Виды напряжений при нагреве

Курсовая работа по теме Деформации и напряжения при сварке

Появлением напряжений и искажений сопровождается любое силовое воздействие на металлическое изделие. Силу, которая оказывает давление на единицу площади называют напряжением, а нарушение целостности форм и размеров в результате силовой нагрузки называют деформацией.

Напряжение может быть вызвано физическим усилием сжимающего, растягивающего, срезающего или изгибающего характера. Когда сварочные напряжения и деформации превышают допустимые значения, то это влечет за собой разрушению отдельных элементов и всей конструкции.

Виды деформаций, возникающие во время сварочного процесса

При соединении деталей при помочи газовой или электрической сварки могут возникнуть следующие типы деформаций:

  • временные и конечные – деформации первого типа возникают во время выполнения сварки, а конечные сохраняются после завершения работ;
  • локальные и общие – локальным деформациям подвержены только части конструкций, а общие трансформируют габариты и форму изделия целиком;
  • упругие и пластичные – при упругих деформациях изделие восстанавливает свою форму и размеры, в противном случае речь идет о пластичных деформациях.

Почему образуются деформации и напряжения

Деформации при сварке появляются из-за вызванных разными факторами внутренних напряжений. Причины таких нарушений условно разделяют на две большие категории: основные (неизбежные), которые всегда присутствуют при сварочных работах и сопутствующие, которые подлежат устранению.

Причины неизбежные

Группу основных составляют следующие причины возникновения напряжений и деформаций при сварке: структурные видоизменения, провоцирующие развитие сжимающих и растягивающих напряжений. Довольно часто при охлаждении изделий, выполненных из высокоуглеродистых и легированных стальных сплавов при нарушается зернистая структура металлов и размеры самих деталей.

Читайте также: Классификация и свойства чугунов

В результате меняется первоначальный объем металла, что собственно и поднимает внутреннее напряжение;

  • неравномерный прогрев. В процессе сварки нагревается только задействованный участок металла, при этом он расширяется и оказывает влияние на менее нагретые слои. Образующаяся вследствие прерывистого прогрева высокая концентрация напряжений в сварных соединениях в основном зависит от показателей линейного расширения, степени теплопроводности и температурного режима. Чем выше эти показатели, тем меньшей является теплопроводность металла и соответственно возрастают риски неточностей сварочном шве;
  • литейная усадка, когда объем металла заметно уменьшается из-за его кристаллизации. Объясняется это тем, что в расплавленном металле под влиянием усадки образуется сварочное напряжение, которое может быть одновременно поперечным и продольным.

Не только внешние силовые воздействия способны спровоцировать напряжение при сварке. Металлическим сплавам характерны также свои собственные напряжения и деформации, которые разделяются на остаточные и временные. Первые возникают вследствие пластичной деформации и даже после охлаждения конструкции они в ней остаются. Когда появляются временные сварочные деформации? Непосредственно в процессе сваривания в прочно зафиксированном изделии.

Сопутствующие причины

Кроме основных существуют также побочные причины возникновения деформаций при сварке. К таковым относят:

  • отклонение от технологических нормативов, например, использование не подходящих для конкретного случая электродов, нарушение режимов сварки, недостаточная подготовка изделия к сварочному процессу и другие;
  • несоответствие конструктивных решений: частое пересечение между собой сварных соединений или недостаточное расстояние между ними, неточно подобранный тип шва и т. д.;
  • отсутствие опыта и соответственных знаний у сварщика.

Что из перечисленного вызывает концентрацию напряжений в сварных соединениях? Любое неправильное действие приводит к технологическим дефектам шва, в частности к появлению трещин, пузырей, непроваров и других браков.

Сварные соединения — напряжения и деформации при сварке

При сварке плавлением из-за неравномерного нагрева сварной конструкции возникают напряжения и деформации.

Механическое напряжение представляет собой силу, отнесенную к площади поперечного сечения тела, к которому приложена эта сила:

Деформацией называется изменение размеров и формы тела под действием приложенных к нему сил.

При сварке металл, нагретый до высокой температуры газовым пламенем, начинает расширяться, но расположенные за нагретым металлом холодные участки детали препятствуют его расширению. Под влиянием этих процессов в детали возникают внутренние напряжения (рис. 9).

Деформации и напряжения, возникающие при нагреве и охлаждении кромки образца

Рис. 9. Деформации и напряжения, возникающие при нагреве и охлаждении кромки образца: а, в — деформации соответственно при нагреве и охлаждении верхней поверхности образца; б, г — распределение внутренних напряжений в сечениях, проведенных через осевую линию образцов соответственно при нагреве и охлаждении; 1 — нагретая зона; 2 — охлажденная поверхность; σт — предел текучести; «+» — растяжение; «-» — сжатие

Еще одной причиной возникновения напряжений и деформаций при сварке является усадка металла шва при переходе его из жидкого состояния в твердое.

Усадкой называется уменьшение объема металла при его остывании. Усадка металла шва вызывает продольные и поперечные деформации детали.

Степень деформации детали зависит от температуры нагрева и коэффициента линейного расширения металла. Чем выше коэффициент линейного расширения и температура нагрева, тем значительнее деформации. Очевидно, что конструкции из алюминиевых сплавов в наибольшей мере подвержены деформациям. Бесспорно и то, что при высокой тепловой мощности газового пламени вероятность возникновения деформаций конструкции больше.

Форма детали, ее размеры и положение сварочных швов также влияют на ее деформацию при сварке. Сложная форма детали, наличие большого числа несимметричных швов и высокая жесткость конструкции определяют повышенные деформации и напряжения при сварке (рис. 10).

