Виды напряжения тех механике

Виды напряжения тех механике

Напряжение в механике — это мера интенсивности распределения внутренних сил R в окрестности точки в пределах данного сечения площадью A.

Таким образом, напряжения p измеряются в единицах силы, отнесенной к единице площади dA
Полные напряжения в точке
Единица измерения напряжений — Паскаль (Н/м 2 =Па).
Рассмотрим подробнее:

Система приложенных к телу внешних нагрузок, приводит к возникновению в его сечениях внутренней силы R и момента M

Внутренние сила и момент в сечении бруса

При этом надо понимать что внутренняя сила и внутренний момент воздействуют на всё сечение бруса в целом.

Выделим в рассматриваемом сечении элементарную площадку dA бесконечно малой площади.

Элементарная площадка в сечении бруса

Полное напряжение – часть внутренних усилий, приходящаяся на конкретную точку сечения.

Вектор полного напряжения в точке

Обозначение полного напряжения в точке – p.
Единица измерения – Паскаль [Па] (Н/м 2 ).

Ввиду того, что большинство конструкционных материалов обладает высокой прочностью часто напряжения, возникающие в них, измеряются в кратных величинах, например мегапаскаль [МПа].

В общем случае вектор полного напряжения в точке может располагаться под любым углом к сечению. В таких случаях для существенного упрощения расчетов его удобно раскладывать на составляющие (проекции):

Нормальное и касательное напряжения

Проекция вектора полного напряжения p на нормаль к сечению называется нормальным напряжением и обозначается через σ, а проекция вектора полного напряжения на плоскость сечения называется касательным напряжением и обозначается через τ.

Разложение вектора полного напряжения на две указанные составляющие имеет конкретный физический смысл – с нормальным напряжением связано разрушение путем отрыва, а с касательным – разрушение путем сдвига или среза.

В частных случаях (например при растяжении-сжатии и кручении) в поперечных сечениях бруса имеют место только нормальные и только касательные напряжения соответственно.

При решении таких задач, величина нормальных и касательных напряжений сравнивается с соответствующими допустимыми значениями напряжений.

Уважаемые студенты!
На нашем сайте можно получить помощь по техническим и другим предметам:
✔ Решение задач и контрольных
✔ Выполнение учебных работ
✔ Помощь на экзаменах

iSopromat.ru

Определения видов механических напряжений при расчете элементов конструкций и их перевод на английский язык.

78. Напряжение
Stress
Интенсивность внутренних сил в определенной точке данного сечения.

79. Нормальное напряжение
Normal stress
Составляющая напряжений, направленных по нормали к площадке ее действия.

80. Касательное напряжение
Shearing stress
Составляющая напряжений, лежащих в плоскости сечения.

81. Переменное напряжение
Alternate stress
Напряжения, переменные во времени, возникающие в элементах конструкции под действием нагрузок, переменных по величине или направлению, а также нагрузок, перемещающихся относительно рассматриваемого элемента.

82. Допускаемое напряжение
Allowable stress
Экспериментально установленное для рассматриваемого материала предельное значение напряжения, деленное на коэффициент запаса прочности.

83. Главное напряжение
Principal stress
Среди множества площадок, которые можно провести через исследуемую точку, имеются три взаимно перпендикулярные площадки, касательные напряжения на которых отсутствуют. Эти площадки и возникающие на них нормальные напряжения называются главными.

84. Эквивалентное (приведенное) напряжение
Equivalent stress
Напряжение одноосного растяжения (сжатия), равноопасного рассматриваемому сложному напряженному состоянию.

Уважаемые студенты!
На нашем сайте можно получить помощь по техническим и другим предметам:
✔ Решение задач и контрольных
✔ Выполнение учебных работ
✔ Помощь на экзаменах

15.Напряжения. Виды напряжения, виды деформации. Правила знаков. Примеры расчета плоского напряженного состояния.

Напряжением называется интенсивность действия внутренних сил в точке тела, то есть, напряжение — это внутреннее усилие, приходящееся на единицу площади. По своей природе напряжение — это поверхностная нагрузка, возникающая на внутренних поверхностях соприкасания частей тела.

Деформацией называется изменение размеров и формы тела под действием приложенных сил.

Напряжением называется отношение действующего усилия к площади поперечного сечения тела или образца σ = P/F. В зависимости от направления действия силы нормальные напряжения подразделяют на растягивающие и сжимающие. Различают временные и остаточные напряжения. Временные напряжения возникают под действием внешней нагрузки и исчезают после ее снятия, остаточные — остаются в теле после прекращения действия нагрузки.

Если после прекращения действия внешних сил изменения формы, структуры и свойств тела полностью устраняются, то такая деформация называется упругой.

При возрастании напряжений выше предела упругости деформация становится необратимой. При снятии нагрузки устраняется лишь упругая составляющая деформации, оставшаяся часть называется пластической деформацией.

Составляющая напряжений, направленных по нормали к площадке ее действия.

Составляющая напряжений, лежащих в плоскости сечения.

Нормальные напряжения σ принимаются положительными (т.е. σ>0), если они растягивают выделенный элемент бруса.

Касательные напряжения τ принимаются положительными (т.е. τ>0), если они стремятся повернуть рассматриваемый элемент бруса по ходу часовой стрелки.

