ТЗНП

Здесь представлен вариант включения реле тока Т, которое подключается ко вторичным обмоткам трансформаторов тока (ТТ), собранных в звезду. В данной ситуации нулевой провод от звезды обмоток трансформаторов отфильтровывает составляющие нулевой последовательности, в случае их возникновения. При условии, что система работает симметрично, обмотки реле Т будут обесточенными. А при условии, что в одной из фаз произойдет замыкание на землю, ТТ отреагирует на это, из-за чего по нулевому проводу потечет ток. Это и будет та самая составляющая нулевой последовательности, из-за которой произойдет возбуждение обмотки реле Т.

После чего происходит выдержка времени, определяемая параметрами реле В. При истечении установленного промежутка времени токовая защита посылает сигнал на соответствующую коммутационную установку У. Которая и производит отключение трехфазной сети. Более сложные варианты схемы могут включать и реле мощности, которое позволяет отлаживать работу защиты по направлению.

В случае междуфазных повреждений симметрия не нарушиться, а лишь измениться величина токов. А ТТ будут продолжать компенсировать токи, стекающиеся в нулевой провод. Преимущество такой схемы заключается в том, что при максимальных рабочих токах, все равно не будет срабатывать защита, поскольку будет сохраняться симметрия.

Но при существенном отличии в магнитных параметрах измерительных трансформаторов, произойдет дисбаланс в системе, и по нулевому проводнику будет протекать ток небаланса. Что может обуславливать ложные срабатывания токовой защиты даже в тех сетях, где соблюдается номинальный режим питания.

Правила подборки трансформаторов тока.

С целью снижения небаланса, влияющего на правильность срабатывания токовой защиты, подбирают такие ТТ, у которых вторичные токи не создадут перетоков. Для чего они должны соответствовать таким требованиям:

  • Обладать идентичными кривыми гистерезиса;
  • Одинаковая нагрузка вторичных цепей;
  • Погрешность на границе участков сети не должна превышать 10%.

Читайте также: Механическая автоматика для насоса

К их вторичным цепям запрещено подключать еще какую-либо нагрузку, приводящую к искажению кривой намагничивания хотя бы в одном ТТ. Поэтому на практике при возникновении токов срабатывания от симметричной системы рекомендуют подвергать замене не один и не два, а все три трансформатора одновременно.

Область применения

Токовая защита, способная отреагировать на появление нулевой последовательности, нашла достаточно широкое применение в линиях с заземленной нейтралью. Так как в них токи коротких замыканий достигают наибольших величин. А вот при изолированной нейтрали ее установка нецелесообразна, поэтому ТЗНП в них не используют. Сегодня установки ТЗНП находят широкое применение:

  • на шинах районных подстанций для защиты силового оборудования;
  • в распределительных устройствах трансформаторных, переключающих и комплектных подстанций;
  • в токовых цепях крупных промышленных объектов с трехфазным силовым оборудованием.

Выбор уставок для ТЗНП

Для обеспечения ступенчатого принципа вывода линии, токовая защита, контролирующая появление нулевой последовательности в цепях, должна соответствовать селективности срабатывания. Здесь под селективностью понимается последовательное отключение определенных участков цепи, в зависимости от их значимости, с целью определения места повреждения или выделения поврежденного промежутка. Для этого выбираются соответствующие уставки срабатывания по времени для защиты. Рассмотрите пример выбора уставок на такой схеме.

Пример выбора уставок

Как видите, ТЗНП в данном случае отстраивается по тому же принципу, что и максимальная токовая защита, но с меньшей величиной выдержки времени. В этом примере каждая последующая ступень защиты выдерживает временную задержку на промежуток Δt больше, чем предыдущая. То есть время срабатывания первой токовой отсечки, в сравнении со второй будет рассчитываться по формуле: t1 = t2+ Δt. А время срабатывания второй по отношению к третей будет составлять t2 = t3+ Δt. Таким образом каждое последующее реле выполняет функцию резервной защиты.

Если обмотки преобразовательных устройств включаются по системе звезда – треугольник, а также звезда – звезда, ТЗНП первичных и вторичных цепей не совпадают. Из-за того, что замыкание в линиях высокого напряжения не обязательно вызовет появление составляющих нулевой последовательности в низких обмотках и питаемой ими цепи. Так как селективность ТЗНП для каждой из них должна выстраиваться независимо, на практике должна обеспечиваться их независимая работа.

Такая система ступенчатых защит позволяет минимизировать дальнейший переход повреждения на другие участки сети и силовое оборудование. А также помогает вывести из-под угрозы персонал, обслуживающий эти устройства. Главное требование к токовой защите – предотвращение ложных коммутаций по отношению к соответствующей зоне срабатывания.

Практическая реализация ТЗНП

Сегодня токовая защита, реагирующая на возникновение нулевой последовательности, может реализовываться микропроцессорными установками и посредством реле. В большинстве случаев устаревшие реле повсеместно заменяются на более новые версии токовой защиты. Но, помимо ТЗНП настраиваются в работу дистанционные, дифференциальные защиты и прочие устройства. Чья работа основывается как на симметричных составляющих, так и на других параметрах сети.

Помимо этого, в своем классическом исполнении ТЗНП не имеет возможности определять место повреждения. То есть для нее не имеет значение, в каком месте произошел обрыв. Поэтому для определения направления, в котором ток протекает по направлению к земле, применяют направленную защиту. Такая система отстраивается не только на токах, а и на напряжении, возникающем от нулевой последовательности. Данные величины подаются с трансформаторов напряжения, включенных по системе разомкнутого треугольника.

Схема работы направленной защиты

При замыкании в зоне резервирования токовой защиты к одной из обмоток реле мощности поступает напряжение, а на вторую обмотку поступает ток нулевой последовательности, используемый для токовой защиты. При условии, что вектор мощности направлен в линию, реле мощности разблокирует срабатывание токовой защиты. В противном случае, когда направление мощности указывает, что неисправность произошла на другом участке, реле мощности продолжит блокировать срабатывание токовой защиты.

