Вольт-амперная характеристика (ВАХ)
Принцип работы этого устройства основывается на особенностях p-n перехода. Возле переходов двух полупроводников расположен слой, в котором отсутствуют носители заряда. Это запирающий слой. Его сопротивление велико.
При воздействии на слой определенного внешнего переменного напряжения, толщина его становится меньше, а впоследствии и вообще исчезнет. Возрастающий при этом ток называют прямым. Он проходит от анода к катоду. Если внешнее переменное напряжение будет иметь другую полярность, то запирающий слой будет больше, сопротивление возрастет.
Разновидности устройств, их обозначение
По конструкции различают приборы двух видов: точечные и плоскостные. В промышленности наиболее распространены кремниевые (обозначение — Si) и германиевые (обозначение — Ge). У первых рабочая температура выше. Преимущество вторых — малое падение напряжения при прямом токе.
Принцип обозначений диодов – это буквенно-цифровой код:
- Первый элемент – обозначение материала из которого он выполнен,
- Второй определяет подкласс,
- Третий обозначает рабочие возможности,
- Четвертый является порядковым номером разработки,
- Пятый – обозначение разбраковки по параметрам.
Вольт-амперная характеристика
Вольт-амперную характеристику (ВАХ) выпрямительного диода можно представить графически. Из графика видно, что ВАХ устройства нелинейная.
Читайте также: Как самостоятельно сделать фотореле?
В начальном квадранте Вольт-амперной характеристики ее прямая ветвь отражает наибольшую проводимость устройства, когда к нему приложена прямая разность потенциалов. Обратная ветвь (третий квадрант) ВАХ отражает ситуацию низкой проводимости. Это происходит при обратной разности потенциалов.
Реальные Вольт-амперные характеристики подвластны температуре. С повышением температуры прямая разность потенциалов уменьшается.
Из графика Вольт-амперной характеристики следует, что при низкой проводимости ток через устройство не проходит. Однако при определенной величине обратного напряжения происходит лавинный пробой.
ВАХ кремниевых устройств отличается от германиевых. ВАХ приведены в зависимости от различных температур окружающей среды. Обратный ток кремниевых приборов намного меньше аналогичного параметра германиевых. Из графиков ВАХ следует, что она возрастает с увеличением температуры.
Важнейшим свойством является резкая асимметрия ВАХ. При прямом смещении – высокая проводимость, при обратном – низкая. Именно это свойство используется в выпрямительных приборах.
Вольт-амперная характеристика диода (ВАХ).
Вольт-амперная характеристика диода — это графическая зависимость тока, проходящего через диод, от приложенного к нему напряжения при прямом и обратном включении. Вид вольт-амперной характеристики (сокращенно ВАХ
) определяется в основном свойствами
р – n-
перехода. На рис. 8.4 показана вольт-амперная характеристика выпрямительного диода. При включении диода в прямом направлении
ВАХ
имеет круто восходящий участок (ток по закону Ома меняется пропорционально напряжению). Чем больше этот ток, тем больше нагревается диод, поэтому для каждого диода существует
предельный ток, который может быть длительно пропущен через диод, не вызывая его перегрева выше допустимой температуры. Это значение прямого тока является номинальным токомдиода.
При включении диода в обратном, т.е. в непроводящем, направлении через него протекает малый обратный ток (единицы или десятки микроампер). Этот ток мало изменяется при возрастании обратного напряжения. Однако при достижении обратным напряжением некоторого значения Uпроб
(
напряжение пробоя) обратный ток резко возрастает. В этом случае происходит электрический пробой диода и обычный диод выходит из строя (в р – n-
переходе прожигается отверстие). Но у
лавинных диодов ток пробоя проходит по всей площади р – n-
перехода, поэтому они пробоя «не боятся» и после снижения обратного напряжения свои свойства восстанавливают.
Лавинные диоды, предназначенные работать при обратном включении и напряжении пробоя для стабилизации напряжения при изменении тока на определенном участке цепи, называются стабилитроны.
Прим. Маркировка диодов.
Маркировка полупроводниковых диодов, рассчитанных на сравнительно небольшие токи (до 10 А) состоит из шести буквенных и цифровых элементов:
· первый элемент обозначает исходный материал: К или 2 – кремний; Г или 1 – германий; А или 3 — арсенид галлия.
Читайте также: Как подключить светодиодный светильник к 220В?
· второй буквенный элемент обозначает тип прибора: Д – диоды выпрямительные; А – сверхвысокочастотные диоды; В – варикапы; И – туннельные диоды; С – стабилитроны; Л — светодиоды.
· третий, четвертый, пятый элементы – цифры, характеризующие некоторые электрические параметры прибора, в частности мощность рассеяния.
· шестой элемент – буква (от А до Я), обозначающая последовательность разработки.
Полупроводниковые диоды, рассчитанные на токи от 10 А до 2000 А и более часто называют силовыми неуправляемыми вентилями и маркируют буквой В (вентиль), после которой проставляется число, указывающее значение прямого номинального тока. В качестве силовых, в основном используют кремниевые диоды, которые делятся на группы, классы и подклассы.
Вместо понятия напряжения пробоя Uпр. обычно используют понятие Uзаг.( напряжение загиба ВАХ), так как напряжение пробоя всегда чуть больше напряжения загиба. Напряжение загиба – это максимальное напряжение цепи, которое выдерживает вентиль не пробиваясь. Класс диода (вентиля) определяют по значению допустимого напряжения отношением . Допустимое напряжение – это максимальное напряжение цепи, в которую может быть поставлен данный вентиль. Т.е. для определения класса вентиля в значении допустимого напряжения мысленно убирают две последние цифры, тогда оставшееся число показывает класс вентиля. Класс вентиля показывает количество сотен Вольт допустимого напряжения.