Внутренняя продольная сила N, которая стремится растянуть рассматриваемую частьбруса, считается положительной. Сжимающая продольная сила имеет отрицательный знак.

Внутренний скручивающий момент T считается положительным, если он стремится повернуть рассматриваемую часть бруса против хода часовой стрелки, при взгляде на него со стороны внешней нормали.

Внутренняя поперечная сила Q считается положительной, в случае, когда она стремится повернуть рассматриваемую часть бруса по ходу часовой стрелки.

Внутренний изгибающий момент M положителен, когда он стремится сжать верхние волокна бруса.

Деформация при растяжении-сжатии Δl считается положительной, если длина стержняпри этом увеличивается.

При плоском поперечном изгибе

Вертикальное перемещение сечения бруса принимается положительным, если оно направлено вверх от начального положения.

Правило знаков при составлении уравнений статики

— для проекций сил на оси системы координат

Проекции внешних сил на оси системы координат принимаются положительными, если их направление совпадает с положительным направлением соответствующей оси.

Сосредоточенные моменты и моменты сил в уравнениях статики записываются с положительным знаком, если они стремятся повернуть рассматриваемую систему против хода часовой стрелки.

Правило знаков при составлении уравнений статики для неподвижных систем

При составлении уравнений равновесия статичных (неподвижных) систем (например, приопределении опорных реакций), последние два правила упрощаются до вида:

Проекции сил и моменты, имеющие одинаковое направление принимаются положительными, а соответственно проекции сил и моменты обратного направления – отрицательными.

ПЛОСКОЕ НАПРЯЖЕННОЕ СОСТОЯНИЕ

Если все векторы напряжений параллельны одной и той же плоскости, напряженное состояние называется плоским (рис. 1). Иначе: напряженное состояние является плоским, если одно из трех главных напряжений равно нулю.

Плоское напряженное состояние реализуется в пластине, нагруженной по ее контуру силами, равнодействующие которых расположены в ее срединной плоскости (срединная плоскость — плоскость, делящая пополам толщину пластины).

Направления напряжений на рис. 1 приняты за положительные. Угол α положителен, если он откладывается от оси х к оси у. На площадке с нормалью n:

при .

Нормальное напряжение σn положительно, если оно растягивающее. Положительное напряжение показано на рис. 1. Правило знаков дляпо формуле (1) то же самое, что для напряженийпо формуле (1).

Данное здесь правило знаков относится к наклонным площадкам. В статье «Объёмное напряженное состояние» сформулировано правило знаков для компонентов напряжений в точке, т. е. для напряжений на площадках, перпендикулярных осям координат. Это правило знаков принято в теории упругости.

Главные напряжения на площадках, перпендикулярных плоскости напряжений:

(Поскольку здесь рассматриваются только два главных напряжения, они обозначены через σ1 и σ2, хотя может оказаться, что σ2

Наибольшее и наименьшее касательные напряжения

Эти напряжения действуют на площадках, расположенных под углом 45° к первой и второй главным площадкам.

Если главные напряжения σ1 и σ2 имеют одинаковый знак, то наибольшее касательное напряжение действует на площадке, расположенной под углом 45° к плоскости напряжений (плоскости ху). В этом случае:

В стенке балки (здесь имеется в виду обычная балка, а не балка-стенка) при ее изгибе силами реализуется частный случай плоского напряженного состояния. В стенках балки одно из нормальных напряжений σy равно нулю. В этом случае напряжения получатся по формулам (1), (2) и (4), если в этих формулах положить σy=0. Положение первой главной площадки определяется формулой (3).

РАСТЯЖЕНИЕ ПО ДВУМ НАПРАВЛЕНИЯМ (рис 2):

При σ1>0 и σ2 0 и σ2>0

Тут вы можете оставить комментарий к выбранному абзацу или сообщить об ошибке.

Техническая механика

Здравствуйте, на этой странице я собрала краткий курс лекций по предмету «Техническая механика».

Лекции подготовлены для студентов любых специальностей и охватывают полностью предмет «техническая механика».

В лекциях вы найдёте основные законы, теоремы, правила и примеры.

Если что-то непонятно — вы всегда можете написать мне в WhatsApp и я вам помогу!

Введение в техническую механику

Техническая механика — это наука, в которой изучаются общие законы механического движения и механического взаимодействия материальных тел.

Механическим движением — называется перемещение тела но отношению к другому телу, происходящее в пространстве и во времени.

Курс технической механики делится на три раздела: статику, кинематику и динамику.

Статика

Статикой называется раздел механики, в котором изучаются методы преобразования систем сил в эквивалентные системы и устанавливаются условия равновесия сил, приложенных к твердому гелу.

Классификации нагрузок

Важнейшим понятием технической механики является понятие нагрузки.

Взаимодействие двух тел, способное изменить их кинематическое состояние, назы вается меха ни ческим взаимодействием.

Нагрузка — это мера механического взаимодействия тел, определяющая интенсивность и направление этого взаимодействия.

В механике встречается два вида нагрузки

Сила определяется тремя элементами: числовым значением (модулем), направлением и точкой приложения.