Сегодня практическая реализация такой защиты выполняется посредством микропроцессорных блоков REL650 или на реле ЭПЗ-1636. Каждый, из которых уже включает в себя и токовую отсечку, и дистанционную защиту, и пусковое реле для возобновления питания.

Ток нулевой последовательности это:

Читайте также: Можно ли приклеить зеркало на обои

Сумма мгновенных значений токов трех фаз трехфазной системы Система нулевой последовательности существенно отличается от прямой иобратной тем, что отсутствует сдвиг фаз. Нулевая система токов по существу представляет три однофазныхтока, для которых три провода трехфазной цепи представляют прямой провод, а обратным проводом служитземля или четвертый (нулевой), по которому ток возвращается.

Составляющие обратной последовательности (ток, напряжение) возникают при появлении в сети любой не симметрии (обрыв фазы, включение несимметричной нагрузки, однофазное илидвухфазноеКЗ).
Составляющие нулевой последовательности появляются при обрыве одной или двух фаз, однофазном или двухфазном КЗ на землю. ( при межфазных замыканиях без земли, составляющие равны нулю) Ток обратной последовательности, как известно из [22], появляется при любом несимметричном, а кратковременно и при трехфазном КЗ. Ток нулевой последовательности используется для повышения чувствительности пуска ВЧ-передатчика при КЗ на землю, а пусковое реле фазного тока КА — при симметричных КЗ

Практически ток нулевой последовательности получают соединением вторичных обмоток трансформаторов тока в фильтр токов нулевой последовательности (рис. 7.11). Из схемы видно, что ток в реле КА равен геометрической сумме токов трех фаз:

Ток в реле появляется только при однофазном или двухфазном КЗ на землю. Короткие замыкания между фазами являются симметричными системами, и соответственно этому ток в реле Iр=0 .

Зёх фазный ток — это когда фазы а,в,с отстоют друг от друга на 120градусов. Когда три фазы повёрнуты в 1 сторону — ток нулевой последовательности. Такое возникает при однофазных замыканиях на землю в сетях с заземлённой нейтралью. Поэтому применяются ТЗНП — токовые защиты нулевой последовательности для защиты от замыканий на землю — появился ток нулевой последовательности, значит есть замыкание на землю, защита срабатывает. . Токи обратной последовательности — это когда нарушен порядок чередования фаз. Возникают при межфазных замыканиях, для зашиты применяю ТЗОП — токовые защиты обратной последовательности. В двух словах так. Составляющие обратной последовательности (ток, напряжение) возникают при появлении в сети любой не симметрии (обрыв фазы, включение несимметричной нагрузки, однофазное или двухфазное КЗ).

Составляющие нулевой последовательности появляются при обрыве одной или двух фаз, однофазном или двухфазном КЗ на землю. ( при межфазных замыканиях без земли, составляющие равны нулю) Токи нулевой последовательности по существу являются однофазным током, разветвленным между тремя фазами и возвращающимся через землю и параллельные ей цепи. В силу этого, путь циркуляции токов нулевой последовательности резко отличен от пути, по которому проходят токи прямой или обратной последовательности Для практической реализации метода симметричных составляющих необходимо составлять три схемы замещения: прямой, обратной и нулевой последовательностей. Конфигурация этих схем и параметры их элементов в общем случае не одинаковы.

Схема прямой последовательности является той же, что и для расчета тока трехфазного замыкания. Из этой схемы находят результирующую ЭДС и результирующее сопротивление прямой последовательности: и . Началом этой схемы являются точки нулевого потенциала источников питания, концом – место короткого замыкания, к которой приложено напряжение прямой последовательности . Составляющие обратной последовательности возникают при появлении в сети любой несимметрии: однофазного или двухфазного короткого замыкания, обрыва фазы, несимметрии нагрузки.

Составляющие нулевой последовательности имеют место при замыканиях на землю (одно- и двухфазных) или при обрыве одной или двух фаз. В случае междуфазного замыкания составляющие нулевой последовательности(токи и напряжения) равны нулю.

Этот метод используют многие устройства РЗиА. В частности, принцип работы трансформатора тока нулевой последовательности основан на сложении значений тока во всех трех фазах защищаемого участка. В нормальном(симметричном) режиме сумма значений фазных токов равна нулю. В случае возникновения однофазного замыкания, в сети появятся токи нулевой последовательности и сумма значений токов в трех фазах будет отлична от нуля, что зафиксирует измерительный прибор (например, амперметр), подключенный ко вторичной обмотке трансформатора тока нулевой последовательности.

Для трехфазных транспозированых ЛЭП результат этого преобразования — точная матрица собственных векторов (матрица модального преобразования) [1] . Она одинакова как для тока, так и для напряжения.

Система трехфазных напряжений в нормальном режиме работы является симметричной. Но, стоит произойти короткому замыканию, как симметрия нарушается. Для удобства распознавания видов КЗ и проведения расчетов применяется метод симметричных составляющих. Согласно ему любую трехфазную систему с момента КЗ можно, для удобства расчетов, представить в виде суммы напряжений трех симметричных систем:

  • прямой последовательности;
  • обратной последовательности;
  • нулевой последовательности.

Читайте также: Новые модели холодильников самсунг

Все они являются мнимыми величинами, не существующими на самом деле. Но с помощью некоторых ухищрений их можно сделать реально осязаемыми, и применить на практике.

Устройства, выделяющие из системы трехфазных напряжений напряжение нужной последовательности, называют фильтрами. Рассмотрим одно из таких устройств, применяемое на практике для фиксации замыканий на землю.

Назначение дополнительных обмоток ТН

Особенностью напряжения нулевой последовательности (3Uo) является тот факт, что оно не появляется в результате междуфазных замыканий, а является только следствием КЗ на землю. Причем, не важно, где происходит замыкание: в электроустановке с изолированной или глухозаземленной нейтралью.