Читайте также: Сварочная проволока для полуавтомата: виды, сравнение, обзор лучших моделей

Остаточные напряжения, причиной появления которых является разница удельных объемов структур определенных участков сварного соединения, называются структурными остаточными напряжениями. В большинстве случаев они появляются совместно с температурными напряжениями. Например, при остывании легированных сталей образование мартенсита связано с резким увеличением их объема. Так как в этом случае объемные деформации происходят при низких температурах, т. е. когда металл находится в упругом состоянии, структурные превращения вызывают образование остаточных напряжений.

Напряжения, которые существуют в конструкции или элементе конструкции при отсутствии приложенных к ним поверхностных или объемных сил, называются собственными напряжениями (рис. 11).

Виды сварочных деформаций

Рис. 10. Виды сварочных деформаций: а, б — линейные; в, г — угловые; д — серповидная; 1 — сварной шов; 2, 3 — формы изделий соответственно до и после сварки; 4…7 — последовательность выполнения швов; f — стрела прогиба

Классификация собственных напряжений

Рис. 11. Классификация собственных напряжений

Возникают собственные напряжения вследствие различных видов деформаций металла, например появляющихся в результате изменения температуры, структурных превращений или под действием внешних сил.

В зависимости от объема взаимоуравновешенных частиц тела различают собственные напряжения I рода — уравновешиваемые в макрообъемах (в сварном соединении, сварном шве), II рода — уравновешиваемые в пределах зерен металла и III рода — уравновешиваемые в пределах кристаллической решетки.

По продолжительности существования различают собственные напряжения временные, т. е. существующие только в процессе сварки, и остаточные — сохраняющиеся устойчиво в течение длительного периода после сварки.

Распределение остаточных напряжений в сварных соединениях весьма разнообразно и трудно поддается регламентации и четкой классификации. Более или менее стабильный характер собственные остаточные напряжения имеют вдоль швов, и в первую очередь вдоль стыковых (рис. 12). В сварных швах большинства сплавов наиболее опасные растягивающие остаточные напряжения достигают значений пределов их текучести, а иногда и превышает эти значения.

Деформации конструкций, вызванные сваркой, подразделяют на общие — характерные для сварной конструкции в целом, и местные — образующиеся в пределах одной, нескольких деталей или на части одной из деталей конструкции. Наблюдаемые в сварных конструкциях общие и местные деформации вызываются необратимыми усадочными явлениями и пластическими деформациями, сопутствующими тепловому воздействию сварочной дуги, а также возникающими сварочными напряжениями. Деформации зависят от способа сварки, геометрических характеристик сечения, расположения сварного соединения в конструкции и техники его выполнения.

Различают деформации продольные и поперечные, изгиба, скручивания, потери устойчивости.

Продольные и поперечные деформации, образующиеся при выполнении всех типов швов и соединений, определяющиеся размерами свариваемых элементов по длине и ширине. Остаточные продольные деформации зависят от ширины и толщины свариваемых элементов, способа сварки, размеров швов и других факторов. Остаточные поперечные деформации в пластинах конечных размеров зависят от длины швов.

При выполнении стыковых соединений с зазором (рис. 13) в результате неравномерного нагрева по ширине свариваемые пластины изгибаются с раскрытием зазора. Остывание металла в зоне уже сваренного шва приводит к сближению и повороту пластин, стремящемуся закрыть зазор.

Деформации изгиба, появляющиеся при сварке листов, стержней и оболочек, являются следствием несимметричного расположения швов относительно центра тяжести сечения, неодновременного выполнения симметрично расположенных швов или неодновременного заполнения разделки кромок валиками сварного шва.

Читайте также: ​Какая сталь лучше для охотничьего ножа

Распределение собственных остаточных напряжений вдоль швов в поперечных сечениях сварных соединений различных материалов

Рис. 12. Распределение собственных остаточных напряжений вдоль швов в поперечных сечениях сварных соединений различных материалов: а — низкоуглеродистая сталь, титановые сплавы; б — среднелегированная сталь; в — среднелегированная сталь со швом, выполненным аустенитными электродами; σт — предел текучести свариваемого материала; σА — предел текучести аустенитной стали

Рис. 13.
Перемещение пластин, возникающее при сварке их встык с зазором
Неравномерные по толщине поперечные пластические деформации вызывают угловые перемещения свариваемых элементов (рис. 14).

Деформация полки таврового соединения, называемая грибовидностью, тем больше, чем больше толщина полки и катет сварного шва (рис. 15).

Характерными являются деформации при сварке балочных конструкций, например при выполнении продольного шва тавра (рис. 16). После окончания сварки в этом случае возникают укорочение балки и изгиб тавра.

Деформации скручивания образуются вследствие несимметричного расположения сварочных швов относительно центра изгиба стержней или неодновременного их наложения.

Угловые перемещения, возникающие при выполнении сварных соединений

Рис. 14. Угловые перемещения, возникающие при выполнении сварных соединений: а — стыкового; б — нахлесточного; в — таврового

Рис. 15. Грибовидность, возникающая при выполнении таврового соединения

Деформации потери устойчивости вызываются сжимающими напряжениями, образующимися в процессе выполнения сварных соединений или после остывания конструкции. Особенно значительны такие деформации при сварке тонколистовых конструкций.

В сварных конструкциях могут возникать не только общие, но и местные деформации в виде выпучин и волн. Длинные и узкие листы, сваренные встык, под действием угловых деформаций и собственной массы получают волнистость (рис. 17), размеры которой определяются углом  и толщиной свариваемых листов, характеризующей их массу. При приварке ребер к поясным листам возникают местные деформации — грибовидность. При этом кроме местных угловых деформаций возможно также образование выпучин и волнистости на поверхности листа.