Сила изображается вектором. Прямая, по которой направлена данная сила, называется линией действия силы. За единицу силы в Международной системе единиц измерения СИ (в механике система МКС) принимается ньютон .

Моментом силы относительно некоторой точки на плоскости называется произведение модуля силы на ее плечо относительно этой точки, взятое со знаком плюс или минус:

Плечом силы относительно точки называют длину перпендикуляра, опущенного из точки на линию действия силы; точка называется центром момента.

Момент силы относительно точки считается положительным, если сила стремится повернуть плоскость чертежа вокруг точки в сторону, противоположную движению часовой стрелки, и отрицательным — в обратном случае.

Система двух равных по модулю, параллельных и противоположно направленных сил и называется парой сил.

Расстояние между линиями действия сил, составляющих пару сил, называется плечом пари.

По характеру погружения

По характеру воздействия на тело

По характеру изменения нагрузки во времени

По форме возникновения

Классификации опор (реакции связей)

Твердое тело называется свободным, если оно может перемещаться в пространстве в любом направлении.

Тело, ограничивающее свободу движения данного твердого тела, является по отношению к нему связью.

Твердое тело, свобода движения которого ограничена связями, называется несвободным.

Реакцией связи называется сила или система сил, выражающая механическое действие связи на тело

Одним из основных положений механики является принцип освобождаем ост и твердых тел от связей, согласно которому несвободное твердое тело можно рассматривать как свободное, па которое, кроме задаваемых сил, действуют реакции связей.

Классификация реакций связей (реакций опор)

Реакция гладкой плоскости направлена перпендикулярно к плоскости.

Реакция гибкой связи направлена вдоль нее.

Реакция жесткой связи направлена вдоль нее.

Реакция шарнирно-подвижной опоры направлена перпендикулярно к опорной плоскости

  • шарнирно неподвижная опора

Направление реакции шарнирно-неподвижной опоры зависит от внешних сил, приложенных к системе. Данную реакцию задают двумя составляющими , направленными перпендикулярно друг к другу.

Данную реакцию задают двумя составляющими, направленными перпендикулярно друг к другу и парой сил.

Проекции сил на оси

Взяв две взаимно перпендикулярные оси и , силу можно разложить на две составляющие силы и , направленные параллельно этим осям.

Силы и называются компонентами силы по осям и .

Проекция силы на ось определяется произведением модуля силы на косинус угла между направлениями оси и силы.

Читайте также: Вольтметр 300в 50гц 48х48 переменного напряжения

Если известны проекции силы на две взаимно перпендикулярные оси и , то модуль и направление силы определяются по формуле:

Сходящиеся силы. Условие равновесии системы сходящихся сил

Если к телу приложены несколько сил, линии действия которых пересекаются в одной точке то такие силы называются сходящимися.

Если к телу приложено несколько сил, то данные силы можно заменить одной силой, называемой равнодействующей, под действием которой тело будет находится в нагруженном состоянии эквивалентном заданной системе.

Равнодействующая двух пересекающихся сил приложена в точке их пересечения и изображается диагональю параллелограмма, построенного на этих силах.

Сходящиеся силы уравновешиваются в том случае, если их равнодействующая равна нулю, т. е. многоугольник сил замкнут.

Известно , найти и

Спроектируем на ось : отсюда

Спроектируем на ось : отсюда

Условии равновесии статически определимых систем (уравнение проекций сил на оси и уравнение моментов)

Тело находится в равновесии, если сумма проекций, действующих на него сил на координатную ось равны 0.

Тело находится в равновесии, если сумма моментов сил относительно какой либо точки этого тела равны 0.

Для любого тела можно составить три уравнения равновесия

Статически определимой системой называется система, в которой число неизвестных не превышает числа уравнений равновесия.

Кинематика

Кинематикой называется раздел механики, в котором изучается движение материальных тел в пространстве с геометрической точки зрения, вне связи с силами, определяющими это движение.

Определение скорости и ускорении точки

Скорость — это векторная величина, характеризующая быстроту и направление движения точки в данной системе отсчета.

Ускорение точки — векторная величина, характеризующая быстроту изменения модуля и направления скорости точки.

Задание скорости и ускорения точки естественным способом

При задании точки естественным способом известен закон движения, выраженный зависимостью перемещения точки от времени

В этом случае скорость точки будет определяться как первая производная от данной зависимости

Ускорение точки будет определяться как вторая производная от зависимости перемещения или как первая производная от зависимости скорости

Точка движется по окружности радиусом согласно уравнению.

Определить скорость и ускорение точки в конце 3 секунды

Задание скорости точки координатным способом

При задании точки координатным способом известны законы изменения координат данной точки в зависимости от времени .

В этом случае скорость точки будет определяться как геометрическая сумма первых производных от данных зависимостей

Ускорение точки будет определяться как геометрическая сумма первых производных от зависимостей скорости или вторых производных от зависимости изменения координат

Уравнения движения точки имеют вид

Определить уравнения скорости и ускорения данной точки

Если направление ускорения совпадает с направлением скорости (имеет одинаковый знак) то тело движется с положительным ускорением (ускоряется), если направление ускорения не совпадает с направлением скорости (имеет разные знаки) то тело движется с отрицательным ускорением (замедляется)

Поступательное движение

Поступательным движением твердого тела называется такое движение, при котором любая прямая, соединяющая две точки тела, движется параллельно самой себе.