Фильтром для выделения этой величины являются специальные обмотки трансформаторов напряжения (ТН).

Этот процесс происходит по-разному в зависимости от конструкции трансформаторов. Если используются три одинаковых ТН, у каждого из них имеется специальная обмотка, выводы которой обозначены буквами «Ад» и «Хд». Эти обмотки соединяются между собой последовательно, с обязательным соблюдением направления. Провод от вывода «Хд» фазы «А» идет на вывод «Ад» фазы «В» и так далее. Такая схема включения называется разомкнутым треугольником.

В итоге на оставшихся разомкнутыми выводах «Ад» первой фазы и «Хд» последней в любого случае повреждения в сети, связанного с замыканием на землю, появится 3Uo. Можно его измерить, а также использовать для работы сигнализации, подключив к обмотке реле напряжения. Можно использовать и для работы защит, но об этом – немного позднее.

В трансформаторах напряжения, объединяющих обмотки трех фаз в одном корпусе, не требуется выполнять внешние соединения для фильтра 3Uo. Все уже выполнено заранее, внутри корпуса трансформатора.

Если в предыдущем случае выделение 3Uo происходит путем последовательного сложения векторов напряжений за счет коммутации проводников, то внутри трехфазного ТН это происходит за счет сложения магнитных потоков в сердечнике. Поэтому, в зависимости от его формы, внутренняя схема соединений обмоток Ад-Хд может отличаться.

Но сути это не меняет: в итоге на корпусе рядом с выводами основных обмоток, использующихся для учета, измерения и защиты, появляется выводы от объединенной дополнительной обмотки 3Uo. Обозначается она точно так же, как и на однофазных ТН.

Интересное видео о ТЗНП смотрите ниже:

Сигнализация о замыкании на землю

В сетях 6-10 кВ, где нейтраль изолирована, работа с «землей» возможна некоторое время. Но замыкание нужно активно искать. И чем раньше начнется поиск, тем лучше.

Для контроля изоляции используются вольтметры, подключенные к обмоткам ТН на фазные напряжения.

В сети без повреждений все они показывают одинаковую величину. Стоит случиться однофазному замыканию, как показания вольтметра поврежденной фазы снизятся. Вольтметр покажет ноль при полном устойчивом КЗ. Так определяется фаза с повреждением.

Но, чтобы взглянуть на вольтметры, нужно сгенерировать предупредительный сигнал.

Для этого используется контроль величины 3Uo с помощью реле.

При его срабатывании зажигается табло, привлекающее к себе внимание.

Величину 3Uo принято регистрировать с помощью самопишущих приборов, а также она обязательно записывается аварийными осциллографами или микропроцессорными терминалами в момент любой аварии, даже не связанной с замыканиями на землю.

Еще один пример применения сигнализации, работающей от 3Uo, связан с эксплуатацией установок компенсации емкостных токов.

Отключать разъединитель дугогасящей катушки запрещено при наличии «земли» в сети. Для этого рядом с коммутационным устройством устанавливается индикаторная лампа, либо блок-замок рукоятки блокируется при наличии 3Uo системой автоматики.

Использование 3Uo в составе защит

В сетях с изолированной нейтралью совместное использование напряжений и токов нулевой последовательности позволяет определить направление на точку короткого замыкания. Но в настоящее время существуют более эффективные методы точного определения места повреждения в этих сетях.

Гораздо большую пользу подобная схема приносит в сетях в глухозаземленной нейтралью (ЛЭП-110 кВ и выше).

Подключение напряжения 3Uo (нулевой последовательности) и тока 3Io к обмоткам реле направления мощности позволяет определить, произошло ли однофазное КЗ в линии или вне ее. Так обеспечивается селективность работы защиты от однофазных замыканий на землю.

Напряжение прямой обратной и нулевой последовательности

Электрику

Преимущественное большинство сетей получают питание по трехфазной системе. Которая характеризуется тем, что напряжение каждой фазы смещено на 120º.

Рис. 1. Форма напряжения в трехфазной сети

Как видите из рисунка 1 на диаграмме б) показана работа сбалансированной симметричной системы. При этом если выполнить геометрическое сложение представленных векторов, то в нулевой точке результат сложения будет равен нулю. Это означает, что в системах 110, 10 и 6 кВ, для которых характерно заземление нейтралей трансформаторов, при нормальных условиях работы, какой-либо ток в нейтрали будет отсутствовать. Также следует отметить, что геометрически смена фаз может подразделяется на такие виды:

  • прямой последовательности, при которой их чередование выглядит как A – B – C;
  • обратной последовательности, при которой чередование будет C – B – A;
  • и вариант нулевой последовательности, соответствующий отсутствию угла сдвига.

Для первых двух вариантов угол сдвига будет составлять 120º.

Рис. 2. Прямая, обратная и нулевая последовательность

Читайте также: 6 полезных вещей, которые обязательно должны быть в доме у современной хозяйки

Посмотрите на рисунок 2, здесь нулевая последовательность, в отличии от двух других, показывает, что векторы имеют одно и то же направление, но их смещение в пространстве между собой равно 0º. Подобная ситуация происходит при однофазном кз, при этом токи двух оставшихся фаз устремляются в нулевую точку. Также эту ситуацию можно наблюдать и при междуфазных кз, когда две из них, помимо нахлеста, попадают еще и на землю, а в нуле будет протекать ток лишь одной фазы.

При возникновении трехфазных кз в нейтрали обмоток ток не будет протекать, несмотря на аварию. Потому что токи и напряжения нулевой последовательности по-прежнему будут отсутствовать. Несмотря на то, что фазные напряжения и токи в этой ситуации могут в разы возрасти, в сравнении с номинальными.

Принцип работы ТЗНП

Практически все релейные защиты, действие которых отстраивается от появления токов нулевой последовательности, имеют схожий принцип. Рассмотрите вариант такой схемы, демонстрирующей действие защиты.