Остаточные деформации, возникающие в результате перераспределения внутренних остаточных напряжений после сварки, называются вторичными. Перераспределение внутренних остаточных напряжений может произойти при первом нагружении сварной конструкции, а также при механической, термической или газопламенной обработке сварных изделий. Остаточные сварочные напряжения, перемещения и деформации могут существенно снизить прочность конструкции, исказить ее форму и размеры, ухудшить внешний вид, снизить технологическую прочность сварного соединения, что в результате приведет к возникновению горячих или холодных трещин.

Рис. 16. Деформация тавровой балки при сварке: а — балка до сварки; б — балка после сварки; β — угол прогиба; ∆ — прогиб

Деформации, возникающие при сварке тонколистовых полотнищ (а) и приварке ребер к листу (б)

Рис. 17. Деформации, возникающие при сварке тонколистовых полотнищ (а) и приварке ребер к листу (б)

При определенных условиях возможно снижение статической прочности или потери устойчивости сварной конструкции, что, в свою очередь, также может привести к ее разрушению. Для конструкций, работающих в агрессивной среде, при наличии растягивающих остаточных напряжений возникает вероятность появления коррозионного растрескивания или усиления коррозионных процессов.

На стадиях проектирования, изготовления и монтажа сварных конструкций необходимо принимать меры по уменьшению влияния сварочных напряжений и деформаций. Необходимо уменьшать объем наплавленного металла и тепловложение в сварной шов. Сварные швы следует располагать симметрично друг другу и по возможности не допускать их пересечения.

Ограничить деформации в сварных конструкциях можно и следующими технологическими приемами: выполнять сварку с закреплением изделий в стендах или специальных приспособлениях, использовать рациональную последовательность сварочных (сварка обратноступенчатым швом и др.) и сборочно-сварочных операций (уравновешивание деформаций нагружением элементов детали).

Необходимо создавать упругие или пластические деформации, обратные по знаку сварочным деформациям (обратный выгиб, предварительное растяжение элементов перед сваркой и др.). Эффективно использование усиленного охлаждения сварного соединения (медных подкладок, водяного охлаждения и др.) и пластического деформирования металла в зоне шва в процессе сварки (проковка, прокатка роликом, обжатие точек при контактной сварке и др.).

Лучше использовать способы сварки, обеспечивающие высокую концентрацию теплоты, а также применять двухстороннюю сварку и Х-образную разделку кромок, уменьшать погонную энергию и площади поперечных сечений швов, стремиться располагать швы симметрично по отношению к центру тяжести изделия.

Напряжения можно снимать термической обработкой конструкции после сварки. Остаточные деформации можно устранять механической правкой конструкции в холодном состоянии (изгибом, вальцовкой, растяжением, прокаткой роликами, проковкой и т. д.) и термической правкой ее посредством местного нагрева.

Для уменьшения деформаций необходимо правильно выбирать режим сварки. При сборке конструкции под сварку следует выдерживать постоянным зазор по всей длине кромок, накладывать минимальное число прихваток, соблюдать принятую технологию сварки и технику выполнения швов, использовать способы компенсации деформаций, основанные на определенной очередности наложения швов, а также способ обратных деформаций, заключающийся в придании детали перед сваркой изгиба в направлении, противоположном ожидаемой деформации. Уменьшение деформаций обеспечивает и жесткое закрепление свариваемых деталей в специальных приспособлениях — кондукторах.

Снизить влияние поперечной усадки при сварке можно выставлением неравномерного зазора, т. е. в начале сварного шва зазор выставляется уже, а в конце шва — шире. Необходимое расширение зазора определяется многими факторами: протяженностью свариваемого стыка, толщиной свариваемых деталей, скоростью сварки и т. п. Со временем к сварщику приходят опыт и умение правильно устанавливать требуемое расширение.

При сварке деталей большой толщины (более 6 мм) со скошенными кромками происходит подъем незакрепленных боковых краев деталей, т. е. возникает угловая деформация, поскольку разделка в лицевой части пластин имеет бо́льшую ширину, чем в корневой части, а следовательно, наплавленного металла, дающего большую усадку в лицевой части, больше.

Угловые деформации определяются следующими факторами:

Читайте также: Лучшие порошковые стали для ножей. Порошковая сталь для ножей: характеристики, плюсы и минусы

  • угловая деформация сварных стыковых соединений с односторонним скосом двух кромок возрастает с увеличением числа проходов при незакрепленных краях свариваемых деталей;
  • максимальная угловая деформация наблюдается в стыковых соединениях с односторонним сварным швом и прямолинейным скосом кромки. Меньше угловая деформация в стыковых соединениях с односторонним сварным швом и криволинейным скосом кромки, а еще меньше — в стыковых соединениях с двухсторонним сварным швом и двумя симметричными прямолинейными скосами кромки. Меньше всех подвержены угловой деформации стыковые соединения с двухсторонним сварным швом и двумя симметричными криволинейными скосами кромки;
  • угловую деформацию стыковых соединений с двумя симметричными скосами кромки (в том числе и с криволинейной разделкой) можно значительно снизить за счет попеременного наложения слоев сварки на каждой из сторон;
  • существенное влияние на угловые деформации оказывают продолжительность сварки и диаметр электрода;
  • большая скорость нагрева кромок при прочих равных условиях приводит к уменьшению угловых деформаций.