Все точки твердого тела, движущегося поступательно, описывают тождественные и параллельные между собой траектории и в каждый момент времени имеют геометрически равные скорости и ускорения.

Уравнениями поступательного движения твердого тела являются уравнения движения любой точки этого тела — обычно уравнения движения его центра тяжести .

Для описания скорости и ускорения точки используются зависимости рассмотренные в предыдущем вопросе.

Вращательное движение

Вращательным называется такое движение твердого тела, при котором остаются неподвижными все его точки, лежащие на некоторой прямой, называемой осью вращения.

При этом движении все остальные точки тела движутся в плоскостях, перпендикулярных оси вращения, и описывают окружности, центры которых лежат на этой

Аналогом перемещения во вращательном движении является угол поворота — угол на который повернётся любая точка тела на принадлежащая оси вращения.

Величина, характеризующая быстроту изменения угла поворота с течением времени, называется угловой скоростью тела.

Величина, характеризующая быстроту изменения угловой скорости с течением времени, называется угловым ускорением тела.

Вращение тела, при котором угловое ускорение постоянно, называют равнопеременным вращением. При этом, если абсолютная величина угловой скорости увеличивается, вращение называют равноускоренным, а если уменьшается равнозамедленным.

Рассмотрим движение точки тела движущуюся по окружности с радиусом .

Обозначим точку отсчета , и угол, на который повернется эта точка за время через .

За время точка пройдет расстояние равное длине дуги окружности . Это расстояние определяется по формуле.

Скорость точки в момент времени при вращательном движении направлена по касательной к окружности в этой точке и называется окружной скоростью.

Величина окружной скорости определяется из выражения.

Из предыдущей формулы следует, что модули окружных скоростей различных точек вращающегося тела пропорциональны расстояниям от этих точек до оси вращения.

Ускорение точки в момент времени при вращательном движении складывается из двух составляющих вращательного ускорения (тангенциального) и центростремительного ускорения (нормального).

Тангенциальное ускорение направлено по касательной к окружности в точке . Величина тангенциального ускорения определяется но зависимости

Нормальное ускорение направлено по радиусу окружности к её центру. Величина нормального ускорения определяется по зависимости

Полное ускорение точки определится из выражения

Вращение маховика в период пуска машины определяется уравнением

где — в сек, — в рад. Определить модуль и направление ускорения точки, отстоящей от оси вращения на расстоянии 50 см, в тот момент, когда ее скорость равна 8 см/се к.

По уравнению вращения маховика находим его угловые скорость и ускорение

Определяем уравнение окружной скорости точки

Угловая скорость

Угловое ускорение

Тангенциальное ускорение

Нормальное ускорение

Полное ускорение

Возможно эта страница вам будет полезна:

Плоскопараллельное движение

Плоскопараллельным движением твердого тела называется такое движение, при котором каждая точка тела движется в плоскости, параллельной некоторой неподвижной плоскости.

Так как положение плоской фигуры на плоскости вполне определяется положением двух ее точек или положением отрезка, соединяющего две точки этой фигуры, то движение плоской фигуры в ее плоскости можно изучать как движение прямолинейного отрезка в этой плоскости.

Предположим, что плоская фигура переместилась на плоскости из положения I в положение II. Отметим два положения отрезка . принадлежащего фигуре.

Первый вариант. Переместим фигуру поступательно, из положения в положение т. е. гак, чтобы точка переместилась в новое положение а точка описала траекторию, тождественную траектории точки . Затем повернем фигуру вокруг точки на угол так, чтобы точка заняла тоже свое положение .

Второй вариант. Переместим фигуру поступательно из положения в положение а затем повернем ее вокруг точки на угол так, чтобы точка совпала с точкой .

Как видно, поступательное перемещение плоской фигуры различно в различных вариантах, а величина угла поворота и направление поворота одинаковы, т. е.

Плоскопараллельное движение можно рассматривать как совокупность двух движении: поступательного движения плоской фигуры вместе с произвольной точкой, называемой полюсом, и поворота вокруг полюса.

При этом поступательное перемещение зависит от выбора полюса, а величина угла поворота и направление поворота от выбора полюса не зависят.

Приняв за полюс некоторую точку и обозначив и ее координаты в неподвижной системе , можно определить движение полюса а следовательно, и поступательное движение всей фигуры уравнениями и .

Вращательное движение фигуры относительно полюса можно описать уравнением

Определение скоростей точек плоском плоскопараллельное движение

Скорость любой точки плоской фигуры равна геометрической сумме скорости полюса и вращательной скорости этой точки вокруг полюса.

Для плоской фигуры совершающей плоскопараллельное движение в каждый момент времени существует точка, неизменно связанная с плоской фигурой, скорость которой в этот момент равна нулю. Эту точку называют мгновенным центром скоростей.

Способы определения мгновенного центра скоростей

  • 1 Если известны прямые, по которым направлены скорости двух точек плоской фигуры и , то мгновенный центр скоростей фигуры определится как точка пересечения перпендикуляров к этим прямым, восставленных в точках и .
  • 2 Если скорости точек и плоской фигуры параллельны между собой и перпендикулярны , и известны модули скоростей обеих точек и то мгновенный центр скоростей расположен на пересечении отрезка соединяющего концы векторов точек и с прямой .
  • 3 Если плоская фигура катится без скольжения по некоторой неподвижной кривой то ее мгновенный центр скоростей находится в точке соприкасания данной фигуры с кривой.