Принципиальная схема простейшей ТЗНП

Здесь представлен вариант включения реле тока Т, которое подключается ко вторичным обмоткам трансформаторов тока (ТТ), собранных в звезду. В данной ситуации нулевой провод от звезды обмоток трансформаторов отфильтровывает составляющие нулевой последовательности, в случае их возникновения. При условии, что система работает симметрично, обмотки реле Т будут обесточенными. А при условии, что в одной из фаз произойдет замыкание на землю, ТТ отреагирует на это, из-за чего по нулевому проводу потечет ток. Это и будет та самая составляющая нулевой последовательности, из-за которой произойдет возбуждение обмотки реле Т.

После чего происходит выдержка времени, определяемая параметрами реле В. При истечении установленного промежутка времени токовая защита посылает сигнал на соответствующую коммутационную установку У. Которая и производит отключение трехфазной сети. Более сложные варианты схемы могут включать и реле мощности, которое позволяет отлаживать работу защиты по направлению.

В случае междуфазных повреждений симметрия не нарушиться, а лишь измениться величина токов. А ТТ будут продолжать компенсировать токи, стекающиеся в нулевой провод. Преимущество такой схемы заключается в том, что при максимальных рабочих токах, все равно не будет срабатывать защита, поскольку будет сохраняться симметрия.

Но при существенном отличии в магнитных параметрах измерительных трансформаторов, произойдет дисбаланс в системе, и по нулевому проводнику будет протекать ток небаланса. Что может обуславливать ложные срабатывания токовой защиты даже в тех сетях, где соблюдается номинальный режим питания.

Правила подборки трансформаторов тока.

С целью снижения небаланса, влияющего на правильность срабатывания токовой защиты, подбирают такие ТТ, у которых вторичные токи не создадут перетоков. Для чего они должны соответствовать таким требованиям:

  • Обладать идентичными кривыми гистерезиса;
  • Одинаковая нагрузка вторичных цепей;
  • Погрешность на границе участков сети не должна превышать 10%.
Фильтр тока обратной последовательности ФТОП (рис. 12.16) состоит из трансформаторов ТА1, ТА3, трансреактора TAV2, резисторов R13, R14 и конденсаторов С8-С12. Трансформатор ТА1 одной из первичных обмоток включается на ток фазы А, а другой обмоткой, имеющей в 3 раза меньшее количество витков, — в нулевой провод для компенсации влияния токов нулевой последовательности. Трансформатор ТА3 и трансреактор ТАV2 включены на разность токов фаз В и С. Вторичные обмотки ТА3 и TAV2 включены встречно для того, чтобы совпали по фазе напряжение на емкостной нагрузке С11, С12 и ЭДС трансреактора. Каждая из этих составляющих равна половине падения напряжения в резисторах R13, R14, совпадающего по фазе с током фазы А. Применение в качестве реактивных элементов емкостей и индуктивности, сопротивления которых, приведенные к первичной стороне трансформаторов, при номинальной частоте примерно одинаковы, позволяет снизить небаланс и погрешности фильтра от изменения частоты в пределах 10% номинального значения. Настройка ФТОП па минимум небаланса производится переменным резистором R14, а компенсация угловой погрешности трансформатора ТА1 и трансреактора TAV2 — емкостями С8-С10.

Рис. 12.16. Фильтр тока обратной последовательности РТФ-6М

При подаче на ФТОП тока прямой последовательности активная и реактивная составляющие равны и противоположны по фазе (рис. 12.17). При подаче на ФТОП тока обратной последовательности активная и реактивная составляющие равны и совпадают по фазе, на выходе фильтра появляется напряжение, пропорциональное току обратной последовательности.

Рис. 12.17. Векторные диаграммы ФТОП:

Читайте также: Счетчик СО-505 — обзор, технические характеристики

а — при токе прямой последовательности;

б — при токе обратной последовательности

Настройка ФТОП производится при имитации двухфазных КЗ. При снятых перемычках 6-8 и 14-16 на фазы АВ, ВС и СА поочередно подается ток I. Разница между напряжениями, измеренными вольтметром с R 20 кОм/В на зажимах 6-16, должна быть не более 1 В. Регулировка ФТОП производится резистором R14 и переключением конденсаторов С8-С10 на последовательное, параллельное или смешанное соединение.

Входное преобразовательное устройство ВПУ (рис. 12.18) состоит из регулируемых резисторов R15, R16, согласующего трансформатора TL4, выпрямительных мостов VC1, VC2, фильтра второй гармоники L1-C6, конденсатора С7, резисторов R17-R19 и стабилитрона VD4. На входах органов блок-реле напряжение определяется только кратностью тока обратной последовательности по отношению к номинальному току генератора и в определенных пределах не должно зависеть от значения номинального вторичного тока генератора. Для изменения входного напряжения органов блок-реле при настройке ФТОП предусмотрены резисторы R15, R16, регулирование которых позволяет устанавливать на входе напряжение, соответствующее номинальному току генератора при его значениях во вторичных цепях от 0,7 I до I. Согласующий трансформатор TL4 отделяет цепи интегрального органа от остальных элементов защиты, имеющих связь по цепям питания. Вторичная обмотка трансформатора имеет две отпайки для различных исполнений блок-реле по диапазонам регулировки уставок по постоянной А. На выходе вторичных обмоток включены выпрямительные мосты VC1 и VC2. Для сглаживания выпрямительного напряжения моста VC1 применен фильтр-шунт С6-L1, настроенный на частоту 100 (120) Гц. Нагрузкой моста является делитель входного напряжения органов без выдержки времени (R22, R23, R29, R30, R36, R42, R43). Сглаживание выпрямленного напряжения моста VC2 производится конденсатором С7, а нагрузкой являются резисторы R17 и R18 совместно с входным сопротивлением интегрального органа. Резистор R19 и стабилитрон VD4 вместе с входным сопротивлением интегрального органа представляет собой нелинейную цепь, необходимую для коррекции характеристики интегрального органа при токе I>1,5 I.