Для предотвращения угловой деформации стыковое соединение со скосом кромок при сборке устанавливают с предварительным их расхождением, соответствующим предполагаемой деформации. В результате после сварки и проявления угловой деформации кромки свариваемых деталей оказываются в одной плоскости. Однако подобный способ предотвращения деформации свариваемых соединений не всегда применим, поэтому чаще используются различные фиксирующие приспособления.

При выполнении угловых и тавровых соединений часто происходит отклонение привариваемой детали в сторону, с которой производится сварка. Причем, как и в рассмотренных ранее случаях, эффект от усадки металла сварного шва тем больше, чем больше его размеры и чем большее число проходов производилось при выполнении этого соединения. Устраняют такую деформацию либо предварительным наклоном привариваемой детали, либо применением цепного прерывистого или шахматного прерывистого шва. Если характер производимых работ требует выполнения непрерывного шва, то незаваренные участки следует заваривать в аналогичной последовательности.

В общем случае усадку и деформацию, возникающие в результате сварки нетермообрабатываемых изделий, можно свести к минимуму применением следующих технических и технологических приемов:

  • выполнять сборку свариваемых деталей без зазора в корне шва;
  • использовать минимальное число проходов;
  • уменьшать размеры сварных швов, удовлетворяя вместе с тем требования, которые ставятся при проектировании, изготовлении и эксплуатации сварного узла или конструкции;
  • использовать минимально возможное число наплавляемых слоев, обеспечивающих выполнение требований, предъявляемых к свойствам сварных швов;
  • манипулировать электродом и применять обратноступенчатое наложение наплавляемых слоев;
  • выполнять сборку сварного узла с предварительным расхождением свариваемых деталей по плоскости;
  • применять предварительное деформирование свариваемых кромок — выгибание свариваемого участка детали в направлении, противоположном наплавлению деформации (после сварки предварительно деформированный участок занимает положение, соответствующее заданному);
  • применять временные усилители жесткости, предназначенные для временного увеличения стойкости сварного узла к деформации и удаляемые после завершения сварки и охлаждения узла;
  • использовать сварочные кондукторы для сварки небольших узлов и конструкций (помимо устранения деформаций кондукторы способствуют ускорению процессов сборки и сварки).

Значительного снижения сварочных деформаций конструкций можно добиться с помощью широкого использования мощных прихваток, интенсивного манипулирования электродом, а также одновременного выполнения сварки на всех стыках вместо последовательной сварки секции за секцией.

Эффективно применение термообработки, включающей в себя предварительный подогрев и послесварочный отпуск. В некоторых случаях рекомендуется проковка шва.

При термомеханической правке производится равномерный нагрев детали по всему деформированному сечению с последующей правкой его внешней силой. Нагревается деталь газовыми горелками до температуры отжига (750 … 800 °С).

В ряде случаев при выполнении правки (рихтовки) панели существует возможность значительного уменьшения объема работы за счет использования методов локального теплового воздействия на обработанный участок.

Как правило, в зоне деформации панельной детали металл растягивается. При этом деформация может быть упругой или пластичной. До определенной нагрузки металл «помнит» свою первоначальную форму и после снятия нагрузки возвращается в исходное состояние (упругая деформация).

После превышения предела упругости деформация металла становится необратимой. Общий объем металла в зоне деформации измениться не может, следовательно, толщина листа становится меньше, а его площадь — больше. Появившийся «лишний» металл необходимо удалить.

Вернуть растянутый участок в первоначальное состояние, т. е. как бы сжать его, приложив минимальную силу, можно правильным сочетанием нагрева и охлаждения. При этом необходимо учитывать следующие основные особенности способа тепловой рихтовки:

  • во-первых, несмотря на то что с помощью теплового воздействия можно устранить любую деформацию, применимость тепловой правки при малой толщине панельных деталей ограничена, поскольку тонкий стальной лист быстро прогревается по всей площади, и возникающие при этом силы сжатия оказываются малыми;
  • во-вторых, локальный нагрев стальных панельных деталей ограничивается температурами 600 … 650 °С, так как при более высокой температуре начинается обычная пластическая деформация их без возникновения каких-либо напряжений в металле.

Комбинация механической рихтовки и тепловой обжимки необходима, когда деформированная поверхность сильно растянута и имеется значительный «избыток» металла. В этом случае рекомендуется обычной рихтовкой «согнать» избыток металла в один или несколько куполообразных выступов. Затем каждый купол правят отдельно посредством нагрева и при необходимости последующего резкого охлаждения. Таким образом удается устранить довольно большие деформации панельных элементов.

При термической правке локальным нагревом стремятся вызвать усадку деформированных участков конструкции, чтобы устранить нежелательные перемещения, возникшие после сварки. Например, изогнутые сварные тавровые балки (рис. 18, а) нагревают со стороны выпуклой растянутой стороны, а тонкие листы, потерявшие устойчивость (рис. 18, б), нагревают в зените хлопуна.

Создание дополнительных областей нагрева или охлаждения широко используется для перераспределения остаточных напряжений. Нагревая металл вблизи зоны с растягивающими напряжениями (рис. 19, а), вызывают расширение нагретого металла. Поскольку зона с растягивающими сварочными напряжениями, расположенная между зонами нагрева, остается при этом холодной и сопротивляется расширению соседних нагреваемых участков, в ней возникают дополнительные растягивающие напряжения, которые суммируются с остаточными напряжениями и вызывают пластические деформации металла.

Рис. 18. Схемы расположения зон нагрева при термической правке изделий балочного типа (а) и листовых (б)

Схемы расположения зон нагрева

Рис. 19. Схемы расположения зон нагрева (а) и зоны охлаждения (б) при обработке соединений в целях уменьшения продольных растягивающих напряжений σх(в)

Если же зону остаточных растягивающих напряжений охлаждать (рис. 19, б), то она, сокращаясь и встречая при этом сопротивление со стороны соседних неохлажденных участков, будет испытывать дополнительные растягивающие напряжения и, как следствие, — пластические деформации растяжения (рис. 19, в).

Виды деформаций и напряжений

Различают разные виды напряжений в зависимости от характера их возникновения, периода действия и других факторов. В таблице ниже показано что вызывает концентрацию напряжений в сварных соединениях и какими они бывают.

Характер возникновения Тип напряжения Чем вызвано нарушение
В соответствии причины появления Тепловые Неравномерный прогрев из-за перепада температур в процессе сварки
Структурные Изменения в структуре металла при нагревании его выше предельно допустимой температуры
По времени существования Временные Образуются при фазовых видоизменениях, но постепенно исчезают вследствие охлаждения
Остаточные Даже после ликвидации причин их появления присутствуют в изделии
По охватываемой площади Действующие в пределах всей конструкции
Действующие только в зернах структуры материала
Присутствующие в кристаллической решетке металла
По направленности действия Продольные Образуются вдоль линии сварочного шва
Поперечные Располагаются перпендикулярно к оси соединения
По виду напряженного состояния Линейные Только в одном направлении распространяется действие
Плоскостные Образуются в двух разных направлениях
Объемные Оказывают одновременно трехстороннее воздействие

Фото: виды напряжений при сварки

Виды деформаций при сварке бывают:

  • местные и общие. Первые возникают на отдельных участках и изменяют только часть изделия. Вторые проводят к изменению размера всей конструкции и искривлению ее геометрической оси;
  • временные и конечные. Возникающие в конкретный момент сварочные деформации называют временными, а те, которые после полного охлаждения изделия остаются в нем — остаточными;
  • упругие и пластичные. Когда после сварки размер и форма конструкции полностью восстанавливаются, деформация упругая, если дефекты остаются — пластичная.

Деформации металла возможны как в плоскости сварной конструкции, так и вне нее.

Почему возникают деформации металла

Дефекты при выполнении такого рода работ возникают из-за усилий, которые воздействуют на свариваемую деталь (растяжение, сжатие, изгиб). Они должны контролироваться сварщиком, чтобы значения этих усилий не превышали предельно допустимых значений. Большое влияние оказывают и напряжения, возникающие во внутренней структуре металла. Причины их возникновения можно условно разделить на несколько групп.

Основные

К этой категории относятся причины возникновения деформаций, которые всегда появляются при выполнении сварочных работ. Чтобы выло понятно, о чем идет речь, перечислим их по пунктам:

  • литейная усадка – процесс происходит во время кристаллизации металла, проявляется в уменьшении его объема, при усадке возникают продольные и поперечные напряжения;
  • структурные трансформации – при охлаждении деталей из легированных или высокоуглеродистых сталей возникают растягивающие или сжимающие напряжения;
  • неравномерный прогрев – перед сваркой участок проведения работ должен прогреваться, если выполнять эту операцию неравномерно, то в зоне сварки формируется высокая концентрация напряжений (их степень варьируется в зависимости от температуры прогрева и теплопроводности материала).

Эти факторы присутствуют при изготовлении всех сварных изделий.

Сопутствующие

В данную категорию входят второстепенные причины, влияние которых можно свести к минимуму. В частности, речь идет о следующих факторах:

  • ошибки, допущенные при изготовлении сварной конструкции – неправильно выбранный тип шва, недостаточное расстояние между соседними швами;
  • нарушение технологии изготовления сварной конструкции;
  • другие отклонения от нормативов – использование неподходящего типа электродов, пренебрежение режимами сварочного процесса.

Избежать брака в этих случаях можно, если сварочные работы будут выполняться опытными специалистами на современном оборудовании.

Тестирование сварных швов и расчет деформаций

С целью определения прочности и надежности шва, и выявления возникших дефектов проводится тестирование сварных соединений. Такой контроль позволяет своевременно обнаружить браки и оперативно их устранить.

Для выявления изъянов используют следующие типы контроля:

  • разрушающий. Позволяет исследовать физические качества сварного шва, активно применятся на производственных предприятиях;
  • неразрушающий. Проводится посредством внешнего осмотра, капиллярного метода, магнитной или ультразвуковой дефектоскопии, контролем на проницаемость и другими способами.

При производстве конструкций с применением сварки одним из важных нюансов является точное определение возможных деформаций и напряжений. Их наличие приводит к отклонениям от первоначальных размеров и форм изделий, понижает прочность конструкций и ухудшает эксплуатационные качества.

Фото: деформация при сварки

Расчет сварочных напряжений и деформаций позволяет проанализировать разные варианты проведения сварочных операций и спланировать их последовательность так, чтобы в процессе работ конструкция подвергалась минимальным напряжениям и образованию дефектов.

Способы устранения сварочных напряжений

Дли ликвидации напряжений проводят отжиг или же используют механические методы. Наиболее прогрессивным и действенным считается отжиг. Применяется метод в случаях, когда к геометрической точности всех параметров изделия выдвигаются сверхвысокие требования.

Отжиг может быть общим или местным. В большинстве случаев проводят процедуру при температуре 550-680°С. Весь процесс проводится в три этапа: нагрев, выдержка и остывание.

Из механических способов чаще всего используется прокатка, проковка, техника вибрации и обработка взрывом. Проковка проводится с применением пневмомолота. Для виброобработки используют вызывающие вибрацию устройства, у которых в течение нескольких минут 10-120 Гц составляет резонансная частота.