Определение скоростей точек плоской фигуры при помощи мгновенного центра скоростей

Определим скорости точек и плоской фигуры, приняв за полюс мгновенный центр скоростей .

Если точка является мгновенным центром скоростей, то тогда

т. е. скорость любой точки плоской фигуры в данный момент времени представляет собой вращательную скорость этой точки вокруг мгновенного центра скоростей; поэтому

Колесо радиусом катится без скольжения по прямому рельсу. Скорость центра колеса в рассматриваемый момент времени .

Определить скорости точек и колеса, расположенных на концах взаимно перпендикулярных диаметров.

Примем за полюс центр колеса . Тогда скорость любой точки колеса будет равна геометрической сумме скорости полюса и скорости вращения этой точки вокруг полюса (99.1). Так как колесо катится без скольжения» то скорость точки касания колеса с рельсом равна нулю .

Точка является мгновенным центром скоростей. В этой точке скорость вращения вокруг полюса и скорость полюса равны по модулю и противоположны по направлению, т. е.

Расстояния от точек до полюса равны. Следовательно, и вращательные скорости точек вокруг полюса тоже равны, т. е.

Откладывая в каждой точке скорость полюса и вращательную скорость, перпендикулярную соответствующему радиусу колеса, находим:

Примем мгновенный центр скоростей колеса за полюс. Тогда скорости всех точек колеса определятся как вращательные скорости вокруг мгновенного центра скоростей.

Модули скоростей всех точек найдутся но пропорциональности скоростей их расстояниям от мгновенного центра скоростей: Найдем .

Обозначим радиус колеса через .

Возможно эта страница вам будет полезна:

Определение ускорений точек плоской фигуры совершающей плоскопараллельное движение

Ускорение любой точки плоской фигуры равно геометрической сумме ускорения полюса и ускорения этой точки во вращательном движении вокруг полюса.

Колесо радиусом катится без скольжения по прямому рельсу. Скорость центра колеса в рассматриваемый момент времени , ускорение . Определить скорости точек и колеса.

Определяем . Так как точка мгновенный центр скоростей, то

Определяем угловое ускорение.

Для точки :

Для точки :

Для точки :

Для точки :

Разложение составного движении точки на относительное и переносное

Составное движение тонки (тела) — это такое движение, при котором точка (тело) одновременно участвует в двух или нескольких движениях.

Например, составное движение совершает лодка, переплывающая реку, пассажир, перемещающийся в вагоне движущегося поезда или по палубе плывущего парохода, а также человек, перемещающийся по лестнице движущегося эскалатора.

Через произвольную точку движущегося тела проведем неизменно связанные с этим телом оси Систему осей называют подвижной системой отсчета.

Неподвижной системой отсчета называют систему осей , связанную с некоторым условно неподвижным телом, обычно с Землей.

Движение точки по отношению к неподвижной системе отсчета называют абсолютным движением точки.

Скорость и ускорение точки в абсолютном движении называют абсолютной скоростью и абсолютным ускорением точки и обозначают и .

Движение точки по отношению к подвижной системе отсчета называют относительным движением точки.

Скорость и ускорение точки в относительном движении называют относительной скоростью и относительным ускорением точки и обозначают и .

Движете подвижной системы отсчета и неизменно связанного с ней тела по отношению к неподвижной системе отсчета является для точки переносным движением. Точки тела , совершая различные движения, имеют в данный момент различные скорости и ускорения.

Скорость и ускорение точки тела , связанного с подвижной системой отсчета, совпадающей в данный момент с движущейся точкой, называют переносной скоростью и переносным ускорением точки и обозначают и .

Движение точки по отношению к неподвижной системе отсчета, которое названо абсолютным движением, является составным, состоящим из относительного и переносного движений точки.

Читайте также: Напряжение постоянного тока измеряется двумя вольтметрами класса точности

Основная задача изучения составного движения состоит в установлении зависимостей между скоростями и ускорениями относительного, переносного и абсолютного движений точки.

Возможно эта страница вам будет полезна:

Определение скоростей и ускорений точки при составном движении

Теорема сложения скоростей

Абсолютная скорость точки равна геометрической сумме ее переносной и относительной скоростей.

Для нахождения абсолютной скорости необходимо:

  1. Определить модуль и направление относительной скорости (в подвижной системе отсчета);
  2. Определить модуль и направление переносной скорости (скорость подвижной системы отсчета относительно неподвижной система отсчета);
  3. Определить геометрическую сумму относительной и переносной скоростей.

Теорема сложения ускорении

В случае непоступательного переносного движения абсолютное ускорение точки равно геометрической сумме переносного, относительного и ускорения Кориолиса.

Поворотным ускорением (ускорением Кориолиса) называется составляющая абсолютного ускорения точки в составном движении, равная удвоенному векторному произведению угловой скорости переносного вращения на относительную скорость точки:

где — угол между вектором относительной скорости и осью вращения в переносном движении.