Настройка входного преобразовательного устройства сводится к выставлению напряжения на выходе моста VC1 (зажимы 20-22) в пределах (600,5) В. Для этого необходимо предварительно разомкнуть перемычку 32-34 на входе интегрального органа, на зажимы 40-4 подать напряжение постоянного тока 220 В и на вход ФТОП (зажимы 1-3) подать ток, равный I. Регулирование напряжения осуществляется резисторами R15, R16. Для измерения напряжения используется вольтметр постоянного тока с R 20 кОм/Б (М1200, М1201, М2038 и др.).

Рис. 12.18. Входное преобразовательное устройство РТФ-6М

Настройка фильтра-шунта C6-L1 на частоту 100 (120) Гц производится от генератора низкой частоты. Для этой цели на зажимы 18-22 через миллиамперметр переменного тока при разомкнутой перемычке 18-20 подводится напряжение частотой 100 (120) Гц. Изменением воздушного зазора дросселя L1 добиваются максимального показания миллиамперметра.

Органы с независимой выдержкой времени собраны по однотипным схемам, различающимся только параметрами некоторых резисторов. На рис. 12.19 приведена упрощенная схема сигнального органа, представляющая собой четырехплечий мост ACDЕ, к точкам А и D которого подводится напряжение от блока питания БП, а к точкам В и F — от делителя напряжения с выхода ВПУ (зажимы 20-22). В диагональ моста ЕC включено магнитоэлектрическое peле К1 типа М237/054, обмотка которого шунтирована демпфирующим резистором R24. Сопротивления плеч моста подобраны таким образом, чтобы при отсутствии напряжения на выходе ВПУ по обмотке реле проходил ток в тормозном направлении, значение которого регулируется в пределах 50-100 мкА резистором R26. Потенциалы точек В и F подобраны таким образом, что и при отсутствии напряжения от ВПУ или достаточно малом его значении диод VD5 заперт и ток, проходящий через него, пренебрежимо мал. При увеличении напряжения с выхода ВПУ диод VD5 начинает отпираться, а диод VD6 запираться. Ток в диагонали ЕС изменит направление и реле К1 сработает. Для изменения диапазонов уставок органов с независимой выдержкой времени без изменения параметров схем сравнения предусмотрена возможность ступенчатого изменения напряжения на делителе входного напряжения (R22, R23, R29, R30, R36, R42, R43). Плавное регулирование уставок осуществляется переменными резисторами R26, R33, R39 и R46. Для надежной работы контактов магнитоэлектрических реле К1-К4 параллельно им включены искрогасительные контуры R1-C1-R4-С4. Контакты магнитоэлектрических реле действуют на свои выходные реле KL1-KL4 типа РМУГ. Выдержки времени создаются с помощью дополнительных реле времени.

Рис. 12.19. Упрощенная схема сигнального органа

Настройка уставок производится при имитации КЗ на фазах АВ с пересчетом на ток обратной последовательности:

Срабатывание ступеней защиты фиксируется соответствующими выходными реле KL1-KL4. В точки а-б накладок ХВ1-ХВ4 включается микроамперметр (M1200, M1201 или др.) для измерения рабочего и тормозного токов магнитоэлектрических реле. Значения рабочего к тормозного токов должны находиться и пределах 50-100 мкА.

Интегральный орган (рис. 12.20) состоит из частотно-импульсного модулятора (ЧИМ), интегратора, блокинг-генератора, триггера и выходного реле. Для получения интегрально-зависимой характеристики времени в схеме интегрального органа используется заряд конденсатора током, среднее значение которого пропорционально квадрату относительного тока обратной последовательности. Время заряда конденсатора до определенного потенциала обратно пропорционально среднему значению зарядного тока, т. е. квадрату тока обратной последовательности. Подающийся на интегральный орган ток от ВПУ преобразуется в необходимый зарядный ток с использованием совмещенной частотно-импульсной и амплитудно-импульсной модуляции. В результате конденсатор заряжается импульсами тока неизменной продолжительности, амплитуда которых прямо пропорциональна, а длительность интервалов между импульсами обратно пропорциональна относительному току обратной последовательности. При исчезновении перегрузки по току обратной последовательности конденсатор переключается на разряд, имитирующий охлаждение генератора. Напряжение на конденсаторе уменьшается по экспоненте. Время полного охлаждения генератора соответствует времени снижения напряжения конденсатора от наибольшего значения до нуля после перегрузки, соответствующей порогу срабатывания интегрального органа, т. е. достижению максимально допустимого нагрева генератора. При повторной перегрузке генератора током обратной последовательности, возникшей до полного разряда конденсатора, интегральный орган сработает с меньшей выдержкой времени, чем после полного охлаждения.

Читайте также: Почему перегорает одна из ламп в светильнике и выбивает автомат?

И индуктивности, сопротивления

Рис. 12.20. Схема интегрального органа РТФ-6М

Выбор уставок для ТЗНП

Для обеспечения ступенчатого принципа вывода линии, токовая защита, контролирующая появление нулевой последовательности в цепях, должна соответствовать селективности срабатывания. Здесь под селективностью понимается последовательное отключение определенных участков цепи, в зависимости от их значимости, с целью определения места повреждения или выделения поврежденного промежутка. Для этого выбираются соответствующие уставки срабатывания по времени для защиты. Рассмотрите пример выбора уставок на такой схеме.

Пример выбора уставок

Как видите, ТЗНП в данном случае отстраивается по тому же принципу, что и максимальная токовая защита, но с меньшей величиной выдержки времени. В этом примере каждая последующая ступень защиты выдерживает временную задержку на промежуток Δt больше, чем предыдущая. То есть время срабатывания первой токовой отсечки, в сравнении со второй будет рассчитываться по формуле: t1 = t2+ Δt. А время срабатывания второй по отношению к третей будет составлять t2 = t3+ Δt. Таким образом каждое последующее реле выполняет функцию резервной защиты.