Способы устранения деформации

Деформация металла при сварке устраняется термомеханической, холодной механической и термической правкой с общим или местным нагревом. При полном отжиге конструкция прочно фиксируется в специальном устройстве, которое на требуемые участки образует давление. После закрепления изделие помещается в печь для нагрева.

Принцип термического способа состоит в том, что в процессе охлаждения металл сжимается. Растянутый участок нагревают с помощью дуги или горелки таким образом, чтобы холодным оставался окружающий сплав. Это препятствует сильному расширению горячего участка. В процессе остывания конструкция выпрямляется. Метод идеально подходит для правки листовых полос, балок и других изделий.

Холодная правка проводится с применением постоянных нагрузок, которые образуют с помощью разнообразных прессов, валков для прокатки длинных конструкций. В сильно растянутых конструкциях для ликвидации деформаций используют термическую правку. Сперва собираются излишки металла, после чего проблемные участки прогреваются.

Какой из методов считается самым лучшим? Однозначного ответа здесь не существует. При выборе технологии следует учитывать тип, размеры и формы металлического изделия, какие особенности вызвали деформации и сварочные напряжения, и деформации, возникшие в плоскости или снаружи. Также внимание стоит обратить на эффективности методики и предстоящих трудозатратах.

Читайте также: Особенности технологии производства столешниц из искусственного камня

Как предотвратить возникновение напряжений и деформации

Чтобы повысить качество конструкций и предотвратить образование браков, следует знать от чего зависит величина деформации свариваемого металла.

Понизить напряжения в процессе сварочных работ и предотвратить деформации можно, если придерживаться следующих правил:

  • при проектировании сварной конструкции сперва нужно провести расчет сварочных деформаций, что позволит правильно сформировать сечения швов и предусмотреть на отдельных участках изделия необходимые для усадки припуски;
  • швы нужно выполнять симметрично к профильным осям всего изделия и отдельных его деталей;
  • очень важно, чтобы в одной точке не было пересечений более чем трех швов;
  • перед свариванием конструкцию необходимо проверить на соответствие расчетам величин зазоров в стыках и общих размеров;
  • понизить остаточную деформацию можно, если создать в соединении искусственную деформацию, противоположную по знаку от выполняемой сварки. Для этого применяется общий или местный подогрев конструкции;
  • при выполнении длинных швов применять обратноступенчатый способ на проход;
  • использовать теплоотводящие прокладки или охлаждающие смеси, способные уменьшить зону разогрева;
  • накладывать швы таким образом, чтобы последующее соединение вызывало обратные от предыдущих швов деформации;
  • подбирать для вязких металлов такие сварочные техники, которые способны понизить конечные деформации.

Нужно понимать, чтобы понизить к минимуму деформации при сварке, причины их возникновения и меры предупреждения непосредственно повязаны между собой. Поэтому вначале нужно провести все расчеты и подготовительные работы, и только после этого приступать к процессу сваривания металлоконструкций.

Тест «Сварочные деформации» тест на тему

образовательное учреждение Омской области

«Cедельниковское училище № 65».

МДК 02.01. Оборудование, техника и технология электросварки

ПМ.02. Сварка и резка деталей из различных сталей, цветных металлов и их сплавов, чугунов во всех пространственных положениях

по профессии 150709.02 Сварщик (электросварочные и газосварочные работы)

Составил: Баранов Владимир Ильич мастер производственного обучения

Седельниково, Омская область, 2015

Каждый вопрос имеет один или несколько правильных ответов. Выберите верный ответ.

  1. Деформация — это:

а) изменение размеров и формы тела при внешнем воздействии;

б) изменение напряжения и тока в электрической цепи при сварке;

в) только такое изменение размеров и формы тела, которое может быть получено в результате правки после сварки.

  1. Как изменяются размеры детали при нагреве?

а) Размеры детали увеличиваются.

б) Размеры детали уменьшаются.

в) Размеры детали не изменяются.

  1. Причиной возникновения деформаций при сварке является:

а) неравномерный нагрев и охлаждение свариваемой детали;

б) нерациональная сборка детали под сварку;

в) неправильно проведенная термообработка детали после сварки.

  1. В каком состоянии находится металл сварного шва после сварки и полного остывания?

а) Металл сварного шва сжат.

б) Металл сврного шва растянут.

в) Металл сварного шва не деформирован.

  1. Как изменяется величина сварочного зазора при сварке узких пластин встык?

а) Зазор увеличивается.

б) Зазор уменьшается.

в) Зазор не изменяется.

  1. Как изменяется величина сварочного зазора при сварке широких пластин встык?

а) Зазор увеличивается.

б) Зазор уменьшается.

в) Зазор не изменяется.

7. Зависят ли величины деформаций после сварки от размеров свариваемых пластин?

б) Нет, не зависят.

в) Зависят, если свариваются пластины разной ширины.

8. После заварки первого шва элементы таврового соединения будут расположены, согласно рисунку:

  1. Каким способом можно уменьшить сварочные деформации при сварке пластин встык?

а) Путем правильного выбора взаимного расположения спариваемых деталей с учетом последующей деформации от сварки.

б) Нельзя уменьшить.

в) Путем нагрева определенных зон металла.

  1. Сварочные деформации при сварке плавлением возникают
вопрос 1 2 3 4 5 6 7 8 9 10
ответ а а а а а б а б а а

Критерии оценок тестирования:

Оценка «отлично» 9-10 правильных ответов или 90-100% из 10 предложенных вопросов;

Оценка «хорошо» 7-8 правильных ответов или 70-89% из 10 предложенных вопросов;

Оценка «удовлетворительно» 5-6 правильных ответов или 50-69% из 10 предложенных вопросов;

Оценка неудовлетворительно» 0-4 правильных ответов или 0-49% из 10 предложенных вопросов.

  1. Галушкина В.Н. Технология производства сварных конструкций: учебник для нач. проф. образования. – М.: Издательский , 2012;
  2. Овчинников В.В. Технология ручной дуговой и плазменной сварки и резки металлов: учебник для нач. проф. образования. – М.: Издательский , 2010;
  3. Маслов В.И. Сварочные работы6 Учеб. для нач. проф. образования – М.: Издательский , 2009;
  4. Овчинников В.В. Оборудование, техника и технология сварки и резки металлов: учебник – М.: КНОРУС, 2010;
  5. Куликов О.Н. Охрана труда при производстве сварочных работ: учеб. пособие для нач. проф. образования – М.: Издательский , 2006;
  6. Виноградов В.С. Электрическая дуговая сварка: учебник для нач. проф. образования – М.: Издательский , 2010.

Методы противодействия сварочным деформациям и напряжениям

Намного проще предотвратить проблему, нежели ее устранять. Касается это также сварочных работ. Чтобы не столкнуться с устранением брака, а также избежать лишних финансовых затрат следует обратить внимание на некоторые меры борьбы со сварочными напряжениями и деформациями.

Сопроводительный и предварительный подогрев

Выполнение таких видов подогрева улучшает качественные характеристики шва и прилегающих к нему участков. Также метод способствует уменьшению остаточного напряжения и пластических деформаций. Применяют подогрев для склонных к возникновению кристаллизационных трещин и закалке сталей.

Наложение швов в обратно ступенчатом порядке

Если длина шва превышает 1000 миллиметров, то следует разбить его на отдельные участки протяжностью 100-150 мм каждый и вести их нужно противоположно к направлению сварки. Применение такого способа позволяет достичь равномерного нагревания металла и существенно понизить деформацию, что нельзя отнести к случаю последовательного наложения.

Фото: противодействия деформации и напряжениям при сварки

Проковка швов

Как холодный, так и нагретый металл можно проковывать. Металл от силы удара разжимается в разные стороны, понижая таким образом растягивающее напряжение. Если конструкция создана из склонного к появлению закалочных структур металла, то на таких изделиях проковка не выполняется.

Выравнивание деформаций

Сущность способа состоит в подборе порядка выполнения швов. При этом каждое последующий шов должен создавать противодействующую деформацию предыдущему соединению. Очень актуально это при сваривании двусторонних соединений.

Жесткое крепление деталей

В течение всего процесса сварки обрабатываемые детали необходимо жестко и прочно закреплять в кондукторах. Вынимать можно только после полного охлаждения. Следует обратить внимание, что у такого метода есть один недостаток — повышенные риски появления внутренних напряжений.

Термическая обработка

Улучшает механические характеристики шва и расположенных вблизи участков, выравнивает структуру соединения, понижает внутренние напряжения. Термическая обработка состоит из разных операций: отпуск, отжиг (полный или низкотемпературный), нормализация.

Наилучшим способом обработки для сварных изделий считается нормализация, особенно хорошо подходит метод для изделий из низкоуглеродистых сталей.

Сварочные напряжения и деформации

Образование напряжений и деформаций при сварке обычно связано с несоблюдением технологических требований. Такие соединения ненадежны, так как на швах могут появиться трещины, снижающие прочность. После деформации при сварке геометрические параметры могут измениться настолько, что конструкция будет непригодна для эксплуатации.

Определение сварочных напряжений и деформаций

Сварочные напряжения ― это воздействия, приложенные к поперечному сечению. По направленности они могут быть:

  • растягивающего действия;
  • изгибающего;
  • крутящего;
  • сжимающего;
  • срезающего.

Сварочные деформации ― это искажение формы под действием прилагаемых сил. Нарушения могут проявиться не сразу после завершения сварочных работ, а во время эксплуатации из-за увеличения нагрузки. В лучшем случае снизится антикоррозийная устойчивость, в худшем ― разрушится конструкция.

Наглядная картинка деформации сварного соединения при сварке и после остывания

Наглядная картинка деформации сварного соединения при сварке и после остывания

Сварочные напряжения ― это воздействия, приложенные к поперечному сечению.

Сварочные деформации ― это искажение формы под действием прилагаемых сил.

Причины возникновения

Причины образования деформаций и напряжений при сварке подразделяются на основные и побочные категории. К первым относят те, которые возникают во время сварки, поэтому неизбежны. Вторые нужно предотвращать.

Основные причины возникают как следствие:

  1. Неравномерного нагрева сварочной зоны и прилегающих участков. Более горячий металл расширяется больше чем холодный, поэтому между слоями с разной температурой начинает концентрироваться напряженность. Ее величина определяется степенью нагревания и коэффициентом теплового расширения. Чем больше эти значения, тем выше вероятность нарушения геометрии конструкций.
  2. Усадки. Когда при охлаждении после сварки металл переходит из жидкой фазы в твердое состояние, объем уменьшается. Этот процесс сопровождается растягиванием прилегающих участков с образованием напряжений, направленных вдоль или поперек шва. Продольное воздействие изменяет длину соединения, а поперечное способствует образованию угловой деформации.
  3. Структурных изменений. При сварке высокоуглеродистой или легированной стали с большим нагревом происходит процесс закаливания с изменением объема и коэффициента теплового расширения. Это явление создает напряжения, приводящие к образованию трещин внутри и на поверхности швов. У сталей, в составе которых углерода меньше 0,35%, структурные изменения настолько малы, что не оказывают существенного влияния на качество сварных соединений.

К побочным причинам причисляют:

  • неправильный выбор электродов или режимов сварки, некачественная подготовка деталей перед сваркой, другие нарушения технологии;
  • неверный выбор вида швов или малое расстояние между ними, большое количество точек пересечения соединений и прочие конструктивные ошибки;
  • неопытность сварщиков.

Читайте также: Как заменить батареи отопления в квартире на сварке

Классификация напряжений и деформаций

В зависимости от причины образования напряжения называются тепловыми и структурными. Первые возникают во время нагрева/остывания, вторые возникают при структурной перестройке металла. При сварке легированных или высокоуглеродистых сортов стали они проявляются совместно.

Виды сварочных деформаций

По месту действия напряжения присутствуют в границах конструкции, зернах, кристаллической решетке металла. По виду напряженного состояния их называют:

  • линейными, с односторонним действием;
  • плоскостными, действующими по двум направлениям;
  • объемными, распространяющиеся по трем осям.

По направленности продольные напряжения действуют вдоль сварного соединения, а поперечные перпендикулярно.

Деформацию конструкции, которая происходит в процессе сварки, называют общей, а если изменяются размеры и форма только одной или нескольких деталей ― местной. По продолжительности существования действие временных сварочных деформаций проявляется только в процессе соединения деталей. После охлаждения геометрические параметры восстанавливаются. Остаточной называют сварочную деформацию, которая остается неизменной после устранения причины появления. Если геометрические параметры восстанавливаются после завершения сварки, деформации называются упругими, если нет ― пластичными.

Как предотвратить возникновение

Для снижения величины сварочных напряжений и деформаций при подготовке к работе специалисты рекомендуют:

  • при проектировании выполнять расчет деформаций для правильного формирования сечения сварочных швов, припусков для усадки;
  • располагать швы симметрично по отношению к осям узлов;
  • не проектировать соединения так, чтобы больше трех швов пересекались в одной точке;
  • прежде чем приступить к сварке, проверить, нет ли отклонений величины зазоров на стыках от расчетных величин;
  • не проводить швы через места концентрации напряжений.

Для уменьшения деформаций и напряжений во время работы применяют следующие приемы:

  • создавать на соединениях очаги дополнительной деформации с действием, противоположным сварке;
  • швы длиной больше 1 м разбивать на отрезки длиной 10 — 15 см и сваривать обратноступенчатым методом;
  • подкладывать под стыки медные или графитовые прокладки для снижения температуры сварочной зоны;
  • соседние швы сваривать так, чтобы деформации компенсировали друг друга;
  • для сварки деталей из вязкого металла применять технологии, которые обеспечивают снижение величины остаточных явлений;
  • делать размер швов меньше, если это допускается условиями эксплуатации;
  • по возможности выполнять соединения с меньшим числом проходов;
  • при наложении двухсторонних швов слои наплавлять попеременно с каждой стороны;
  • предварительно выгибать края заготовок в направлении, противоположном действию деформации, когда сварка завершится, они вернутся в исходное положение;
  • не делать много прихваток;
  • для ускорения сборки и снижения величины деформаций небольшие узлы сваривать в кондукторах.

Читайте также: Как сваривать пластиковые трубы аппаратом для сварки в домашних условиях

Методы устранения напряжений

Для снятия напряжений пользуются отжигом и механической обработкой. Первый способ применяют в случаях, когда требуется обеспечить высокую точность размеров. Местный или общий отжиг проводят при нагреве до 550 — 680⁰C в три стадии: нагревание, выдержка, охлаждение.

Для механического снятия напряжений используют обработку проковкой, прокаткой, вибрацией, взрывом, чтобы создать нагрузку с противоположным знаком. Для горячей и холодной проковки используют пневматический молот. Обработку вибрацией проводят устройством, которое генерирует колебания с частотой в диапазоне 10 — 120 Гц.

Способы снятия напряжений, минимизации деформаций и правки выбирают в зависимости от размеров и формы деталей, сложности конструкции.

Методы устранения деформаций

Дефекты устраняют термическим с местным или общим нагревом, холодным механическим, термомеханическим способами. Для правки термическим методом с полным отжигом конструкцию закрепляют в устройстве, которое создает давление на искривленный участок, затем нагревают в печи.

Способ локального нагрева основан на сжимании металла при остывании. Для исправления дефектов искривленное место греют горелкой или сварочной дугой. Так как прилегающие участки остаются холодными, зона нагрева не может значительно расшириться. После охлаждения растянутый участок выпрямляется.

Термическим способом выправляют любые виды деформаций, однако при работе с тонкостенным металлом следует учитывать его особенности:

  • тепло при местном нагреве тонких стальных листов быстро распространяется по всей площади, поэтому величина усилия сжатия оказывается недостаточной для исправления дефекта;
  • температура локального нагрева тонкостенного металла не должна превышать 600 — 650⁰C, поскольку при увеличении температуры начнется образование пластических деформаций даже при отсутствии напряжения.

При механической правке растянутые участки деформируются внешними нагрузками в обратном направлении. Дефекты устраняют применением изгибания, вальцовки, растяжения, ковкой, прокаткой роликами.

Термомеханическую правку проводят с подогревом растянутого участка до 700 — 800⁰C и внешнего воздействия. Для выправления участков с большим растяжением сначала из избытков металла холодной рихтовкой формируют выступы в форме куполов. Затем по отдельности нагревают и резко охлаждают.

Способы снятия напряжений, минимизации деформаций и правки выбирают в зависимости от размеров и формы деталей, сложности конструкции. При этом учитывают эффективность метода, трудоемкость, величину финансовых затрат.