Направление ускорения Кориолиса находится но правилу: Относительную скорость точки следует спроектировать на плоскость, перпендикулярную оси переносного вращения, и повернуть эту проекцию в той же плоскости на 90°, в сторону переносного вращения.

Ускорение Кориолиса равно нулю в трех случаях:

  1. если , т.е. в случае поступательного переносного движения.
  2. если , т.е. в случае относительного покоя точки или в моменты обращения в нуль относительной скорости движущейся точки;
  3. если вектор относительной скорости перпендикулярен оси вращения в переносном движении.

Вертикальный подъем вертолета происходит согласно уравнению При этом уравнение вращения винта имеет вид . Определить абсолютные скорость и ускорение точки винта, отстоящей на расстоянии от вертикальной оси вращения, в конце 5-й с.

Свяжем подвижную систему отсчета с корпусом вертолета, неподвижную — с Землей. Относительное движение — вращение винта вокруг его оси является (это движение наблюдает пассажир вертолета, связанный с подвижной системой отсчета).

Переносное движение — является поступательное движение вертолета вертикально вверх.

Применяем теорему о сложении скоростей

Относительная скорость точки является окружной скоростью винта вертолета и определяется из соотношения

Если известен закон вращения винта , то угловая скорость определится как первая производная от этого закона движения

Вертолёт совершает поступательное движение. Переносная скорость точки является скоростью движения вертолета вверх, зная закон движения которого определим

Применяем теорему о сложении ускорений

Винт совершает вращательное движение. Следовательно относительное ускорение точки винта определяется как ускорение точки вращающегося тела.

Переносная скорость точки является скорости движения вертолета вверх.

Ускорение Кориолиса равно нулю так как Вертолёт совершает поступательное движение :

Так как взаимно перпендикулярны, то

Диск равномерно вращается с угловой скоростью . По диску из его центра по желобу движется точка , но закону движения , определить абсолютную скорость и ускорения точки через 2 с после начала движения. Относительное движение — движение точки по желобу. Переносное движение — вращение диска.

Определение положения точки

Определим, на какое расстояние переместится точка за время но желобу

Определим, на какой угол повернется желоб за время

Если тело вращается равномерно, то за 1 сек тело повернется на 1 радиан (57,32°), тогда за 0,523 с тело повернется на 0,523 рад или 57,32 0,523 = 30°

Покажем на рисунке положение точки в момент времени t = 0,523 с.

Применяем теорему о сложении скоростей

Относительную скорость точки определим зная закон движения по желобу

Переносная скорость точки является окружной скоростью.

Так как то

Применяем теорему о сложении ускорений

Относительное ускорение точки определим зная закон движения по желобу

Переносное ускорение точки складывается для вращательного движения из нормального и тангенциального ускорений.

Так как тело движется с постоянной угловой скоростью следовательно

Возможно эта страница вам будет полезна:

Основы теории механизмов и машин (понятии и определении)

Классификации кинематических пар

Теория механизмов и машин — научная дисциплина (или раздел науки), которая изучает строение (структуру), кинематику и динамику механизмов.

Механизмом называется система твердых тел, предназначенная для передачи и преобразования заданного движения одного или нескольких тел в требуемые движения других твердых тел

Типовыми механизмами будем называть простые механизмы, имеющие при различном функциональном назначении широкое применение в машинах/

Звено — твердое тело или система жестко связанных гел. входящих в состав механизма.

Стойка — звено, которое при исследовании механизма принимается за неподвижное.

Входное звено — звено, которому сообщается заданное движение и соответствующие силовые факторы (силы или моменты);

Выходное звено — то, на котором получают требуемое движение и силы.

Кинематическая цепь — система звеньев, образующих между собой кинематические пары.

Кинематическая пара — подвижное соединение двух звеньев, допускающее их определенное относительное движение.

Элементами кинематической пары называют совокупность поверхностей, линий или точек, по которым происходит подвижное соединение двух звеньев и которые образуют кинематическую пару.

В зависимости от вида контакта элементов кинематических пар они делятся на высшие и низшие.

Кинематические пары, образованные элементами в виде линии или точки называются высшими.

Кинематические пары, образованные элементами в виде поверхностей, называются низшими.

В зависимости от степени подвижности они делятся на

  • одноподвижные;
  • двухподвижные;
  • трехподвижные;
  • четырех подвижные;
  • пятнподвижные;

Рычажные механизмы. Основные виды рычажных механизмов

Рычажным называется механизм, звенья которого образуют только вращательные и поступательные пары.

Составляющие рычажных механизмов.

  • Стойка — неподвижное звено, предназначенное для присоединения подвижных звеньев.
  • Кривошип — звено совершающее полное вращательное движение вокруг неподвижной оси.
  • Ползун — звено совершающее поступательное движение вдоль некоторой прямой.
  • Коромысло — звено совершающее неполное вращательное движение вокруг неподвижной оси.
  • Шатун — звено совершающее нлоскопараллельное движение и несвязанное со стойкой.
  • Кулиса — звено совершающее вращательное либо сложное движение и образующее поступательную кинематическую пару с другим подвижным звеном — кулисным камнем.
  • Кулисный камень — звено совершающее составное движение (поступательное кулисы в относительном движении, и вращательное вместе с кулисой в переносном движении).