Если обмотки преобразовательных устройств включаются по системе звезда – треугольник, а также звезда – звезда, ТЗНП первичных и вторичных цепей не совпадают. Из-за того, что замыкание в линиях высокого напряжения не обязательно вызовет появление составляющих нулевой последовательности в низких обмотках и питаемой ими цепи. Так как селективность ТЗНП для каждой из них должна выстраиваться независимо, на практике должна обеспечиваться их независимая работа.

Такая система ступенчатых защит позволяет минимизировать дальнейший переход повреждения на другие участки сети и силовое оборудование. А также помогает вывести из-под угрозы персонал, обслуживающий эти устройства. Главное требование к токовой защите – предотвращение ложных коммутаций по отношению к соответствующей зоне срабатывания.

Фильтры обратной последовательности.

1. Изучение принципа действия активных фильтров напряжения обратной последовательности (ФНОП).

2. Выбор передаточных функций и схем реализации преобразователей, расчет параметров элементов схем.

3. Расчет функциональных характеристик.

4. Изучение принципа действия цифровых фильтров обратной последовательности.

5. Компьютерное исследование активных ФНОП.

Составление предварительного отчета

1. Определение передаточных функций заданных ФНОП и расчет параметров элементов схем их реализации.

2. Расчет и построение амплитудно-частотных характеристик. Сопоставить результаты расчетов.

3. Записать алгоритм и нарисовать схемную реализацию цифрового фильтра обратной последовательности.

Методические указания.Изучить с.49–60 [2].

К п.1. В табл. 4.1 [2]. ФНОП1 и ФНОП2 – фильтры первого порядка (нечетные варианты изучают ФНОП1, четные варианты – ФНОП2), а ФНОП3 — фильтр второго порядка.

К п.2. Для расчета частотных характеристик использовать формулы, полученные на основе передаточных функций [2]: для ФНОП1 – 4.12 и 4.13, для ФНОП2 – 4.15, для ФНОП3 – 4.19. Расчет АЧХ провести в диапазоне частот w=0¸2p×300 рад/с с шагом Dw=2p×50 рад/с. Характеристики для прямой и обратной последовательностей для обоих фильтров построить на одном графике. Сделать выводы о степени фильтрации высших гармоник для составляющих прямой и обратной последовательностей на частоте

Ф Н О П 1,2 Ф Н О П 3
Т,мс R0, к хi Т,мс R0, к хi
0,1 0,01
0,1 0,01
0,05 0,1
0,05 0,1
0,01 0,05
0,01 0,05
0,1 0,01
0,1 0,01
0,05 0,1
0,05 0,1
0,01 0,05
0,01 0,05
0,1 0,01
0,1 0,01
0,05 0,1
0,05 0,1
0,01 0,05
0,01 0,05
0,1 0,01
0,1 0,01
0,05 0,1
0,05 0,1
0,01 0,05
0,01 0,05
0,1 0,01
0,1 0,01
0,05 0,1
0,05 0,1
0,01 0,05
0,01 0,05

К п.4. Алгоритм цифрового фильтра обратной последовательности имеет вид u2(t)=1/3 (uab(t)±ubc(t-Tп/6)). Знак «+» относится к фильтру обратной последовательности, а «–» – к фильтру прямой последовательности.

Работа в лаборатории

1. Собрать заданную схему ФНОП первого порядка. Подключить к каждому входу необходимую составляющую прямой или обратной последовательностей. В качестве источников напряжения Uab и Ubc использовать источники синусоидального напряжения, фаза которых устанавливается в соответствии с подключаемой последовательностью.

2. Измерить АЧХ заданного ФНОП первого порядка для прямой и обратной последовательностей. Для этого один вход осциллографа подключается к любому входу фильтра, а второй вход осциллографа на выход схемы. На заданных частотах записываются значения амплитуд входного и выходного сигналов. При формировании последовательностей установить по каждому входу сигналы одинаковой амплитуды, равной 5В. Частоту изменять согласно заданным значениям 25, 50, 100, 200, 350, 500 Гц. Экспериментальные кривые совместить с теоретическими на одном рисунке.

Читайте также: Метод дециметроволновой (ДМВ) физиотерапии в медицине

3. В цепи обратной связи исследованного ФНОП1,2 заменить имеющийся двухполюсник на двухполюсник, рассчитанный для фильтра 2-го порядка ФНОП3 предварительной подготовки. Повторить измерения п.2. Измеренную АЧХ нарисовать на рис. п.2. Сделать выводы.

4. Для исследования составляющей небаланса, вызванной отклонением частоты от номинального значения, необходимо измерить отклонение амплитуды выходного сигнала ΔU1 на частотах 49, 51 Гц для прямой последовательности на входе. Вычислить значение коэффициента небаланса ((4.3) [2]). Сравнить с теоретическим значением γf.

Для исследования составляющей небаланса, вызванной технологическим разбросом заданного преподавателем параметра, необходимо изменить его значение на ±dx

i и измерить отклонение амплитуды выходного сигнала ΔU2 на частоте 50 Гц для прямой последовательности на входе. Вычислить значение коэффициента небаланса ((4.6) [2]).

Для исследования составляющей небаланса, вызванной неидеальностью операционного усилителя, необходимо заменить идеальный операционный усилитель реальным и измерить отклонение амплитуды выходного сигнала ΔU3 на частоте 50 Гц для прямой последовательности на входе.

Для оценки составляющей небаланса, вызванной высшими гармониками во входном сигнале, сравнить экспериментальные АЧХ фильтров первого и второго порядков на одинаковых частотах.

Сделать выводы о вкладе различных источников небаланса и способах его уменьшения.

5. Собрать схему алгоритма цифрового фильтра обратной последовательности. Для реализации элемента задержки на 1/6 периода Тп использовать последовательное соединение 8 элементов задержки на Тп/48, сформированном на элементе H(s), Т48,находящимся,в поле компонентов f.Аналогично п.3 снять АЧХ, отобразить результаты на том же рисунке. Сравнить АЧХ цифрового фильтра обратной последовательности с характеристиками непрерывных фильтров.