Допустимое напряжение принимается для обычных диодов равным половине напряжения загиба, а для лавинных диодов 0.7 Uзаг.
Пример. Если напряжение загиба обычного вентиля составляет 850 В, то допустимое напряжение – 425В, т.е. класс вентиля – 4.
Прим. по назначению диоды разделяются на следующие:
· выпрямительные диоды (как разновидность выпрямительных – силовые), которые предназначены для выпрямления переменного тока низкой частоты (рис. 8.3, а). В качестве выпрямительных диодов используют плоскостные диоды, допускающие большие выпрямительные токи;
высокочастотные диоды, предназначенные для выпрямления переменного тока в широком диапазоне частот, а также для детектирования. В качестве высокочастотных диодов применяют диоды точечной конструкции;
· импульсные диоды, которые применяют в схемах генерирования и усиления импульсов микросекундного и наносекундного диапазонов;
· туннельные диоды (рис. 8.3, в), применяемые в качестве усилителей и генераторов высокочастотных колебаний;
· светодиоды (рис. 8.3, е), которые используют в качестве световой индикации наличия тока и которые имеют разные цвета свечения;
· стабилитроны (рис. 8.3, б), предназначенные для стабилизации уровня напряжения при изменениях значения протекающего через них тока;
Читайте также: Многофункциональный циклический таймер
· варикапы (рис. 8.3, г) – полупроводниковые диоды, емкость которых можно изменять в широких пределах;
· фотодиоды (рис. 8.3, д), которые являются источниками тока, преобразующими световую энергию в электрическую, причем сила тока пропорциональна освещенности фотодиода.
Транзисторы
Коэффициент выпрямления
Анализируя приборные характеристики, следует отметить: учитываются такие величины, как коэффициент выпрямления, сопротивление, емкость устройства. Это дифференциальные параметры.
Он отражает качество выпрямителя.
Его можно рассчитать: он будет равен отношению прямого тока прибора к обратному. Такой расчет приемлем для идеального устройства. Значение коэффициента выпрямления может достигать нескольких сотен тысяч. Чем он больше, тем лучше выпрямитель делает свою работу.
Основные параметры устройств
Какие же параметры характеризуют приборы? Основные параметры выпрямительных диодов:
- Наибольшее значение среднего прямого тока,
- Наибольшее допустимое значение обратного напряжения,
- Максимально допустимая частота разности потенциалов при заданном прямом токе.
Исходя из максимального значения прямого тока, выпрямительные диоды разделяют на:
- Приборы малой мощности. У них значение прямого тока до 300 мА,
- Выпрямительные диоды средней мощности. Диапазон изменения прямого тока от 300 мА до 10 А,
- Силовые (большой мощности). Значение более 10 А.
Существуют силовые устройства, зависящие от формы, материала, типа монтажа. Наиболее распространенные из них:
- Силовые приборы средней мощности. Их технические параметры позволяют работать с напряжением до 1,3 килоВольт,
- Силовые, большой мощности, могущие пропускать ток до 400 А. Это высоковольтные устройства. Существуют разные корпуса исполнения силовых диодов. Наиболее распространены штыревой и таблеточный вид.
Перечень основных характеристик
Ниже приведена таблица, с описанием основных параметров выпрямительных диодов. Эти характеристики можно получить из даташита (технического описания элемента). Как правило, большинство радиолюбителей к этой информации обращаются в тех случаях, когда указанный в схеме элемент недоступен, что требует найти ему подходящий аналог.
Таблица основных характеристик выпрямительных диодов
Заметим, что в большинстве случаев, если требуется найти аналог тому или иному диоду, первых пяти параметров из таблицы будет вполне достаточно. При этом желательно учесть диапазон рабочей температуры элемента и частоту.
Выпрямительные схемы
Схемы включения силовых устройств бывают различными. Для выпрямления сетевого напряжения они делятся на однофазные и многофазные, однополупериодные и двухполупериодные. Большинство из них однофазные. Ниже представлена конструкция такого однополупериодного выпрямителя и двух графиков напряжения на временной диаграмме.
Переменное напряжение U1 подается на вход (рис. а). Справа на графике оно представлено синусоидой. Состояние диода открытое. Через нагрузку Rн протекает ток. При отрицательном полупериоде диод закрыт. Поэтому к нагрузке подводится только положительная разность потенциалов. На рис. в отражена его временная зависимость. Эта разность потенциалов действует в течение одного полупериода. Отсюда происходит название схемы.
Самая простая двухполупериодная схема состоит из двух однополупериодных. Для такой конструкции выпрямления достаточно двух диодов и одного резистора.
Диоды пропускают только положительную волну переменного тока. Недостатком конструкции является то, что в полупериод переменная разность потенциалов снимается лишь с половины вторичной обмотки трансформатора.
Если в конструкции вместо двух диодов применить четыре коэффициент полезного действия повысится.
Выпрямители широко используются в различных сферах промышленности. Трехфазный прибор задействован в автомобильных генераторах. А применение изобретенного генератора переменного тока способствовало уменьшению размеров этого устройства. Помимо этого, увеличилась его надежность.
В высоковольтных устройствах широко применяют высоковольтные столбы, которые скомпонованы из диодов. Соединены они последовательно.
Электрические параметры
У каждого типа диодов есть свои рабочие и предельно допустимые параметры, согласно которым их выбирают для работы в той или иной схеме:
- Iобр – постоянный обратный ток, мкА;
- Uпр – постоянное прямое напряжение, В;
- Iпр max – максимально допустимый прямой ток, А;
- Uобр max – максимально допустимое обратное напряжение, В;
- Р max – максимально допустимая мощность, рассеиваемая на диоде;
- Рабочая частота, кГц;
- Рабочая температура, С.
Здесь приведены далеко не все параметры диодов, но, как правило, если надо найти замену, то этих параметров хватает.
Материал втему: Что такое кондесатор
Схема простого выпрямителя переменного тока на одном диоде
На вход выпрямителя подадим сетевое переменное напряжение, в котором положительные полупериоды выделены красным цветом, а отрицательные – синим. К выходу выпрямителя подключим нагрузку (Rн), а функцию выпрямляющего элемента будет выполнять диод (VD). При положительных полупериодах напряжения, поступающих на анод диода диод открывается. В эти моменты времени через диод, а значит, и через нагрузку (Rн), питающуюся от выпрямителя, течет прямой ток диода Iпр (на правом графике волна полупериода показана красным цветом).
При отрицательных полупериодах напряжения, поступающих на анод диода диод закрывается, и во всей цепи будет протекать незначительный обратный ток диода (Iобр). Здесь, диод как бы отсекает отрицательную полуволну переменного тока (на правом графике такая полуволна показана синей пунктирной линией).
Читайте также: Сетевой фильтр для аудио — своими руками
В итоге получается, что через нагрузку (Rн), подключенную к сети через диод (VD), течет уже не переменный, поскольку этот ток протекает только в положительные полупериоды, а пульсирующий ток – ток одного направления. Это и есть выпрямление переменного тока. Но таким напряжением можно питать лишь маломощную нагрузку, питающуюся от сети переменного тока и не предъявляющую к питанию особых требований, например, лампу накаливания.
Будет интересно➡ Диод 1n4007: характеристики, маркировка и datasheets
Напряжение через лампу будет проходить только во время положительных полуволн (импульсов), поэтому лампа будет слабо мерцать с частотой 50 Гц. Однако, за счет тепловой инертности нить не будет успевать остывать в промежутках между импульсами, и поэтому мерцание будет слабо заметным. Если же запитать таким напряжением приемник или усилитель мощности, то в громкоговорителе или колонках мы будем слышать гул низкого тона с частотой 50 Гц, называемый фоном переменного тока. Это будет происходить потому, что пульсирующий ток, проходя через нагрузку, создает в ней пульсирующее напряжение, которое и является источником фона.
Этот недостаток можно частично устранить, если параллельно нагрузке подключить фильтрующий электролитический конденсатор (Cф) большой емкости. Заряжаясь импульсами тока во время положительных полупериодов, конденсатор (Cф) во время отрицательных полупериодов разряжается через нагрузку (Rн). Если конденсатор будет достаточно большой емкости, то за время между импульсами тока он не будет успевать полностью разряжаться, а значит, на нагрузке (Rн) будет непрерывно поддерживаться ток как во время положительных, так и во время отрицательных полупериодов. Ток, поддерживаемый за счет зарядки конденсатора, показан на правом графике сплошной волнистой красной линией.
Силовой выпрямительный диод.
Но и таким, несколько сглаженным током тоже нельзя питать приемник или усилитель потому, что они будут «фонить», так как уровень пульсаций (Uпульс) пока еще очень ощутим. В выпрямителе, с работой которого мы познакомились, полезно используется энергия только половины волн переменного тока, поэтому на нем теряется больше половины входного напряжения и потому такое выпрямление переменного тока называют однополупериодным, а выпрямители – однополупериодными выпрямителями. Эти недостатки устранены в выпрямителях с использованием диодного моста.
Импульсные приборы
Импульсным называют прибор, у которого время перехода из одного состояния в другое мало. Они применяются для работы в импульсных схемах. От своих выпрямительных аналогов такие приборы отличаются малыми емкостями p-n переходов.
Для приборов подобного класса, кроме параметров, указанных выше, следует отнести следующие:
- Максимальные импульсные прямые (обратные) напряжения, токи,
- Период установки прямого напряжения,
- Период восстановления обратного сопротивления прибора.
В быстродействующих импульсных схемах широко применяют диоды Шотки.
Применение диодов
Не следует думать, что диоды применяются лишь как выпрямительные и детекторные приборы. Кроме этого можно выделить еще множество их профессий. ВАХ диодов позволяет использовать их там, где требуется нелинейная обработка аналоговых сигналов. Это преобразователи частоты, логарифмические усилители, детекторы и другие устройства. Диоды в таких устройствах используются либо непосредственно как преобразователь, либо формируют характеристики устройства, будучи включенными в цепь обратной связи. Широкое применение диоды находят в стабилизированных источниках питания, как источники опорного напряжения (стабилитроны), либо как коммутирующие элементы накопительной катушки индуктивности (импульсные стабилизаторы напряжения).
Выпрямительные диоды.
С помощью диодов очень просто создать ограничители сигнала: два диода включенные встречно – параллельно служат прекрасной защитой входа усилителя, например, микрофонного, от подачи повышенного уровня сигнала. Кроме перечисленных устройств диоды очень часто используются в коммутаторах сигналов, а также в логических устройствах. Достаточно вспомнить логические операции И, ИЛИ и их сочетания. Одной из разновидностей диодов являются светодиоды. Когда-то они применялись лишь как индикаторы в различных устройствах. Теперь они везде и повсюду от простейших фонариков до телевизоров с LED – подсветкой, не заметить их просто невозможно.
Будет интересно➡ Как устроен туннельный диод?
Параметры диодов
Параметров у диодов достаточно много и они определяются функцией, которую те выполняют в конкретном устройстве. Например, в диодах, генерирующих СВЧ колебания, очень важным параметром является рабочая частота, а также та граничная частота, на которой происходит срыв генерации. А вот для выпрямительных диодов этот параметр совершенно не важен. Основные параметры выпрямительных диодов приведены в таблице ниже.
Таблица основных параметров выпрямительных диодов.
В импульсных и переключающих диодах важна скорость переключения и время восстановления, то есть скорость полного открытия и полного закрытия. В мощных силовых диодах важна рассеиваемая мощность. Для этого их монтируют на специальные радиаторы. А вот диоды, работающие в слаботочных устройствах, ни в каких радиаторах не нуждаются. Но есть параметры, которые считаются важными для всех типов диодов, перечислим их:
- U пр.– допустимое напряжение на диоде при протекании через него тока в прямом направлении. Превышать это напряжение не стоит, так как это приведёт к его порче.
- U обр.– допустимое напряжение на диоде в закрытом состоянии. Его ещё называют напряжением пробоя. В закрытом состоянии, когда через p-n переход не протекает ток, на выводах образуется обратное напряжение. Если оно превысит допустимое значение, то это приведёт к физическому «пробою» p-n перехода. В результате диод превратиться в обычный проводник (сгорит).
Очень чувствительны к превышению обратного напряжения диоды Шоттки, которые очень часто выходят из строя по этой причине.
Обычные диоды, например, выпрямительные кремниевые более устойчивы к превышению обратного напряжения. При незначительном его превышении они переходят в режим обратимого пробоя. Если кристалл диода не успевает перегреться из-за чрезмерного выделения тепла, то изделие может работать ещё долгое время.
- I пр.– прямой ток диода. Это очень важный параметр, который стоит учитывать при замене диодов аналогами или при конструировании самодельных устройств. Величина прямого тока для разных модификаций может достигать величин десятков и сотен ампер. Особо мощные диоды устанавливают на радиатор для отвода тепла, который образуется из-за теплового действия тока. P-N переход в прямом включении также обладает небольшим сопротивлением. На небольших рабочих токах его действие не заметно, но вот при токах в единицы-десятки ампер кристалл диода ощутимо нагревается. Так, например, выпрямительный диодный мост в сварочном инверторном аппарате обязательно устанавливают на радиатор.
- I обр.– обратный ток диода. Обратный ток – это так называемый ток неосновных носителей. Он образуется, когда диод закрыт. Величина обратного тока очень мала и его в подавляющем числе случаев не учитывают.
- U стаб.– напряжение стабилизации (для стабилитронов). Подробнее об этом параметре читайте в статье про стабилитрон.
Будет интересно➡ SMD транзисторы
Кроме того следует иметь в виду, что все эти параметры в технической литературе печатаются и со значком “max”. Здесь указывается предельно допустимое значение данного параметра. Поэтому подбирая тип диода для вашей конструкции необходимо рассчитывать именно на максимально допустимые величины.
Диоды высокого тока.
Вольт-амперная характеристика (ВАХ)
Что такое вольт-амперная характеристика (ВАХ)
ВАХ — это вольт-амперная характеристика, а если точнее, зависимость тока от напряжения в каком-либо радиоэлементе. Это может быть резистор, диод, транзистор и другие радиоэлементы. Так как транзистор имеет более двух выводов, то он имеет множество ВАХ.
Думаю, не все, кто читает эту статью, хорошо учились в школе. Поэтому, давайте разберемся, что представляет из себя зависимость одной величины от другой. Как вы помните из школы, мы строили графики зависимости игрек (У) от икс (Х). Та переменная, которая зависит от другой переменной, мы откладывали по вертикали, а та, которая независима — по горизонтали. В результате у нас получалась система отображения зависимости «У» от «Х»:
Так вот, мои дорогие читатели, в электронике, чтобы описать зависимость тока от напряжения, вместо «У» у нас будет сила тока, а вместо Х — напряжение. И система отображения у нас примет вот такой вид:
Именно в такой системе координат мы будет чертить вольт-амперную характеристику. И начнем с самого распространенного радиоэлемента — резистора.
ВАХ резистора
Для того, чтобы начертить этот график, нам потребуется пропускать через резистор напряжение и смотреть соответствующее значение силы тока тока. С помощью крутилки я добавляю напряжение и записываю значения силы тока для каждого значения напряжения. Для этого берем блок питания, резистор и начинаем делать замеры:
Вот у нас появилась первая точка на графике. U=0,I=0.
Вторая точка: U=2.6, I=0.01
Третья точка: U=4.4, I=0.02
Четвертая точка: U=6.2, I=0.03
Пятая точка: U=7.9, I=0.04
Шестая точка: U=9.6, I=0.05
Седьмая точка: U=11.3, I=0.06
Восьмая точка: U=13, I=0.07
Девятая точка: U=14.7, I=0.08
Давайте построим график по этим точкам:
Да у нас получилась почти прямая линия! То, что она чуть кривая, связана с погрешностью измерений и погрешностью самого прибора. Следовательно, так как у нас получилась прямая линия, то значит такие элементы, как резисторы называются элементами с линейной ВАХ.
ВАХ диода
Как вы знаете, диод пропускает электрический ток только в одном направлении. Это свойство диода мы используем в диодных мостах, а также для проверки диода мультиметром. Давайте построим ВАХ для диода. Берем блок питания, цепляем его к диоду (плюс на анод, минус на катод) и начинаем точно также делать замеры.
Первая точка: U=0,I=0.
Вторая точка: U=0.4, I=0.
Третья точка: U=0.6, I=0.01
Четвертая точка: U=0.7, I=0.03
Пятая точка: U=0.8,I=0.06
Шестая точка: U=0.9, I=0.13
Седьмая точка: U=1, I=0.37
Строим график по полученным значениям:
Ничего себе загибулина :-). Вот это и есть вольт-амперная характеристика диода. На графике мы не видим прямую линию, поэтому такая вольт-амперная характеристика называется НЕлинейной. Для кремниевых диодов она начинается со значения 0,5-0,7 Вольт. Для германиевых диодов ВАХ начинается со значения 0,3-0,4 Вольт.
ВАХ стабилитрона
Стабилитроны работают в режиме лавинного пробоя. Выглядят они также, как и диоды.
Мы подключаем стабилитрон как диод в обратном направлении: на анод минус, а на катод — плюс. В результате, напряжение на стабилитроне остается почти таким же, а сила тока может меняться в зависимости от подключаемой нагрузки на стабилитроне. Как говорят электронщики, мы используем в стабилитроне обратную ветвь ВАХ.
Рекомендуем посмотреть видео материал на эту тему:
Вах при обратном напряжении
Некоторые популярные диоды
Определение и типы диодов
Упрощенно диод можно понимать как активный электрический элемент проводящий ток только в одном направлении. Как клапан в гидравлике. Существует несколько типов диодов отличающихся как по физическому принципу работы, так и по базовому материалу. В очень общих чертах они делятся на полупроводниковые и вакуумные. Итак, диоды бывают:
— вакуумные (они же кенотроны);
— на основе p-n перехода между полупроводниками различных типов проводимости: кремниевые (Si) и карбидокремниевые (SiC) диоды;
— на основе контакта Шоттки между металлом и полупроводником.
Вакуумные диоды используются крайне редко, только в спецприложениях, например высоковольтной и высокочастотной технике. Наиболее популярными диодами являются кремниевые диоды и диоды Шоттки.
Кроме физической природы диоды классифицируются по функциональному назначению:
— выпрямительные диоды , используемые, как правило, для выпрямления сетевого напряжения низкой частоты (50 Гц). Как правило, это кремниевые, дешевые диоды. Они ставятся как непосредственно на входе безтрансформаторных импульсных источников питания, так и после трансформатора в трансформаторных источниках.
— быстродействующие кремниевые диоды — используются в составе импульсных источников питания при высоких значениях обратного напряжения (100-1000 вольт). Отличаются малым временем восстановления обратной проводимости, составляющим величину менее 200 нс. Внутри класса имеют условную подклассификацию Fast (500-150 нс), UltraFast (70-50 нс), HiperFast (35-20 нс).
— кремниевые импульсные диоды – используются в составе функциональных (не силовых) цепей. Типичный пример – диод 1N4148; Отличаются малыми рабочими токами (миллиамперы) и большим быстродействием (время обратного восстановления 1N4148 – 4 нс).
— высоковольтные диоды – представляют собой последовательное соединение нескольких (5-20 штук) кристаллов кремниевых диодов в одном корпусе. При этом максимальное обратное напряжение составляет единицы-десятки киловольт, а ток как правило – небольшой и не превышает 1 ампера. Используются в ряде специальных приложений. Быстродействие этих диодов, как правило, невысокое.
Отдельно следует выделить диоды Шоттки – которые используются и как функциональные (сигнальные) диоды и как силовые. Их отличительными чертами являются высокое быстродействие, малое падение напряжения (0,3-0,5 В) по сравнению с кремниевыми диодами (1-1,2 В). К недостаткам относят сравнительно малое обратное напряжение (20-100 В) чувствительность к перенапряжению, значительный обратный ток. Диоды Шоттки часто используются в качестве выпрямительных диодов высокочастотных преобразователей с малым выходным напряжением.
Здесь не рассматриваются диоды чисто радиочастотных применений СВЧ, варикапы, смесительные и т.д. поскольку это вы ходит за рамки данного повествования.
Условное обозначение диода представлено на рисунке VD.1
Электрод, в который втекает ток, называется анодом, а электрод из которого ток вытекает – катодом. Исторические названия эти связаны с вакуумными диодами, в которых электроны эмитировались накальным катодом и принимались анодом. Символически диод обозначает собой направление протекания тока.
Функциональные применения диода
— выпрямление переменного тока в составе тех или иных выпрямителей (включая умножители напряжения);
— защита от превышения напряжения в схемах ограничения уровня и снабберах;
— в пиковых детекторах на операционных усилителях;
— в низковольтных стабилизаторах напряжения (используется прямое падение напряжения);
— в схемах на переключаемых конденсаторах, включая схемы бустрепного питания;
— схемах реализации логических операций ИЛИ (рисунок VD.3 ).
Ниже представлено несколько примеров использования диодов.
— схемах ограничения амплитуды сигнала (рисунок VD.4).
Характеристики диодов
Основной характеристикой диода является его ВАХ – вольтамперная характеристика – зависимость тока пропускаемого диодом от напряжения на нем. Она не линейна и имеет фактически экспоненциальный характер.
Форма кривой ВАХ диода (рисунок VD.5) зависит от температуры: при нагреве уменьшается прямое падение напряжения и возрастает обратный ток, снижается напряжение пробоя.
Из вольтамперной характеристики следуют её производные:
— прямое падение напряжение на диоде VF (при заданных токе и температуре);
— обратный ток утечки IRM (при заданном обратном напряжении и температуре);
— максимальное обратное напряжение VR (при заданной температуре).
Площадь p-n перехода, размер кристалла, конструкция теплоотвода определяют мощностные характеристики диода:
— максимальный постоянный рабочий ток;
— максимальный импульсный ток (при заданной длительности импульса);
— максимальная отводимая (рассеиваемая мощность);
— тепловое сопротивление корпуса.
Динамическими характеристиками диода, определяющими его быстродействие, являются:
— время восстановления при резкой смене напряжения с прямого на обратное;
На рисунках VD.6 — VD.8 представлены экспериментально измеренные ВАХ распространенных типов диодов (для сравнения представлены ВАХ кремниевых диодов и диода Шоттки).
Основные параметры реальных диодов
1. Максимальное импульсное обратное напряжение (Peak Repetitive Reverse Voltage) VRRM– максимальная величина прикладываемого к диоду импульсного обратного напряжения.
2. Максимальное рабочее обратное напряжение (Working Peak Reverse Voltage) VRWM – максимальная величина прикладываемого к диоду обратного напряжения в рабочем режиме.
3. Максимальное блокирующее напряжение (DC Blocking Voltage) VR – максимальная величина прикладываемого к диоду постоянного напряжения. Выше этого напряжения начинается пробой. Соответствует началу пробоя на обратной ветви ВАХ.
NB: На практике все перечисленные типы напряжения равны между собой и при проектировании схем необходимо, не допускать превышения напряжения на диоде данной величины.
4. Максимальное среднеквадратичное обратное напряжение (RMS Reverse Voltage) VR(RMS) – максимальная величина действующего (среднеквадратичного) напряжения в цепи переменного тока, превышение которой приводит к пробою диода. Фактически подразумевается переменное напряжение синусоидальной формы.
5. Средний рабочий ток (Average Rectified Output Current) IO – максимальное среднеквадратичное значение тока проходящего через диод в стационарном режиме.
6. Максимальный импульсный ток (Repetitive peak forward current) IFRM — максимальная амплитуда импульсного периодического тока проходящего через кристалл диода. Как правило, указывается длительность импульсов и частота повторения.
7. Максимальный импульсный непериодический ток (Non-Repetitive Peak Forward SurgeCurrent) IFSM — максимальная амплитуда импульсного непериодического тока проходящего через кристалл диода. Как правило, указывается длительность импульса.
8. Прямое падение напряжения на диоде (Forward Voltage) VFM – падение напряжения на диоде при прямом смещении (в открытом состоянии). Как правило, указывается при конкретной величине прямого тока.
9. Максимальный обратный ток (Peak Reverse Current) IRM – максимальный обратный ток через диод. Указывается при максимальном обратном напряжении на диоде и при конкретном значении температуры.
10. Ёмкость p-n перехода (Typical Junction Capacitance) Cj – паразитная емкость p-nперехода диода. Сильно зависит от приложенного обратного напряжения, поэтому в datasheetкроме усредненной величины, как правило, приводят зависимость емкости от обратного напряжения.
11. Тепловое сопротивление кристалл – воздух (Typical Thermal Resistance Junction toAmbient) RθJA – тепловое сопротивление между кристаллом (p-n переходом) диода и окружающим воздухом. Зависит от типа корпуса.
12. Максимальная рабочая температура (Maximum DC Blocking Voltage Temperature) TA – максимальная рабочая температура при которой сохраняется указанное значение максимального обратного напряжения.
13. Максимальная рассеиваемая мощность (Total power dissipation) Ptot – максимальная мощность рассеиваемая корпусом диода.
14. Параметр максимальной энергии поглощаемой кристаллом без разрушения (Rating for fusing) I 2 t – произведение квадрата максимального импульсного тока через диод на его длительность. Это соотношение, измеряемое в А 2 с (ампер в квадрате на секунду) используется при выборе защитных цепей от перегрузки (предохранителей).
15. Время восстановления обратной проводимости (Reverse recovery time) trr – время за которое диод после приложения обратного напряжения переходит в закрытое состояние (обратная проводимость).
Максимальные ток и мощность диода
Режим постоянного тока
Полупроводниковый диод – нелинейный элемент мощность, рассеиваемая на диоде равна произведению напряжения на диоде VVD и тока через него IVD:
Для практических расчетов в качестве VVD можно брать падение напряжения при номинальном токе, указываемое в справочных листках. Поскольку напряжение на диоде составляет величину порядка 1,0-1,5 В (для кремниевого диода, для Шоттки меньше) и слабо изменяется с ростом тока, то в первом приближении можно считать, что рассеиваемая на диоде мощность прямо пропорциональна току через него:
Это существенно отличает нелинейный диод от линейного резистора, мощность которого пропорциональна квадрату тока. В справочных листках указывается максимальное значение постоянного тока через диод. Этот ток задает максимальное значение отводимой от кристалла диода тепловой мощности.
Представленная формула описывает потери на кристалле диода при прямом смещении, то есть при протекании прямого тока через диод. Потери при обратном смещении, то есть при реверсном токе обычно пренебрежимо малы, однако в ряде случаев их необходимо учитывать (об этом ниже).
Режим импульсного тока
Импульсный ток через диод может в разы превышать максимальное значение для постоянного тока. В режиме импульсных токов на первое место выходит максимальная энергия рассеивания кристалла диода, определяющая предельные режимы импульсных нагрузок при которых еще не происходит термическое разрушение кристалла. В справочных листках обычно приводят номограммы произведения длительности токового импульса на его величину.
Динамические характеристики диода. Восстановление обратной проводимости. Барьерная емкость диода
Быстродействие диода, то есть свойство быстро восстанавливать обратную проводимость, является важной характеристикой для диодов, работающих в условиях быстрой смены полярностей напряжения прикладываемого к диоду – в высокочастотных выпрямителях, схемах бустрепного питания, детекторных схемах и ряде других.
На рисунке VD.9 представлен один из типовых фрагментов электрических схем с диодами и полупроводниковыми ключами. Эта схема описывает жесткий режим восстановления обратной проводимости диода. На примере этой схемы поясним процесс восстановленияобратной проводимости диода [EE33D — Power Electronic Circuits ссылка], [2 Reasons Why Soft-Recovery Trr is Important in High Voltage Diodes ссылка], [Understanding Diode Reverse Recovery and its Effect on Switching Losses. Peter Haaf, Jon Harper. Fairchild Power Seminar 2007]. Временные диаграммы токов и напряжений, описывающих процессы в представленной схеме представлены на рисунке VD.10.
Для упрощенного понимания процессов выключения диода примем индуктивность L в схеме достаточно большой, чтобы она фактически играла роль источника тока. В начальный момент времени полупроводниковый ключ закрыт, и ток индуктивности полностью замыкается через диод. После подачи управляющего импульса на затвор транзистора и превышения им некоторого порогового напряжения происходит постепенный рост тока через ключ ISW, начиная с момента времени tswitch. При этом ток, протекающий через диод IDпостепенно уменьшается, поскольку ток индуктивности начинает частично «сливаться» через открывающийся ключ. В некоторый момент времени (начало интервала tA) когда ток индуктивности полностью замкнется через ключ (IL = ISW) ток через диод изменит свое направление. В первой половине импульса реверсного тока (период tA) происходит разряд емкости p-n перехода при этом напряжение на диоде некоторое время остается положительным а обратный ток достигает максимума. Далее обратный ток через диод начинает снижаться (период tB), а обратное напряжение возрастает до напряжения источника VDC.
Практически важной характеристикой является форма кривой обратного тока в момент восстановления обратной проводимости (рисунок VD.10). По кривой определяется время восстановления и «мягкость восстановления». Кривая реверсного тока имеет два характерных периода:
— период tA – время от начала импульса реверсного тока (пересечение током нулевой линии) до максимального значения обратного тока IRRM . Соответствует разряду зарядов накопленных в так называемой обеднённой области p-n перехода.
— период tB – время между моментом соответствующим максимуму обратного тока IRRM и моментом когда ток уменьшится на 25% от максимального достигнутого значения.
Время восстановления обратной проводимости (reverse recovery time) tRR определяется по осциллограмме обратного тока (рисунок VD.10) как время между пересечением тока нулевой отметки (начало реверсного тока) и моментом когда величина реверсного тока спадает на 25% от своего максимально достигнутого значения. Время восстановления – интуитивно понятный параметр, характеризующий время, за которое диод восстанавливает свои непроводящие свойства. Время восстановления обратной проводимости tRR равно сумме времен периодов tA и tB:
Максимальное значение реверсного тока IR связано с длительностью периода tA и скоростью спада тока:
Критерий «мягкости восстановления» (softness factor) SF – критерий определяющий скорость обрыва обратного тока. Если обрыв тока происходит слишком резко, то это может стать причиной нежелательных перенапряжений обусловленных паразитными индуктивностями контуров. Иногда этот эффект используют в генераторах импульсов на основе специализированных SOS-диодов. В качестве критерия «мягкости» использую так называемы «фактор мягкости» SF определяемый как отношение длительностей периодов tB к tA :
Для обычных диодов tA много больше tB , для импульсных «мягких» диодов наоборот tBмного больше tA. «Фактор мягкости» SF можно определить из datasheet диодов исходя из представленных временных осциллограмм восстановления обратной проводимости. Обычно для импульсных силовых диодов класса «ultrafast» характерное значение SF равно 1, для обычных диодов величина SF может составлять 0,2-0,6.
Заряд обратного восстановления (Reverse Recovery Charge) QRR – это реверсный заряд, который должен пройти через переход диода для перевода его из состояния проводимости в закрытое состояние. Заряд обратного восстановления является базовым параметром диода, определяющим его динамические характеристики. Исходя из формы импульса реверсного тока этот заряд равен:
Откуда максимальный ток определяется из соотношения:
Приравнивая выражения для IR получаем:
Преобразуя это выражение получаем:
Учитывая, что tA и tB связаны через «фактор мягкости» SF:
Откуда выразим tA:
Откуда получаем практически важные соотношения:
— для расчета времени восстановления обратной проводимости tRR :
— и для расчета максимальной величины обратного тока IRRM :
Используя представленные выражения, рассчитываются динамические характеристики диода.
Барьерная емкость диода — собственное значение емкости p-n перехода находящегося в обратном смещении (закрытом состоянии). В дополнение к выше описанному инерционному процессу «переключения» диода в непроводящее состояние диод, когда к нему приложено обратное напряжение он (диод) обладает собственным значением барьерной емкости, которая зависит от напряжения, что важно также учитывать при расчете динамических режимов. Емкость пропорциональна площади p-n перехода, на практике это означает, что более мощные диоды с большим номинальным током будут иметь и большее значение емкости. Реально величина емкости не является постоянной и существенно зависит от приложенного напряжения.
Расчет тепловых потерь в диоде на переключение
В момент восстановления проводимости к диоду приложено обратное напряжение и через него протекает некоторый импульс тока длительностью trev. Таким образом, в кристалле диода выделяется некоторая энергия:
Общая выделяемая тепловая мощность пропорциональна частоте импульсов f.
Основное выделение энергии происходит в периода tB когда напряжение на диоде имеет величину существенно большую по сравнению с прямым падением напряжения (как в период tA). Полагая линейную форму спада тока и роста обратного напряжения получим:
Выражение для напряжения на диоде будет иметь вид:
Выражение для тока через диод будет иметь вид:
Выражение для выделяющейся мощности на диоде будет иметь вид:
Перемножая VVD(t) и IVD(t), получаем:
Упрощая которое получаем выражение для мощности динамических потерь PVD_trans«на переключение»:
VDC – обратное напряжение, (напряжения источника питания);
f — рабочая частота;
IRRM — максимальная величина обратного тока, вычисляемая по формуле:
здесь: QRR заряд обратного восстановления (Reverse Recovery Charge) – представлен в datasheet-ах, скорость спада тока di/dt определяется характеристиками схемы, а «фактор мягкости» SF можно определить из datasheet диодов исходя из представленных временных осциллограмм восстановления обратной проводимости. Обычно для импульсных диодов характерное значение SF равно 1.
tB — время между моментом соответствующим максимуму обратного тока IRRM и моментом когда ток уменьшится на 25% от максимального достигнутого значения. Учитывая связь tA и tB через «фактор мягкости» SF получаем:
Отсюда tB может быть вычислено по соотношению:
Учитывая, что в большинстве случаев SF≈1, то в первом приближении tB может быть определено как:
Объединим в итоговое выражение для мощности динамических потерь диода PVD_trans «на переключение»:
Упростим данное соотношение:
Результирующее выражение для мощности динамических потерь PVD_trans «на переключение» имеет вид:
QRR — заряд обратного восстановления;
VDC – обратное напряжение, (напряжения источника питания);
f — рабочая частота;
SF — «фактор мягкости» диода (в первом приближении может быть принят равным 1).
В ряде случаев в datasheet не приводится значение заряда обратного восстановления QRR, а приводятся:
— зависимости тока восстановления обратной проводимости от IRRM от скорости спада тока di/dt;
— зависимости времени восстановления обратной проводимости tRR от скорости спада тока di/dt.
В этом случае мощности динамических потерь PVD_trans вычисляется по соотношению:
VDC – обратное напряжение, (напряжения источника питания);
IRRM(di/dt) — ток восстановления обратной проводимости от IRRM при заданной скорости спада тока di/dt;
tRR(di/dt) — зависимости времени восстановления обратной проводимости tRR при заданной скорости спада тока di/dt.
SF — SF — «фактор мягкости» диода (в первом приближении может быть принят равным 1);
f — рабочая частота.
Обратная ветвь ВАХ – напряжение пробоя, обратный ток
По мере увеличения прикладываемого к диоду обратного напряжения монотонно возрастает и обратный ток. При этом для каждого диода существует обратное напряжение, при достижении которого резко возрастает обратный ток и напряжение на диоде быстро падает. При этом пороговом напряжении происходит пробой диода – в большинстве случаем необратимое изменение внутренней структуры диода, сопровождаемое нарушением целостности p-n перехода. Следствием пробоя является выход диода из строя. Исключением являются лавинные диоды, пробой которых носит обратимый характер.
Обратный ток возрастает с увеличением температуры, также с увеличением температуры снижается напряжение пробоя.
Для кремниевых диодов, эксплуатируемых при нормальной температуре тепловой мощностью, выделяемой при приложенном обратном напряжении можно пренебречь. Однако при более жестком температурном режиме и больших значениях обратного напряжения эта мощность может иметь значительную величину, сопоставимую с мощностью потерь в проводящем состоянии.
Для диодов Шоттки обратный ток существенно больше, чем для кремниевых диодов и его необходимо учитывать в расчетах в любом случае.
Мощность, рассеиваемая на диоде при обратном смещении равна произведению напряжения приложенного к диоду VVD_rev и протекающего под действием этого напряжения обратного тока через него IVD_rev:
— для диода MUR1100E при температуре 100 °С обратный ток составляет величину порядка 600 мкА, если к диоду приложено обратное напряжение 800 В то выделяющаяся тепловая мощность равна 0,48 Вт!
— для диода серии US1 максимальный обратный ток составляет 150 мкА (при температуре 100 °С) и при обратном напряжении 1000 В выделяющаяся тепловая мощность составляет 0,15 Вт.
Важно то, что здесь работает принцип положительной обратной связи: с ростом температуры выделяемая мощность увеличивается, что в свою очередь приводит к росту температуры.
Итак, тепловой режим диода работающего в условиях тока переменной полярности складывается из мощности, выделяемой при прохождении прямого тока, мощности выделяемой в диоде при смене направления тока и мощности выделяемой при обратном смещении:
PVD_total – общая мощность, рассеиваемая на диоде;
PVD_stat+ – мощность, выделяемая при прохождении прямого тока;
PVD_stat- – мощность, выделяемая при прохождении обратного тока;
PVD_trans – мощность, выделяющаяся на диоде в результате переходных процессов.
Последовательное и параллельное включение диодов
Последовательное включение
Последовательное включение диодов используют для увеличения максимального обратного напряжения VR (рисунок VD.11). При этом необходимо помнить, что увеличивается прямое падение напряжения на диодной сборке.
При приложении обратного напряжения к сборке падения напряжения на диодах распределяются в соответчики с обратной ВАХ каждого из диодов. Из за разброса ВАХ может возникнуть ситуация в которой к некоторым диодам сборки будет приложено напряжение превышающее максимальное и возникнет пробой одного диода сборки. После этого общее приложенное напряжение перераспределится между оставшимися диодами и при этом напряжение на каждом из них возрастет. Это с высокой долей вероятности может привести к постепенному выгоранию всех диодов сборки. Для повышения надежности применяют выравнивающие резисторы, сопротивление которых выбирается таким образом, чтобы ток через резистор был в 2-5 раз больше максимального тока утечки диода:
VR – максимальная величина прикладываемого к диоду постоянного напряжения.
IRM – максимальный обратный ток через диод. В расчетах необходимо учитывать ток при температуре соответствующей рабочей температуре эксплуатации.
Параллельное включение
Параллельное включение диодов можно использовать для диодов с положительным (например на основе карбида кремния SiC) или небольшим отрицательным температурным коэффициентом более 2 мВ/К, но при условии их термического соединения (размещение на одном радиаторе). Это необходимо для того чтобы токи, протекающие через диоды выравнивались. На практике при параллельном соединении двух кремниевых диодов или диодов Шоттки максимальные рабочий ток не удваивается, а увеличивается на 50-70 %. Это обусловлено разницей хода ВАХ диодов, так что один диод будет нагружен по максимуму, а второй будет ему «помогать». Физика этого эффекта объясняется наличием положительной обратной связи: если через какой-либо из диодов протекает несколько больший, чем через другой, то он нагревается больше. При нагреве кремниевых диодов ВАХ изменяется таким образом, что при постоянном приложенном напряжении ток возрастает. Это приводит еще большему увеличению доли общего тока через этот диод. Уменьшить эту положительную обратную связь можно путем организации термической связи между диодами, то есть разместить их на одном радиаторе охлаждения. В этом случае «лидирующий» по току диод будет подогревать «отстающий» и увеличивать долю тока через него. В целом на практике целесообразно параллельно соединять лишь диоды, расположенные на одном кристалле в одном корпусе.