Основные виды механизмов

Кривошинно-шатунный механизм (Шарнирный чет ырехзвенник)

Состоит из кривошипа 1, шатуна 2, коромысла 3 и стойки, связанных между собой вращательными кинематическими парами

Состоит из кривошипа 1, шатуна 2, ползуна 3 и стойки, связанных между собой вращательными кинематическими парами и поступательной кинематической парой

Состоит из кривошипа 1, кулисного камня 2, кулисы 3 и стойки, связанных между собой вращательными кинематическими парами и поступательной кинематической парой

Структурный анализ механизмов

Структурный анализ механизма — это расчленение его на структурные группы. Структурные группы (группы Ассура) — это кинематические цепи, которые после присоединения к стойке имеют степень подвижности .

Степень подвижности механизма определяется по формуле Чебышева для рычажных механизмов.

— число подвижных звеньев;

— число одноподвижных кинематических нар;

— число двухиодвижных кинематических пар.

Структурную формулу любого простого или сложного механизма, образованного с помощью структурных групп, можно представить следующим образом:

За начальный механизм принимается ведущее звено со стойкой.

Все механизмы и структурные группы, в них входящие, делятся на классы, а класс-механизма в целом определяется высшим классом структурной группы, которая в него входит.

Элементарные механизмы условно отнесены к механизмам 1 класса.

Класс структурной группы определяется числом максимальным числом кинематических пар, на одном звене.

Порядок группы определяется числом внешних кинематических нар.

Виды структурных групп

Диада — структурная группа II класса, 2 порядка (И, 2) Состоит из двух звеньев и трех кинематических пар.

Трехповодок (Триада) — структурная группа III класса, 3 порядка (III, 3) Состоит из четырех звеньев и шести кинематических пар.

Порядок выполнения структурного анализа:

  1. Определение названья звеньев и кинематических пар.
  2. Определение степени подвижности механизма.
  3. Разложение механизма на структурные группы Асура.
  4. Определение класса и порядка всего механизма и построение формулы строения механизма.

Возможно эта страница вам будет полезна:

Кулачковые механизмы

Кулачковые механизмы, подобно другим механизмам, служат для преобразования одного вида движения (на входе), в другой вид движения (на выходе) с одновременным преобразованием передаваемых силовых параметров (сил, моментов).

Основным преимуществом является возможность получения любого закона движения ведомого звена.

Кинематическая цепь простейшего кулачкового механизма состоит из двух подвижных звеньев (кулачка и толкателя), образующих высшую кинематическую пару, и стойки, с которой каждое из этих звеньев входит в низшую кинематическую пару.

Ведущим звеном механизма обычно является кулачок, который в большинстве случаев совершает непрерывное вращательное движение.

Ведомое звено, называемое толкателем, совершает возвратно-прямолинейное и возвратно-вращательное движение относительно стойки.

Классификация кулачковых механизмов

По виду выходного звена

По виду толкателя

По расположению толкателя

Основные параметры кулачка

Профиль кулачка — это профиль, образованный центром ролика обеспечивающий заданный закон движения ведомого звена.

Минимальный радиус кулачка — наименьшее расстояние от профиля до центра вращения кулачка.

Максимальный радиус кулачка — наибольшее расстояние or профиля до центра вращения кулачка.

Максимальный подъем толкателя — расстояние между минимальным и максимальным радиусами кулачка .

За один оборот кулачка происходит последовательное удаление толкателя от центра вращения кулачка, затем остановка и приближение к центру кулачка, вновь остановка и повторение всего цикла движения. Эти четыре этапа в движении кулачкового механизма называются фазами движения, которые ограничены соответствующими углами, называемыми фазовыми углами.

Фаза удаления — толкатель движется от центра вращения кулачка.

Фаза дальнего стояния — толкатель стоит неподвижно в наиболее удаленном от центра вращения кулачка положении.

Фаза возврата — толкатель приближается к центру вращения кулачка.

Фаза ближнего стояния — толкатель стоит неподвижно в наиболее близком положении к центру вращения кулачка (угол холостого хода).

В некоторых кулачковых механизмах фазы ближнего и дальнего стояния могут отсутствовать, сразу обе или одна.

Рабочий угол кулачка — угол кулачка равный сумме углов удаления, дальнего стояния и возврата.

Угол давления — угол между вектором силы, действующей со стороны кулачка на толкатель, и вектором скорости точки толкателя, в которой приложена данная сила. При расчётах обычно задается допускаемая величина угла давления.

Зубчатые механизмы

Принцип действия и классификации. Основные параметры, геометрии и кинематика прямозубых колёс.

Принцип действия зубчатой передачи основан на зацеплении пары зубчатых колес.

Классификация:

По расположению осей валов:

  • передачи с параллельными осями;
  • передачи с пересекающимися осями;
  • передачи с перекрещивающимися осями. По расположению зубьев на колесах:
  • прямозубые
  • косозубые.

Основные параметры:

Ведущее зубчатое колесо называют шестерней, а ведомое — колесом. Параметрам шестерни приписывают индекс 1, а параметрам колеса — 2.