ЛАБОРАТОРНАЯ РАБОТА Э5

Диодные схемы сравнения амплитуд двух синусоидальных ЭДС

1. Изучение принципов действия диодных элементов сравнения амплитуд двух синусоидальных ЭДС.

2. Выбор схем сравнения, расчет параметров элементов схем.

3. Расчет и построение функциональных и информационных характеристик элементов сравнения.

4. Компьютерное исследование элементов сравнения.

Не нашли то, что искали? Воспользуйтесь поиском гугл на сайте:

Практическая реализация ТЗНП

Сегодня токовая защита, реагирующая на возникновение нулевой последовательности, может реализовываться микропроцессорными установками и посредством реле. В большинстве случаев устаревшие реле повсеместно заменяются на более новые версии токовой защиты. Но, помимо ТЗНП настраиваются в работу дистанционные, дифференциальные защиты и прочие устройства. Чья работа основывается как на симметричных составляющих, так и на других параметрах сети.

Помимо этого, в своем классическом исполнении ТЗНП не имеет возможности определять место повреждения. То есть для нее не имеет значение, в каком месте произошел обрыв. Поэтому для определения направления, в котором ток протекает по направлению к земле, применяют направленную защиту. Такая система отстраивается не только на токах, а и на напряжении, возникающем от нулевой последовательности. Данные величины подаются с трансформаторов напряжения, включенных по системе разомкнутого треугольника.

Схема работы направленной защиты

При замыкании в зоне резервирования токовой защиты к одной из обмоток реле мощности поступает напряжение, а на вторую обмотку поступает ток нулевой последовательности, используемый для токовой защиты. При условии, что вектор мощности направлен в линию, реле мощности разблокирует срабатывание токовой защиты. В противном случае, когда направление мощности указывает, что неисправность произошла на другом участке, реле мощности продолжит блокировать срабатывание токовой защиты.

Сегодня практическая реализация такой защиты выполняется посредством микропроцессорных блоков REL650 или на реле ЭПЗ-1636. Каждый, из которых уже включает в себя и токовую отсечку, и дистанционную защиту, и пусковое реле для возобновления питания.

Ток нулевой последовательности это:

Сумма мгновенных значений токов трех фаз трехфазной системы Система нулевой последовательности существенно отличается от прямой иобратной тем, что отсутствует сдвиг фаз. Нулевая система токов по существу представляет три однофазныхтока, для которых три провода трехфазной цепи представляют прямой провод, а обратным проводом служитземля или четвертый (нулевой), по которому ток возвращается.

Особенности прямой последовательности фаз

Это также называется способом асимметричных компонентов. Подробнее, элемент определения асимметричных электронных компонентов. Он основан на разложение несимметричной системы на 3 симметричные: прямая, обратная, нулевая.

Где применяется прямая последовательность фаз:

  1. Метод используется для определения асимметричных порядков действия электроэнергетических компонентов.
  2. Данный способ применяют некоторые элементы РЗиА. Например, на этом построен принцип действия трансформатора напряжения при последовательности в ноль. Основан принцип на суммировании значений напряжения во всех фазах.
  3. Для 3-фазных транспортных ЛЭП, в итоге получается матрица точных собственных направлений.

Этот способ определения удачно применяется, чтобы рассчитать несимметричные режимы 3-фазной линии, либо возникновения замыкания цепи. Фазоуказатель помогает определить прямую последовательность фаз, что нужно для работы некоторых устройств. При необходимости, можно легко изменить последовательность фаз.

Назначение дополнительных обмоток ТН

Особенностью напряжения нулевой последовательности (3Uo) является тот факт, что оно не появляется в результате междуфазных замыканий, а является только следствием КЗ на землю. Причем, не важно, где происходит замыкание: в электроустановке с изолированной или глухозаземленной нейтралью.

Фильтром для выделения этой величины являются специальные обмотки трансформаторов напряжения (ТН).

Этот процесс происходит по-разному в зависимости от конструкции трансформаторов. Если используются три одинаковых ТН, у каждого из них имеется специальная обмотка, выводы которой обозначены буквами «Ад» и «Хд». Эти обмотки соединяются между собой последовательно, с обязательным соблюдением направления. Провод от вывода «Хд» фазы «А» идет на вывод «Ад» фазы «В» и так далее. Такая схема включения называется разомкнутым треугольником.

В итоге на оставшихся разомкнутыми выводах «Ад» первой фазы и «Хд» последней в любого случае повреждения в сети, связанного с замыканием на землю, появится 3Uo. Можно его измерить, а также использовать для работы сигнализации, подключив к обмотке реле напряжения. Можно использовать и для работы защит, но об этом – немного позднее.

В трансформаторах напряжения, объединяющих обмотки трех фаз в одном корпусе, не требуется выполнять внешние соединения для фильтра 3Uo. Все уже выполнено заранее, внутри корпуса трансформатора.

Если в предыдущем случае выделение 3Uo происходит путем последовательного сложения векторов напряжений за счет коммутации проводников, то внутри трехфазного ТН это происходит за счет сложения магнитных потоков в сердечнике. Поэтому, в зависимости от его формы, внутренняя схема соединений обмоток Ад-Хд может отличаться.

Но сути это не меняет: в итоге на корпусе рядом с выводами основных обмоток, использующихся для учета, измерения и защиты, появляется выводы от объединенной дополнительной обмотки 3Uo. Обозначается она точно так же, как и на однофазных ТН.

Интересное видео о ТЗНП смотрите ниже:

Что такое напряжение нулевой последовательности? Схемы, применение, физический смысл

Прямая обратная и нулевая последовательность фаз

Система трехфазных напряжений в нормальном режиме работы является симметричной. Но, стоит произойти короткому замыканию, как симметрия нарушается. Для удобства распознавания видов КЗ и проведения расчетов применяется метод симметричных составляющих. Согласно ему любую трехфазную систему с момента КЗ можно, для удобства расчетов, представить в виде суммы напряжений трех симметричных систем:

  • прямой последовательности;
  • обратной последовательности;
  • нулевой последовательности.

Все они являются мнимыми величинами, не существующими на самом деле. Но с помощью некоторых ухищрений их можно сделать реально осязаемыми, и применить на практике.

Читайте также: Подвесные светильники: какие бывают и как используют

Устройства, выделяющие из системы трехфазных напряжений напряжение нужной последовательности, называют фильтрами. Рассмотрим одно из таких устройств, применяемое на практике для фиксации замыканий на землю.

Назначение дополнительных обмоток ТН

Особенностью напряжения нулевой последовательности (3Uo) является тот факт, что оно не появляется в результате междуфазных замыканий, а является только следствием КЗ на землю. Причем, не важно, где происходит замыкание: в электроустановке с изолированной или глухозаземленной нейтралью.

Фильтром для выделения этой величины являются специальные обмотки трансформаторов напряжения (ТН).

Этот процесс происходит по-разному в зависимости от конструкции трансформаторов. Если используются три одинаковых ТН, у каждого из них имеется специальная обмотка, выводы которой обозначены буквами «Ад» и «Хд». Эти обмотки соединяются между собой последовательно, с обязательным соблюдением направления. Провод от вывода «Хд» фазы «А» идет на вывод «Ад» фазы «В» и так далее. Такая схема включения называется разомкнутым треугольником.

В итоге на оставшихся разомкнутыми выводах «Ад» первой фазы и «Хд» последней в любого случае повреждения в сети, связанного с замыканием на землю, появится 3Uo. Можно его измерить, а также использовать для работы сигнализации, подключив к обмотке реле напряжения. Можно использовать и для работы защит, но об этом – немного позднее.

В трансформаторах напряжения, объединяющих обмотки трех фаз в одном корпусе, не требуется выполнять внешние соединения для фильтра 3Uo. Все уже выполнено заранее, внутри корпуса трансформатора.

Если в предыдущем случае выделение 3Uo происходит путем последовательного сложения векторов напряжений за счет коммутации проводников, то внутри трехфазного ТН это происходит за счет сложения магнитных потоков в сердечнике. Поэтому, в зависимости от его формы, внутренняя схема соединений обмоток Ад-Хд может отличаться.

Но сути это не меняет: в итоге на корпусе рядом с выводами основных обмоток, использующихся для учета, измерения и защиты, появляется выводы от объединенной дополнительной обмотки 3Uo. Обозначается она точно так же, как и на однофазных ТН.

Интересное видео о ТЗНП смотрите ниже:

Сигнализация о замыкании на землю

В сетях 6-10 кВ, где нейтраль изолирована, работа с «землей» возможна некоторое время. Но замыкание нужно активно искать. И чем раньше начнется поиск, тем лучше.

Для контроля изоляции используются вольтметры, подключенные к обмоткам ТН на фазные напряжения.

В сети без повреждений все они показывают одинаковую величину. Стоит случиться однофазному замыканию, как показания вольтметра поврежденной фазы снизятся. Вольтметр покажет ноль при полном устойчивом КЗ. Так определяется фаза с повреждением.

Но, чтобы взглянуть на вольтметры, нужно сгенерировать предупредительный сигнал.

Для этого используется контроль величины 3Uo с помощью реле.

При его срабатывании зажигается табло, привлекающее к себе внимание.

Величину 3Uo принято регистрировать с помощью самопишущих приборов, а также она обязательно записывается аварийными осциллографами или микропроцессорными терминалами в момент любой аварии, даже не связанной с замыканиями на землю.

Еще один пример применения сигнализации, работающей от 3Uo, связан с эксплуатацией установок компенсации емкостных токов.

Отключать разъединитель дугогасящей катушки запрещено при наличии «земли» в сети. Для этого рядом с коммутационным устройством устанавливается индикаторная лампа, либо блок-замок рукоятки блокируется при наличии 3Uo системой автоматики.

Использование 3Uo в составе защит

В сетях с изолированной нейтралью совместное использование напряжений и токов нулевой последовательности позволяет определить направление на точку короткого замыкания. Но в настоящее время существуют более эффективные методы точного определения места повреждения в этих сетях.

Гораздо большую пользу подобная схема приносит в сетях в глухозаземленной нейтралью (ЛЭП-110 кВ и выше).

Подключение напряжения 3Uo (нулевой последовательности) и тока 3Io к обмоткам реле направления мощности позволяет определить, произошло ли однофазное КЗ в линии или вне ее. Так обеспечивается селективность работы защиты от однофазных замыканий на землю.

Сигнализация о замыкании на землю

В сетях 6-10 кВ, где нейтраль изолирована, работа с «землей» возможна некоторое время. Но замыкание нужно активно искать. И чем раньше начнется поиск, тем лучше.

Для контроля изоляции используются вольтметры, подключенные к обмоткам ТН на фазные напряжения.

В сети без повреждений все они показывают одинаковую величину. Стоит случиться однофазному замыканию, как показания вольтметра поврежденной фазы снизятся. Вольтметр покажет ноль при полном устойчивом КЗ. Так определяется фаза с повреждением.

Но, чтобы взглянуть на вольтметры, нужно сгенерировать предупредительный сигнал.

Для этого используется контроль величины 3Uo с помощью реле.

При его срабатывании зажигается табло, привлекающее к себе внимание.

Величину 3Uo принято регистрировать с помощью самопишущих приборов, а также она обязательно записывается аварийными осциллографами или микропроцессорными терминалами в момент любой аварии, даже не связанной с замыканиями на землю.

Еще один пример применения сигнализации, работающей от 3Uo, связан с эксплуатацией установок компенсации емкостных токов.

Отключать разъединитель дугогасящей катушки запрещено при наличии «земли» в сети. Для этого рядом с коммутационным устройством устанавливается индикаторная лампа, либо блок-замок рукоятки блокируется при наличии 3Uo системой автоматики.