Обозначения трансформаторов тока и напряжения

Измерительные трансформаторы тока — назначение, устройство, виды конструкций

Мощные электротехнические установки могут работать с напряжением несколько сот киловольт, при этом величина тока в них может достигать более десятка килоампер. Естественно, что для измерения величин такого порядка не представляется возможным использовать обычные приборы. Даже если бы таковые удалось создать, они получились бы довольно громоздкими и дорогими.

Помимо этого, при непосредственном подключении к высоковольтной сети переменного тока повышается риск поражения электротоком при обслуживании приборов. Избавиться от перечисленных проблем позволило применение измерительных трансформаторов тока (далее ИТТ), благодаря которым удалось расширить возможности измерительных устройств и обеспечить гальваническую развязку.

Назначение и устройство ИТТ

Функции данного типа трансформаторов заключаются в снижении первичного тока до приемлемого уровня, что делает возможным подключение унифицированных измерительных устройств (например, амперметров или электронных электросчетчиков), защитных систем и т.д. Помимо этого, трансформатор тока обеспечивают гальваническую развязку между высоким и низким напряжением, обеспечивая тем самым безопасность обслуживающего персонала. Это краткое описание позволяет понять, зачем нужны данные устройства. Упрощенная конструкция ИТТ представлена ниже.

Как устроен измерительный трансформатор тока

Обозначения:

  1. Первичная обмотка с определенным количеством витков (W1).
  2. Замкнутый сердечник, для изготовления которого используется электротехническая сталь.
  3. Вторичная обмотка (W2 — число витков).

Как видно из рисунка, катушка 1 с выводами L1 и L2 подключена последовательно в цепь, где производится измерение тока I1. К катушке 2 подключается приборы, позволяющие установить значение тока I2, релейная защита, система автоматики и т.д.

Основная область применения ТТ — учет расхода электроэнергии и организация систем защиты для различных электроустановок.

В измерительном трансформаторе тока обязательно наличие изоляции как между катушками, витками провода в них и магнитопроводом. Помимо этого по нормам ПУЭ и требованиям техники безопасности, необходимо заземлять вторичные цепи, что обеспечивает защиту в случае КЗ между катушками.

Получить более подробную информацию о принципе действия ТТ и их классификации, можно на нашем сайте.

Перечень основных параметров

Технические характеристики трансформатора тока описываются следующими параметрами:

  • Номинальным напряжением, как правило, в паспорте к прибору оно указано в киловольтах. Эта величина может быть от 0,66 до 1150 кВ. получит полную информацию о шкале напряжений можно в справочной литературе.
  • Номинальным током первичной катушки (I1), также указывается в паспорте. В зависимости от исполнения, данный параметр может быть в диапазоне от 1,0 до 40000,0 А.
  • Током на вторичной катушке (I2), его значение может быть 1,0 А (для ИТТ с I1 не более 4000,0 А) или 5,0 А. Под заказ могут изготавливаться устройства с I2 равным 2,0 А или 2,50 А.
  • Коэффициентом трансформации (КТ), он показывает отношение тока между первичной и вторичной катушками, что можно представить в виде формулы: КТ = I1/I2. Коэффициент, определяемый по данной формуле, принято называть действительным. Но для расчетов еще используется номинальный КТ, в этом случае формула будет иметь вид: IНОМ1/IНОМ2, то есть в данном случае оперируем не действительными, а номинальными значениями тока на первой и второй катушке.

Ниже, в качестве примера, приведена паспортная таблица модели ТТ-В.

Технические характеристики измерительного трансформатора тока ТТ-В

Виды конструкций измерительных трансформаторов

В зависимости от исполнения, данные устройства делятся на следующие виды:

Катушечный ИТТ

  1. Катушечные, пример такого ТТ представлен ниже.

Обозначения:

Пример установки встроенного ТТ

  • A – Клеммная колодка вторичной обмотки.
  • В – Защитный корпус.
  • С – Контакты первичной обмотки.
  • D – Обмотка (петлевая или восьмерочная) .
  1. Стержневые, их также называют одновитковыми. В зависимости от исполнения они могут быть:
  • Встроенными, они устанавливаются на изоляторы вводы силовых трансформаторов, как показано на рисунке 4.

Обозначения:

  • А – встроенный ТТ.
  • В – изолятор силового ввода трансформатора подстанции.
  • С – место установки ТТ (представлен в разрезе) на изоляторе. То есть, в данном случае высоковольтный ввод играет роль первичной обмотки.
  1. Шинными, это наиболее распространенная конструкция. Ее принцип строения напоминает предыдущий тип, стой лишь разницей, что в данном исполнении в качестве первичной обмотки используется токопроводящая шина или жила, которая заводится в окно ИТТ. Шинные ТТ производства Schneider Electric
  1. Разъемными. Особенность данной конструкции заключается в том, что магнитопровод ТТ может разделяться на две части, которые стягиваются между собой специальными шпильками.Разъемный ТТ

Такой вариант конструкции существенно упрощает монтаж/демонтаж.

Расшифровка маркировки

Обозначение отечественных моделей интерпретируется следующим образом:

  • Первая литера в названии модели указывает на вид трансформатора, в нашем случае это будет буква «Т», указывая на принадлежность к ТТ.
  • Вторая литера указывает на особенность конструктивного исполнения, например, буква «Ш», говорит о том, что данное устройство шинное. Если указана литера «О», то это опорный ТТ.
  • Третьей литерой шифруется исполнение изоляции.
  • Цифрами указывается класс напряжения (в кВ).
  • Литера, для обозначения климатического исполнения согласно ГОСТ 15150 69
  • КТ, с указанием номинального тока первичной и вторичной обмотки.

Приведем пример расшифровки маркировки трансформатора тока.

Шильдик на ТТ с указанием его марки

Как видим, на рисунке изображена маркировка ТЛШ 10УЗ 5000/5А, это указывает на то, что перед нами трансформатор тока (первая литера Т) с литой изоляцией (Л) и шинной конструкцией (Ш). Данное устройство может использоваться в сети с напряжением до 10 кВ. Что касается исполнения, то литера «У», говорит о том, что аппарат создан для эксплуатации в умеренной климатической зоне. КТ 1000/5 А, указывает на величину номинального тока на первой и второй обмотке.

Схемы подключения

Обмотки трехфазных ТТ могут быть подключены «треугольником» или «звездой» (см. рис. 8). Первый вариант применяется в тех случаях, когда необходимо получить большую силу тока в цепи второй обмотки или требуется сдвинуть по фазе ток во вторичной катушке, относительно первичной. Второй способ подключения применяется, если необходимо отслеживать силу тока в каждой фазе.

Подключение трехобмоточного ТТ «звездой» и «треугольником»

При наличии изолированной нейтрали, может использоваться схема для измерения разности токов между двумя фазами (см. А на рис. 9) или подключение «неполной звездой» (B).

Пример как подключить ТТ на разность двух фаз (А) и неполной звездой (В)

Когда необходимо запитать защиту от КЗ на землю, применяется схема, позволяющая суммировать токи всех фаз (см. А на рис 10.). Если к выходу такой цепи подключить реле тока, то оно не будет реагировать на КЗ между фазами, но обязательно сработает, если происходит пробой на землю.

Подключения: А – для суммы токов всех фаз, В и С - последовательное и параллельное включение двухобмоточных ТТ

В завершении приведем еще два примера соединения вторичных обмоток ТТ для снятия показаний с одной фазы:

Вторичные катушки включаются последовательно (В на рис. 10), благодаря этому возникает возможность измерения суммарной мощности.

Вторичные обмотки соединяются параллельно, что дает возможность понизить КТ, поскольку происходит суммирование тока в этих катушках, в то время как в линии этот показатель остается без изменений.

Выбор

При выборе трансформатора тока в первую очередь необходимо учитывать номинальное напряжение прибора было не ниже, чем в сети, где он будет установлен. Например, для трехфазной сети с напряжением 380 В можно использовать ТТ с классом напряжения 0,66 кВ, соответственно для установок более 1000 В, устанавливать такие устройства нельзя.

Помимо этого IНОМ ТТ должен быть равен или превышать максимальный ток установки, где будет эксплуатироваться прибор.

Кратко изложим и другие правила, позволяющие не ошибиться с выбором ТТ:

  • Сечение кабеля, которым будет подключаться ТТ к цепи вторичной нагрузки, не должно приводить к потерям сверх допустимой нормы (например, для класса точности 0,5 потери не должны превышать 0,25%).
  • Для систем коммерческого учета должны использоваться устройства с высоким классом точности и низким порогом погрешности.
  • Допускается установка токовых трансформаторов с завышенным КТ, при условии, что при максимальной нагрузке ток будет до 40% от номинального.

Посмотреть нормы и правила, по которым рассчитываются измерительные трансформаторы тока (в том числе и высоковольтные) можно в ПУЭ ( п.1.5.1.). Пример расчета показан на картинке ниже.

Пример расчета ТТ

Что касается выбора производителя, то мы рекомендуем использовать брендовую продукцию, достоинства которой подтверждены временем, например ABB, Schneider Electric b и т.д. В этом случае можно быть уверенным, что указанные в паспорте технические данные, а методика испытаний соответствовала нормам.

Обслуживание

Необходимо обратить внимание, что при соблюдении режима и условий эксплуатации, правильно подобранных номиналах и регулярном обслуживании ТТ будет служить 30 лет и более. Для этого необходимо:

  • Обращать внимание на различные виды неисправностей, заметим, что большинство из них можно обнаружить при визуальном осмотре.
  • Производить контроль нагрузки в первичных цепях и не допускать перегрузку выше установленной нормы.
  • Необходимо отслеживать состояние контактов первичной цепи (если таковые имеются), на них должны отсутствовать внешние признаки повреждений.
  • Не менее важен контроль состояния внешней изоляции, почти в половине случаев ее стойкость нарушается из-за скопления грязи или влаги, которые закорачивают контакты на землю.
  • У масляных ТТ осуществляют проверку уровня масла, его чистоту, наличие подтеков и т.д. Обслуживание таких установок практически не сильно отличается от других силовых установок, например, емкостных трансформаторов НДЕ, разница заключается в небольших технических деталях.
  • Поверка ТТ должна проводиться согласно действующих нормативов (ГОСТ 8.217 2003).
  • При обнаружении неисправности производится замена прибора. Поврежденный ТТ отправляют в ремонт, который производится специализированными службами.

Использованная литература

  • В.В. Афанасьев «Трансформаторы тока» 1989
  • И С. Таев «Основы теории электрических аппаратов» 1987
  • Вавин В. Н. «Трансформаторы тока» 1966
  • Кацман М. М. «Электрические машины и трансформаторы» 1971

Измерительные трансформаторы напряжения и тока

измериттельные трансформаторы обложка

Измерительный трансформатор — это трансформатор предназначенный для расширения диапазона измерений измерительных приборов (амперметров, вольтметров, ваттметров и т.д.).

Для измерения больших напряжений (выше 1000 Вольт) и токов (более 100 Ампер) нецелесообразно строить приборы на измерение таких больших величин. Это и экономически невыгодно, и приборы в этом случае будут слишком громоздкими. Не говоря про опасность непосредственной работы с такими большими значениями напряжения и тока.

Поэтому, как правило, при напряжениях свыше 1000Вольт и токах более 100 Ампер перед измерительными приборами ставят соответствующие трансформаторы, чтобы уменьшить контролируемые электрические параметры до величин удобных для измерения: измерительные трансформаторы напряжения (далее — ИТН) — для измерения напряжений, измерительные трансформаторы тока (далее — ИТТ) — для измерения токов.

При использовании измерительных трансформаторов (далее — ИТ) измерительный прибор подключается к сети не напрямую, а опосредованно (косвенно) через ИТ который снижает (как правило, в десятки раз) измеряемый параметр до значения допустимого для измерительного прибора.

Таким образом, что бы считать показания с прибора подключенного через ИТ необходимо знать во сколько раз ИТ снизил измеряемый параметр, а что бы это узнать необходимо знать так называемый коэффициент трансформации ИТ отношение входного (первичного) тока или напряжения к выходному (вторичному), этот параметр для ИТ является основным и указывается на их корпусах и в паспортах

Зная коэффициент трансформации ИТ достаточно просто умножить на него показания измерительного прибора для точного определения измеряемого параметра сети. Для наглядности разберем следующий пример:

измерение тока через измерительный трансформатор

Имеется сеть в которой протекает ток до 80 Ампер и нам необходимо постоянно контролировать в ней величину тока, при этом имеющейся амперметр имеет номинальный ток 5 Ампер, соответственно подключить его в сеть с током 80 Ампер невозможно. Здесь нам и поможет ИТТ, его номинальный ток конечно должен быть больше либо равен максимальному току сети возьмем ИТТ 100/5, где 100 — номинальный ток первичной обмотки, а 5 — номинальный ток первичной обмотки, таким образом его коэффициент трансформации составит Кт=100/5=20.

Соответственно, чтобы в нашем случае определить какой ток протекает в сети необходимо показания амперметра умножить на коэффициент трансформации ИТТ через который он подключен (в нашем случае Кт=20), таким образом если амперметр показывает нам 4 Ампера, значит ток в сети составляет 80 Ампер (4х20), если показания 1,5Ампера — значит 30 Ампер (1,5х20) и т.д.

Аналогично может измеряться и напряжение с помощью измерительного трансформатора напряжения и вольтметра.

Некоторые приборы, такие как ваттметры и счётчики электрической энергии устанавливаемые в электроустановках напряжением выше 1000 Вольт подключаются к электрической сети через ИТТ совместно с ИТН.

Для примера ниже приведена схема включения ваттметра в сеть высокого напряжения через ИТТ и ИТН (схемы подключения счетчиков аналогичны схеме подключения ваттметров, подробнее читайте статью: Подключение счетчика через трансформаторы)

измерение мощности через измерительные трансформаторы

Что бы определить мощность в контролируемой сети необходимо показания ваттметра умножить на общий коэффициент трансформации который является произведением коэффициентов трансформации ИТН (Кн) и ИТТ (Кт), как видно из схемы в нашем случае общий коэффициент трансформации составляет 400.

Аналогичным образом определяется и расход электроэнергии по электросчетчикам подключенным через ИТ. При этом следует учитывать, что в некоторых случаях шкала измерительного прибора может быть отградуирована с учетом коэффициента трансформации ИТ, т.е. в них изначально заложен коэффициент трансформации ИТ через которые они должны подключаться, а в некоторых электронных измерительных приборах, например электронных счетчиках, коэффициент трансформации можно устанавливать в настройках, такие приборы показывают измеряемую величину уже с учетом коэффициента трансформации, соответственно никаких дополнительных действий по ее пересчету выполнять не требуется.

Типы (виды) измерительных трансформаторов и их маркировка

Как уже было сказано выше ИТ бывают двух видов измерительные трансформаторы тока и измерительные трансформаторы напряжения, которые в зависимости от места и способа установки и других особенностей могут иметь различные типы исполнения.

Измерительные трансформаторы напряжения

Трансформаторы напряжения подразделяются по следующим основным типам:

  1. По конструктивному исполнению: О — однофазные, Т — трехфазные, 3 — защищенные, В — водозащищенные, А — антирезонансные, П — со встроенным предохранителем, Г — герметичные, 3 — заземляемые, ДЕ — с емкостным делителем;
  2. По способу охлаждения: воздушного охлаждения, масляного охлаждения;
  3. По виду изоляции: Л — литая, С — воздушно-бумажная, К — компаунд битумный, Ф — фарфоровая покрышка, М – масляная, Г — газовая, П — полимерная;
  4. По количеству обмоток: двухобмоточные, трёхобмоточные;
  5. По классу точности: по допустимым значениям погрешностей;
  6. По числу ступеней трансформации: одноступенчатные, многоступенчатые (каскадные).

Маркировка ИТН выглядит следующим образом:

расшифровка маркировки измерительных трансформаторов напряжения

Буквы после чисел – климатическое исполнение: У — климат умеренный; цифра 3 — для работы в закрытых помещениях с естественной вентиляцией.

Для работы на открытом воздухе нужно использовать аппараты с цифрой 1 после букв У или ХП – холодное помещение, а в помещениях со свободным доступом наружного воздуха — с цифрой 2.

Примеры некоторых типов ИТН:

основные типы измерительных трансформаторов напряжения

Измерительные трансформаторы тока

По конструктивному исполнению и применяемой изоляции трансформаторы тока бывают следующих типов:

  1. По конструктивному исполнению: О — опорные, П — проходные, Ш — шинные, В — встроенные, Р — разъёмные, электроизмерительные клещи;
  2. По виду изоляции: Л – литая изоляция, Ф — фарфоровая покрышка, М – маслонаполненные, Г – газонаполненные, Т — твердая изоляция (кроме фарфоровой и литой), П – в пластмассовом корпусе (полимерном), бескорпусные;
  3. По количеству вторичных обмоток: с одной вторичной обмоткой, снесколькими вторичными обмотками;
  4. По назначению вторичных обмоток: для измерения, для учёта, для защиты, для измерения и защиты;
  5. По числу коэффициентов трансформации: с одним коэффициентом трансформации, с несколькими коэффициентами трансформации;
  6. По числу ступеней трансформации: одноступенчатные, многоступенчатые (каскадные).

Маркировка ИТТ имеет следующий вид:

расшифровка маркировки измерительных трансформаторов тока

Зачастую в маркировке после класса точности можно увидеть букву «S», например: ТОП- 0,66-1-5-0,5S 300/5, как можно увидеть данный трансформатор имеет класс точности 0,5S, 0,5 обозначает, что погрешность данного трансформатора составляет всего пол процента, но это номинальная погрешность, фактически погрешность может быть больше в зависимости от нагрузки на ИТ, например если проходящий ток через ИТТ слишком мал, то его погрешность будет больше 0,5, что конечно же не очень хорошо, буква S в маркировке ИТТ обозначает, что он входит в свой номинальный класс точности при меньших нагрузках в сравнении с обычными ИТТ.

На рисунке ниже представлены некоторые типы трансформаторов тока:

основные типы измерительных трансформаторов тока

Устройство и принцип действия измерительных трансформаторов

Принцип действия измерительных трансформаторов, как и других трансформаторов основан на законе электромагнитной индукции, с общим принципом работы трансформаторов вы можете ознакомиться в этой статье.

Устройство измерительных трансформаторов напряжения

ИТН по устройству принципу действия подобны обычным силовым трансформаторам. Они так же содержат две обмотки из медного изолированного провода, хотя их может быть и больше, расположенных на общем замкнутом магнитопроводе изготовленном из электротехнической листовой стали. Изоляция трансформатора напряжения представляет собой заливку эпоксидным компаундом, что создает монолитный блок с высокой степенью электрической прочности.

устройство измерительного трансформатора напряжения

Устройство измерительного трансформатора тока

Самый простой распространенный трансформатор тока — двухобмоточный. Он имеет одну первичную обмотку с числом витков W1 и одну вторичную обмотку с числом витков W2. Обмотки находятся на общем магнитопроводе, благодаря которому между ними существует электромагнитная (индуктивная) связь. Вторичных обмоток может будет измерительная, другая — может использоваться в цепях защиты. Первичная обмотка в этом случае является общей для всех вторичных обмоток. Часто трансформаторы тока изготовляются с двумя и более сердечниками, на которых размещаются обмотки, их называют кернами.

Первичная обмотка W1 может быть выполнена в виде катушки, намотанной на сердечник и содержать 1-3 витка провода большого сечения, рассчитанного на высокие измеряемые токи I1. Так же она может быть в виде шины встроенной в магнитопровод. В других конструкциях вообще не предусмотрена встроенная первичная обмотка — в них роль первичной обмотки выполняет шина (токопровод) распределительного устройства поверх которой закрепляется ИТТ. Вторичная обмотка W2 может иметь до нескольких сотен витков, благодаря чему ток во вторичной цепи I2 во много раз меньше тока первичной цепи: I2 = I1*W1/W2

устройство измерительного трансформатора тока

Основные характеристики и паспортные данные ИТ

К основным характеристикам измерительных трансформаторов напряжения относятся:

1) Номинальное первичное напряжение U1ном, кВ:

Напряжение, приложенное к первичной обмотке ТН и подлежащее трансформации. Значения напряжения указываются в документации на трансформаторы конкретных типов, а так же выбираются из таблиц.

2) Номинальное вторичное напряжение U2ном, В:

Напряжение, возникающее на зажимах вторичной обмотки ТН при приложении напряжения к его первичной обмотке.

Номинальные напряжения основных вторичных обмоток:

  • для однофазных трансформаторов, включаемых на напряжение между фазами, а так же трёхфазных ТН-100В;
  • для однофазных трансформаторов, включаемых на напряжение между фазой и землей -100/√3

Номинальные напряжения дополнительных вторичных обмоток:

  • для однофазных трансформаторов, работающих в сетях с заземлённой нейтралью-100В;
  • для однофазных трансформаторов, работающих в сетях с изолированной нейтралью — 100/3В.

3) Номинальный коэффициент трансформации Кн ном.:

Отношение действующего значения номинального первичного напряжения к действующему значению номинального вторичного напряжения: Кнном. = U1ном/U2ном.

4) Класс точности ТН:

Класс точности любого измерительного прибора представляет собой отклонение реальной величины от номинального значения. Класс точности для измерения, выбирается из ряда: 0,1; 0,2; 0,5; 1,0; 3,0, для защиты — 3P; 6P.

5) Номинальная мощностьS, В·А:

Значение полной мощности, указанное в паспорте ТН, которую он отдаёт во вторичную цепь при номинальном вторичном напряжении с обеспечением соответствующего класса точности.

6) Предельная мощностьS, В·А:

Кажущаяся мощность, которую трансформатор напряжения длительно отдаёт при номинальном первичном напряжении, вне класса точности, и при которой нагрев всех его частей не выходит за пределы, допустимые для класса нагревостойкости данного трансформатора.

7) Номинальная частота питающей сети ƒном, Гц:

Номинальная частота напряжения питающей сети должна быть 50 или 60Гц (в отечественных электрических сетях она составляет 50Гц).

Эти паспортные данные наносятся на специальную металлическую пластину, которая закрепляется на видном месте корпуса прибора и называется табличкой или шильдиком.

Измерительные трансформаторы напряжения по техническим характеристикам должны соответствовать ГОСТ 1983-2015.

  1. товарный знак предприятия-изготовителя;
  2. наименование «трансформатор напряжения»;
  3. тип трансформатора;
  4. порядковый номер по системе нумерации предприятия-изготовителя;
  5. год выпуска;
  6. количество фаз;
  7. номинальная частота, Гц;
  8. категория размещения (в данном случае для внутренней установки — УЗ);
  9. классы точности;
  10. соответствующие классам точности номинальные мощности, В·А;
  11. номинальное напряжение первичной обмотки и номинальныенапряжения каждой из вторичных обмоток, В;
  12. мощность дополнительной обмотки, В·А;
  13. предельная мощность, В·А;
  14. полная масса трансформатора, кг;
  15. дополнительная информация в соответствии с документацией на трансформаторы конкретныхтипов.

К основным характеристикам измерительных трансформаторов тока относятся:

1) Номинальноенапряжение Uном, кВ:

Выбирается из стандартного ряда напряжений: 0,66;3;6;10; 15; 20;24; 27; 35; 110; 150; 220; 330; 500; 750. Кроме встроенных трансформаторов.

2) Номинальный первичный ток I1ном, А:

Ток, протекающий в первичной обмотке ТТ и подлежащий трансформации. Может находиться в пределах от 1А до 40кА.

3) Номинальный вторичный ток I2ном, А:

Ток, протекающий во вторичной обмотке трансформатора тока. Обычно это 5А, но может быть 2А и 1А. Причём ток 1А допускается только для трансформаторов тока с номинальным первичным током до 4000А. А так же при больших измерительных расстояниях, чтобы снизить номинальную нагрузку. По заказу допускается изготовление трансформаторов тока с номинальным вторичным током 2 или 2,5А.

4)Номинальный коэффициент трансформации Ктном.:

Отношение действующего значения номинального первичноготока к действующему значению номинального вторичного тока в режиме холостого хода.Определяется по формуле: Ктном. = I1ном/I2ном.

5) Номинальная вторичная нагрузка S2ном, В·А:

Значение вторичной нагрузки, указанноена паспортной табличке ТТ, при котором гарантируется классточности. Определяется характером нагрузки с коэффициентом мощности cosφ.

6) Класс точности:

Обобщённая характеристика ТТ, определяемая установленными пределами допускаемых погрешностей при заданных условиях работы.

Для трансформаторов токасуществуют следующие классы точности: 0,1; 0,2; 0,2S; 0,5; 0,5S; 1,0; 3,0; 5Р; 10Р.

7) Номинальная частота питающей сети ƒном, Гц:

Номинальноезначение частоты напряжения сети, для работы в которой предназначен ТТ, должна быть 50 или 60Гц.

Так же как и трансформаторы напряжения, каждый трансформатор тока должен иметь табличку (шильдик), на которой указаны технические характеристики ТТ.

Измерительные трансформаторы тока по техническим характеристикам должны соответствовать ГОСТ 7746-2015.

Рассмотрим условные обозначения на такой табличке:

шильдик измерительного трансформатора тока

  1. товарный знак предприятия-изготовителя;
  2. наименование «трансформатор тока»;
  3. тип трансформатора и климатическое исполнение;
  4. порядковый номер по системе нумерации предприятия-изготовителя;
  5. номинальное напряжение, кВ (кроме встроенных трансформаторов);
  6. номинальный коэффициент трансформации обмоток;
  7. номинальная частота, Гц;
  8. номера вторичных обмоток;
  9. номинальная вторичная нагрузка, В·А;
  10. класс точности для вторичных обмоток;
  11. год выпуска;
  12. масса трансформатора;
  13. обозначение документа на трансформатор конкретного типа.

Особенности эксплуатации измерительных трансформаторов

Трансформаторы тока

Особенность эксплуатации ИТТ заключается в необходимости замыкания вторичной обмотки через измерительные приборы и реле или шунты (замыкания накоротко) — в случае если измерительные приборы отсутствуют. То есть ИТТ всегда должен работать в режиме короткого замыкания.

Большую опасность представляет обрыв вторичной обмотки. В этом случае в магнитопроводе создаётся очень большой магнитный поток, который не будет уравновешиваться размагничи­вающим действием вторичной обмотки. Это приводит к тому, что во вторичной, разомкнутой, обмотке может наводиться напряжение в десятки тысяч вольт, опасное для изоляции приборов и обслуживающего персонала. Поэтому, вторичная обмотка ИТТ всегда должна быть заземлена и замкнута накоротко через подключенный к ней измерительный прибор, а в случае необходимости его демонтажа (например с целью замены), должен устанавливаться шунт закорачивающий выводы вторичной обмотки ИТТ и снимается данный шунт только после установки и подключения измерительного прибора.

Трансформаторы напряжения

Трансформаторы напряжения, в отличие от трансформаторов тока, работают в режиме, близком к холостому ходу, так как сопротивление параллельных катушек приборов и реле большое, а ток, потребляемый ими, невелик.

Для обеспечения нормальной работы, ИТН должен быть защищен от токов короткого замыкания со стороны нагрузки, поскольку они вызывают перегрев и повреждение изоляции обмоток, а также приводят к возникновению короткого замыкания в самом трансформаторе. С этой целью во всех незаземлённых проводах устанавливаются автоматические выключатели или предохранители.Защита первичной обмотки от повреждений выполняется при помощи предохранителей.

Подключая измерительные приборы и устройства защиты к ИТН, следует учитывать тот факт, что включение большого количества электроприборов приводит к повышению значения тока во вторичной обмотке и увеличению погрешности измерения.

ВАЖНО! Для обеспечения безопасности работ, проводимых в цепях измерительных приборов и устройств релейной защиты, все вторичные обмотки измерительных трансформаторов тока и напряжения должны иметь постоянное заземление.

Схемы подключения измерительных трансформаторов

Трансформаторы напряжения

Трансформаторы напряжения выполняются в однофазном и трехфазном исполнении. В зависимости от требуемой информации они могут соединяться в различные схемы, как на рисунке ниже.

схемы подключения измерительных трансформаторов напряжения

На рисунке «а» приведена схема включения одного трансформатора напряжения на междуфазное напряжение АВ. Эта схема применяется, когда для защиты или измерений нужно только одно междуфазное напряжение.

На рисунке «б» показана схема соединения двух ИТН в открытый треугольник или в неполную звезду. Эта схема применяется, когда для защиты или измерений нужно иметь два или три междуфазных напряжения.

На рисунке «в» приведена схема соединения трёх однофазных или одного трёхфазного ИТН в звезду. Эта схема используется, когда для защиты и измерений нужны фазные напряжения или же одновременно фазные и междуфазные напряжения.

а рисунке «г» схема соединения трёх ИТН в треугольник–звезда. В этом случае на вторичной стороне будет повышенное напряжение, равное U2 173В. Схема может использоваться для питания электромагнитных корректоров напряжения для устройств автоматического регулирования.

На рисунке «д» представлена схема соединения ИТН в схему разомкнутого треугольника – на сумму фазных напряжений. В этой схеме первичные обмотки соединяются в звезду, а вторичные соединяются последовательно, образуя разомкнутый треугольник. Такое соединение применяется для получения напряжения нулевой последовательности (3Uo), необходимого для включения реле напряжения и реле мощности защиты от замыканий на землю.

Трансформаторы тока

Трансформаторы тока являются однофазными аппаратами и могут быть установлены в одну, две или три фазы измеряемой сети.

В трехфазной сети для подключения измерительных приборов и реле, вторичные обмотки трансформаторов тока соединяются в различные схемы. Наиболее распространенные из них приведены ниже.

схемы подключения измерительных трансформаторов тока

На рисунке «а» схема соединения в полную звезду, которая применяется при необходимости контроля тока во всех трех фазах электрической сети и для включения защиты от всех видов однофазных и междуфазных коротких замыканий.

На рисунке «б» схема соединения в треугольник, применяется для получения большей силы тока во вторичной цепи или сдвига по фазе вторичного тока относительно первичного на 30 или 330 . Так же она используется для получения разности фазных токов, например, для включения дифференциальной защиты трансформатора.

На рисунке «в» схема соединения в неполную звезду, используемая для включения защиты от междуфазных коротких замыканий в сетях с изолированной нейтралью.

На рисунке «г» схема соединения в неполный треугольник “восьмёрка”, которая используется для включения защиты от междуфазных коротких замыканий. Ток равен разнице токов двух фаз, в которых установлены трансформаторы.

На рисунке «д» схема соединения на сумму токов трёх фаз (фильтр токов нулевой последовательности), используемая для включения защиты от коротких замыканий на землю.

На рисунке «е» схема последовательного соединения двух ИТТ, установленных на одной фазе. При таком соединении вторичных обмоток, с одинаковым коэффициентом трансформации, сила тока будет такая же, как при включении в цепь только одного из трансформаторов, при этом нагрузка распределяется поровну по двум. Эта схема применяется при использовании маломощных ИТТ.

На рисунке «ж» схема параллельного соединения вторичных обмоток ИТТ, установленных на одной фазе. Это позволяет уменьшить коэффициент трансформации, суммируя ток вторичных обмоток при данном токе в линии. Коэффициент трансформации этой схемы в два раза меньше коэффициента трансформации одного трансформатора тока. Так, для получения коэффициента трансформации 150/5, соединяют параллельно два стандартных трансформатора тока с коэффициентом трансформации 300/5.

ПРИМЕЧАНИЕ: такие измерительные приборы как электросчетчики и ваттметры могут подключаются одновременно и к ИТТ и к ИТН, ознакомиться со схемами подключения счетчиков через ИТ вы можете здесь: https://elektroshkola.ru/uchet-elektroenergii/podklyuchenie-schetchika-cherez-transformatory/

Выбор ИТ для подключения счётчиков и измерительных приборов

Данный вопрос рассмотрим на примере выбора измерительных трансформаторов для подключения электросчетчиков.

Трансформаторы напряжения

Трансформаторы напряжения необходимо применять при необходимости подключения приборов учёта электроэнергии, а так же других измерительных приборов и реле, в высоковольтных электроустановках (выше 1000 Вольт). Их выбирают по номинальному напряжению, классу точности, вторичной нагрузке, а так же по сечению и длине проводов и кабелей.

Номинальное напряжение первичной обмотки (U1ном.), должно быть равно номинальному напряжению сети (Uс.ном.): U1ном.=Uс.ном.

Класс точности ИТН для присоединения расчётных счётчиков электроэнергии не должен быть более 0,5, для технического учёта – не более 1,0 (ПУЭ п.1.5.16).

Вторичная нагрузка, это мощность приборов и реле подключенных к ИТН. Нагрузка вторичных обмоток измерительных трансформаторов (S2нагр.), к которым присоединяются счётчики, не должна превышать номинальных значений ИТН (S2ном.): S2ном.>S2нагр. Это обеспечивает работу ИТН в заданном классе точности.

Присоединение расчетных счётчиков к трёхфазным трансформаторам напряжения не рекомендуется, т.к. они имеют несимметричную магнитную систему и увеличенную погрешность.

Трансформаторы тока

В цепях распределительных устройств выше 1кВ, а так же 0,4кВ при токах нагрузки более 100А, измерительные устройства, как правило, подключаются через трансформаторы тока.

Рассмотрим пример выбора ИТТ для подключения расчётного счётчика электрической энергии офисного здания.

Напряжении сети — 0,4кВ

Максимальная потребляемая мощность (дневное время) — 75кВт (120 А)

Минимальная потребляемая мощность (ночное время) — 22,5кВт (36 А)

  1. Номинальное напряжение трансформатора тока.

Номинальное напряжение ИТТ должно быть не меньше максимального напряжения электроустановки, где требуется установить ИТТ. Выбирается из стандартного ряда по ГОСТ 7746-2015, в кВ: 0,66, 3, 6, 10, 15, 20, 24, 27, 35, 110, 150, 220, 330, 750.

В нашем случае измерительный трансформатор должен быть на 0,66кВ.

  1. Номинальный ток вторичной обмотки.

Выбирается исходя из номинального (базового) тока счетчика, как правило составляет 5А.

Класс точности ИТТ определяется в зависимости от назначения электросчётчика. Для коммерческого учёта в сетях 0,4кВ класс точности должен быть 0,5S.

  1. Номинальный ток первичной обмотки.

Это наиболее важный параметр ТТ. Величина номинального тока ТТ должна быть больше значения максимального тока электроустановки, где монтируется ТТ.Он выбирается из следующего ряда по ГОСТ 7746-2015, в А: 1, 5, 10, 15, 20, 30, 40, 50, 75, 80, 100, 150, 200, 300, 400, 500, 600, 750, 800, 1000, 1200, 1500, 1600, 2000, 3000, 4000, 5000, 6000, 8000, 10000, 12000, 14000, 16000, 18000, 20000, 25000, 28000, 30000, 32000, 35000, 40000.

Номинальный первичный ток ИТТ должен быть больше, чем максимальный рабочий ток линии (I1макс, в нашем случае 120Ампер).

Выбираем ближайший больший из стандартного ряда – 150А.

Этот ток определяет коэффициент трансформации (Кт) нашего измерительного трансформатора, который выражается отношением номинального тока первичной обмотки к номинальному току вторичной обмотки:

Кт = I1/I2Кт=150/5=30

Таким образом нам необходим трансформатор тока 0,66кВ, 150/5, Кт=30, 0,5S

Согласно пункту 1.5.17 ПЭУ, при максимальной нагрузке присоединения ток во вторичной обмотке трансформатора тока должен составлять не менее 40% номинального тока счётчика, а при минимальной рабочей нагрузке – не менее 5%.

  • Проверим выбранный ИТТ на соответствие данному условию:
  • Определим ток во вторичной обмотке при максимальной нагрузке:

I2макс. = I1макс./Кт = 120А/30 = 4А.

  • Определим ток во вторичной обмотке при минимальной нагрузке:

I2мин. = I1мин./Кт = 36А/30 = 1,2А.

  • Определим значение полученного максимального вторичного тока (I2макс.=4А) в процентах от номинального тока счётчика (5А):

I2макс. в % = (I2макс.×100)/Iном.сч. = (4А×100)/5А = 80%.

  • Определим значение полученного минимального вторичного тока (I2мин.=1,2А) в процентах от номинального тока счётчика (5А):

I2мин. в % = (I2мин.×100)/Iном.сч. = (1,2А×100)/5А = 24%.

  • Проверяем по условиям пункта 1.5.17 ПУЭ:

80% > 40% и 24% > 5% — условия выполняются.

Следовательно ИТТ выбран верно.

ПРИМЕЧАНИЕ: Расчёт измерительных трансформаторов тока и их проверку можно произвести с помощью нашего онлайн калькулятора.

Требования к вторичным цепям измерительных трансформаторов

Сечение и длина проводов и кабелей, согласно пункту 1.5.19 ПУЭ, в цепях напряжения расчётных счётчиков должны выбираться такими, чтобы потери напряжения в этих цепях составляли не более 0,25% номинального напряжения при питании от трансформаторов напряжения класса точности 0,5 и не более 0,5% при питании от трансформаторов напряжения класса точности 1,0. Потери напряжения от трансформаторов напряжения до счётчиков технического учёта должны составлять не более 1,5% номинального напряжения.

При этом, по условию механической прочности, сечение жил проводов и кабелей должно быть не менее 1,5 мм2 для медных жили не менее 2,5 мм2 для алюминиевых жил. Для токовых цепей — 2,5 мм2 для меди и 4 мм2 для алюминия (ПУЭ 3.4.4).

Была ли Вам полезна данная статья? Или может быть у Вас остались вопросы? Пишите в комментариях!

Не нашли на сайте статьи на интересующую Вас тему касающуюся электрики? Напишите нам здесь. Мы обязательно Вам ответим.

Маркировка трансформаторов — тока, напряжения и силовых

Чтобы понимать, для каких условий эксплуатации предназначен тот или иной трансформатор тока или напряжения, а также прочие разновидности, применяется особая маркировка приборов. Отечественные и импортные агрегаты имеют различное обозначение. В нашей стране чаще применяются установки, изготовленные по ГОСТу.

Маркировка трансформаторов наносится на щиток из металла на корпусе. Самые распространённые виды условных обозначений трансформаторов будут рассмотрены далее.

маркировка трансформаторов тока

  • 1 Информация на корпусе
  • 2 Схема
  • 3 Разновидности
  • 4 Особые обозначения
  • 5 Охладительная система
    • 5.1 Охладительная система с жидким диэлектриком
    • 10.1 Видео: Классификация трансформаторов

    Информация на корпусе

    Информация, представленная на видимой стороне устройства, наносится при помощи гравировки, травления или теснения. Это обеспечивает чёткость и долговечность надписи. На металлическом щитке указываются данные о заводе-изготовителе оборудования. Наносится год его выпуска, заводской номер.

    трансформатор расшифровка

    Помимо данных о производителе обязательно присутствует информация об агрегате. Указывается номер стандарта, которому соответствует представленная конструкция. Обязательно наносится показатель номинальной мощности. Для трехфазных устройств этот параметр приводится для каждой обмотки отдельно. Указывается информация о напряжении ответвлений витков катушек.

    Для всех обмоток определяется показатель номинального тока. Приводится количество фаз установки, частота тока. Производитель предоставляет данные о конфигурации и группах соединения катушек.

    После приведённой выше информации можно ознакомиться с параметрами напряжения короткого замыкания. Представляются требования к установке. Она может быть наружной или внутренней.

    Маркировка

    Технические характеристики позволяют определить способ охлаждения, массу масла в баке (если применяется эта система), а также массу активной части. На приводе переключателя указывается его положение. Если установка обладает сухим видом охлаждения, есть данные о мощности установки при отключённом вентиляторе.

    Под щитком должен быть выбит заводской номер. Он присутствует на баке. Номер указывается на крышке возле ввода ВН, а также сверху и слева на полке балки сердечника.

    Схема

    Все приведённые на табличке данные можно разбить на 6 групп. Чтобы не запутаться в информации, следует рассмотреть последовательность её написания. Например, установка АТДЦТН-125000/220/110/10-У 1. Для маркировки особенностей прибора применяются следующие группы:

    • I группа. А — Предназначена для указания типа прибора (силовой или автотрансформатор).
    • II группа. Т — Соответствует типу сети, для которой применяется прибор (однофазная, трехфазная).
    • III группа. ДЦ – Система охлаждения с принудительной циркуляцией масла и воздуха.
    • IV группа. Т – Показывает количество обмоток (трехобмоточный).
    • V группа. Н – Напряжение регулируется под нагрузкой.
    • VI группа. Все цифры (номинальная мощность, напряжение ВН СН обмоток, климатическое исполнение, категория размещения).

    О каждой категории следует узнать подробнее. Это значительно облегчит выбор.

    Разновидности

    Обозначение трансформаторов обязательно начинается с разновидности оборудования. Если маркировка начинается с буквы А, это автотрансформатор. Её отсутствие говорит о том, что агрегат относится к классу силовых трансформаторов.

    Автотрансформатор

    Обязательно приводится число фаз. Это позволяет выбрать установку, работающую от бытовой или промышленной сети. Если трансформатор подключается к трехфазной сети, в маркировке будет присутствовать Т. Однофазные же разновидности имеют букву О. Они применяются в бытовых сетях.

    расшифровка масляных трансформаторов ТМГ

    Если устройство обладает расщеплённой обмоткой, он будет иметь Р. Если присутствует регулировка напряжения под нагрузкой (РПН) устройство будет иметь маркировку Н на металлическом щитке. При её отсутствии можно сделать вывод об отсутствии представленной особенности в аппарате.

    Трансформатор с РПН расшифровка

    Особые обозначения

    В зависимости от категории установки могут применяться особые обозначения. Для трансформатора тока и напряжения они могут не совпадать. Вторая разновидность техники применяется при работе защитных механизмов или для измерения тока. Первая категория приборов предназначается для изменения значения переменного тока.

    маркировка трансформаторов тока

    Трансформаторы напряжения не используют для передачи электричества большой мощности. Они способны создавать развязку от низковольтных коммуникаций. В цепях с напряжением 12В и менее применяется эта категория приборов. Основным их рабочим параметром выступает ток и напряжение первичной обмотки. Именно их величину предоставляет производитель.

    Маркировка трансформаторов напряжения начинается с их конструкции. Если это проходная конструкция, она обозначается литерой П. Если её нет, это опорный вид аппаратов. Литой изолятор имеет в маркировке Л, а фарфоровый – Ф. Встроенный изолятор имеет В.

    Расшифровка трансформаторов напряжения НОЛ

    Расшифровка современных трансформаторов тока выполняется в установленной последовательности. Она начинается с Т, которая характеризует представленные приборы. Способ установки может быть проходным (П), опорным (О) или шинным (Ш). Если этот прибор присутствует в аппаратуре силовых трансформаторов, он обозначается как ВТ. Если же он встроен в масляный выключатель, то маркировка будет иметь букву В. При наружной установке прибор будет иметь Н.

    Охладительная система

    Условное обозначение трансформатора продолжается способом охлаждения. Сегодня существуют сухие, масляные разновидности. Также охладительная установка может иметь в своём составе негорючий текучий диэлектрик.

    Масляные разновидности включают в себя около десятка различных конструкций оборудования. Если циркуляция жидкости внутри производится естественным путём, прибор имеет на щитке М. Если же она принудительная, здесь будет присутствовать обозначение Д. Оно соответствует также и сухим разновидностям приборов с представленным устройством внутренней циркуляции.

    Автотрансформатор 220 кВ

    Если установлено оборудование с естественным движением масла и принудительным течением воды, оно маркируется сочетанием МВ. Для приборов с принудительной циркуляцией ненаправленного потока масла и естественным перемещением воздуха используется комбинация МЦ. Если же в таком устройстве направление масла чётко обозначено, маркировка будет НМЦ.

    Для систем с принудительным ненаправленным движением масла и воздуха применяется обозначение ДЦ, а для направленного перемещения – НДЦ. Когда масло движется в пространстве между трубами и перегородками, по которым течёт вода, такой агрегат имеет на щитке букву Ц. Если же масло течёт по направленному вектору, прибор маркируется НЦ.

    Охладительная система с жидким диэлектриком

    Сегодня в «эксплуатацию» вводят новые разновидности устройств с различными улучшенными охладительными системами. Одной из них являются экземпляры техники с негорючим диэлектриком жидкого типа. Если охлаждение происходит посредством естественной циркуляции, представленная установка обозначается буквой Н. Если же присутствует принудительное движение воздуха, маркировка будет НД.

    На табличке агрегатов с направленным потоком жидкого диэлектрика и принудительной циркуляцией воздуха указывается ННД. Это позволяет подобрать правильно тип аппаратуры.

    Сухие системы

    Одной из новых разновидностей являются системы сухого охлаждения. Они просты в эксплуатации и обслуживании, не требовательны и не капризны. Если исполнение установки открытое, а циркуляция воздуха происходит естественным способом, его маркируют как С.

    Защищённое исполнение обозначается буквами СЗ. Корпус может быть закрыт от воздействия различных факторов окружающей среды, он называется герметичным. При естественной циркуляции воздуха в нём, маркировка имеет буквы СГ.

    Сухие трансформаторы

    В воздушных охладительных системах может присутствовать принудительная циркуляция. В этом случае устройство обозначается буквами СД.

    Исполнение

    Установки могут отличаться между собой особенностями исполнения. Если в них присутствует принудительная циркуляция воды, это позволит понять присутствующая на корпусе буква В. При наличии защиты от грозы и поражения молнией, конструкция имеет маркировку Г.

    Система может обладать естественной циркуляцией масла или негорючего диэлектрика. При этом в некоторых разновидностях используется защита с азотной подушкой. В ней нет расширителей, выводов во фланцах стенок бака. Обозначение имеет букву З.

    особенностями исполнения корпуса

    Литая изоляция обозначается как Л. Подвесное исполнение определяет буква П. Усовершенствованная категория аппаратов обозначается как У. Они могут иметь автоматические РПН.

    Оборудование с выводами и расширителем, установленными на фланцах стенках бака, маркируется буквой Ф. Энергосберегающий аппарат имеет пониженные потери энергии на холостом ходу. Его обозначают буквой Э.

    Назначение

    После категории особенностей исполнения представляется информация о назначении и области применения оборудования. Маркировка с буквой Б говорит о способности конструкции прогревать грунт или бетон зимой. Такое же обозначение может иметь трансформатор, предназначенный для станков буровых.

    При электрификации железной дороги нужны установки с особыми свойствами и характеристиками. Они маркируются буквой Ж. Устройства с обозначением М эксплуатируются на металлургических комбинатах.

    Трансформатор железнодорожный ТМЖ

    При передаче постоянного тока по линии нужны конструкции класса П. Агрегаты для обеспечения работы погружных насосов обозначаются как ПН.

    Если агрегат применяется для собственных нужд электростанции, он относится к категории С. Тип ТО применяется для обработки грунта и бетона при высокой температуре, обеспечения электроэнергией временного освещения и ручного инструмента.

    В угольных шахтах применяют трансформаторы разновидности Ш, а в системе питания электричеством экскаватора – Э.

    Цифры

    После перечисленных обозначений могут следовать числовые значения. Это номинальное напряжение обмотки в кВ, мощность в кВА. Для автотрансформаторов добавляется информация о напряжении обмотки СН.

    В маркировке может присутствовать первый год выпуска представленной конструкции. Мощность агрегатов может составлять 20,40, 63, 160, 630, 1600 кВА и т. д. Этот показатель подбирают в соответствии с эксплуатационными условиями. Существует оборудование более высокой мощности. Этот параметр может достигать 200, 500 МВА.

    Трансформатор ТРНДЦН 110 КВ маркировка

    Продолжительность применения трансформаторов советского производства составляет порядка 50 лет. Поэтому в современных энергетических коммуникациях может применяться оборудование, выпущенное до 1968 г. Их периодически совершенствуют и реконструируют при капитальном ремонте.

    Примеры

    Чтобы понимать, как трактовать информацию на корпусе аппаратуры, следует рассмотреть несколько примеров маркировок. Это могут быть следующие трансформаторы:

    1. ТДТН-1600/110. Трехфазный класс техники понижающего типа. Он имеет масляное принудительное охлаждение, а также устройство РПН. Номинальная мощность равняется 1600, а напряжение ВН обмотки – 110 кВ.
    2. АТДЦТН-120000/500/110-85. Автотрансформатор, который применяется в трехфазной сети. Он имеет три обмотки. Масляная система охлаждения имеет принудительную циркуляцию. Есть устройство РПН. Номинальная мощность составляет 120 МВА. Устройство понижает напряжение и работает между сетями 500 и 110 кВ. Разработка 1985 года.
    3. ТМ-100/10 – двухобмоточный агрегат, который рассчитан для работы в трехфазной сети. Масляная система циркуляции имеет естественное перемещение жидкости. Изменение напряжения происходит при помощи ПБВ узла. Номинальная мощность составляет 100 кВА, а класс обмотки – 10 кВ.
    4. ТРДНС-25000/35-80. Аппарат для трехфазной сети с двумя расщеплёнными обмотками. Охлаждение производится посредством принудительной циркуляции масла. В конструкции есть регулятор РПН. Применяется для нужд электростанции. Мощность агрегата составляет 25 МВА. Класс напряжения обмотки – 35 кВ. Конструкция разработана в 1980 году.
    5. ОЦ-350000/500. Двухобмоточное устройство для однофазной сети повышающего класса. Применяется масляное охлаждение при помощи принудительного движения жидкости. Мощность 350 МВА, напряжение обмотки 500 кВ.
    6. ТСЗ-250/10-79. Экземпляр для трехфазной сети с сухим способом охлаждения. Корпус защищённый. Мощность составляет 250 кВА, а обмотки – 10 кВ. Устройство создано в 1979 г.
    7. ТДЦТГА-350000/500/110-60. Трехобмоточный прибор для трехфазной сети. Применяется для повышения напряжения. Трансформация происходит по принципу НН-СН и НН-ВН. Конструкция разработана в 1960 году.

    Видео: Классификация трансформаторов

    Рассмотрев особенности маркировки различных видов трансформаторов, можно правильно применять их на объекте. Знание обозначений позволяет понимать функции, основные технические характеристики подобного оборудования. Маркировка, включающая в себя буквы и цифры, соответствует ГОСТам, применяемым в процессе изготовления специальной техники.