Геометрические параметры: и — число зубьев шестерни и колеса; — угол профиля делительный (равный углу профиля исходного контура), по ГОСТ 3755-81, ;

— делительный окружной шаг зубьев (равный шагу исходной зубчатой рейки);

— основной окружной шаг зубьев;

— окружной модуль зубьев;

Модули стандартизованы (ГОСТ 9563-80) в диапазоне 0,05… 100 мм

— делительный диаметр (диаметр окружности, по которой обкатывается инструмент при нарезании);

— основной диаметр (диаметр окружности, разверткой которой являются эвольвенты зубьев);

и начальные диаметры (диаметры окружностей, по которым пара зубчатых колес обкатывается в процессе вращения):

— угол зацепления или угол профиля начальный.

— межосевое расстояние;

При нарезании колес со смещением делительная плоскость рейки смещается к центру или от центра заготовки на — коэффициент смещения исходного контура. Смещение от центра считают положительным , а к центру — отрицательным .

У передач без смещения и при суммарном смещении начальные и делительные окружности совпадают:

— диаметр вершин зубьев;

где — коэффициент высоты головки зуба (по ГОСТ 13755 — 81, ); ) — диаметр впадин зубьев;

где — коэффициент радиального зазора (по ГОСТ 13755 — 81, );

Передаточное отношение — показывает во сколько раз передача изменяет частоту вращения

Виды зубчатых механизмов

Зубчатый механизм, составленный из зубчатых колес с неподвижными осями, называется зубчатым рядом.

Напряженное состояние и гипотезы прочности

Рассмотрим понятие о напряженном состоянии в точке и гипотезы прочности. Связь между напряжениями и внутренними силами. Объемное, плоское и линейное напряженное состояния.

Понятие о напряжениях в точке

На основании допущения о сплошности тела можно считать, что внутренние силы непрерывно распределены по всему сечению.

Выделим в произвольной точке малую площадку ΔA, а равнодействующую внутренних сил на этой площадке обозначим ΔR. Отношение

представляет собой среднее напряжение на данной площадке.

Если площадку ΔA уменьшить, то в пределе получим полное напряжение в точке

Полное напряжение р может быть разложено на три составляющие: по нормали к плоскости сечения и по двум осям в плоскости сечения. Проекция вектора полного напряжения р на нормаль обозначается через σ и называется нормальным напряжением.

Составляющие в плоскости сечения называются касательными напряжениями и обозначаются τ. В зависимости от расположения и наименования осей обозначения σ и τ снабжаются системой индексов.

напряжения на элементарной площадке

Связь между напряжениями и внутренними силами

Установим связь между напряжениями и внутренними силами, возникающими в поперечном сечении стержня. Для этой цели выделим на сечении бесконечно малую площадку dA и приложим к ней элементарные силы σ dA, τx dA, τy dA.

Связь между напряжениями и внутренними силами

Знак «А» у интеграла показывает, что интегрирование проводится по всей площади поперечного сечения. Приведённые формулы позволяют определить равнодействующие внутренних сил через напряжения, если известен закон распределения последних по сечению.

Обратную задачу с помощью только одних этих уравнений решить нельзя, так как одной и той же величине внутреннего усилия, например N, могут соответствовать различные законы распределения нормальных напряжений по сечению.

Одной из основных задач сопротивления материалов является задача об определении напряжений через равнодействующие внутренних сил. При этом оказывается, что решить эту задачу можно только, рассматривая параллельно с условиями равновесия и условия деформации бруса.

Объемное напряженное состояние

Совокупность напряжений, действующих по площадкам, проведенным через исследуемую точку, составляет напряженное состояние в рассматриваемой точке. На площадках общего положения действуют нормальные и касательные напряжения (рис. 3.1).

Объемное напряженное состояние

Значения касательных напряжений на взаимно перпендикулярных площадках подчиняются закону парности касательных напряжений:

Закон парности касательных напряжений

Обобщенный закон Гука

Площадки, на которых отсутствуют касательные напряжения, называются главными, а нормальные напряжения, действующие по этим площадкам, называются главными напряжениями (рис. 3.2).

Обозначение главных напряжений:

Обозначение главных напряжений

Напряженное состояние называется объемным или трехосным, если

Трехосное напряженное состояние

Относительное изменение объема:

где К – модуль объемной упругости,

Удельная потенциальная энергия упругой деформации:

Плоское напряженное состояние

Напряженное состояние называется плоским или двухосным, если одно из главных напряжений равно нулю (рис. 3.3).

Плоское напряженное состояние

Напряжения на наклонной площадке (рис. 3.4,а)

Величина и направление главных напряжений (рис. 3.4,б)

Чистый сдвиг σx = σy = 0 (рис. 3.4,в)

двухосное напряженное состояние

Линейное напряженное состояние

Напряженное состояние называется линейным или одноосным, если два главных напряжения равны нулю.

Проверка прочности при линейном напряженном состоянии проводится по условию прочности:

В сложном напряженном состоянии проверку прочности проводят по гипотезам прочности по эквивалентному напряжению:

Величина σэкв определяется, исходя из принятого критерия эквивалентности, лежащего в основе одной из гипотез разрушения или гипотез прочности, при котором сложное напряженное состояние заменяется эквивалентным ему растяжением или сжатием.

Гипотезы прочности

Существует 5 гипотез прочности: