Включение на полное напряжение

Реле контроля напряжения

Современные дом, квартира, офис наполнены большим количеством электрических приборов различного назначения. Ввиду большой загруженности электросетей конечный потребитель зачастую сталкивается с такими техническими проблемами, как перекос фаз, скачки напряжения. Для снижения риска вывода из строя бытовых приборов используют устройства для стабилизации параметров электросетей. Таким устройством является реле контроля напряжения, которое пришло вслед за ранее используемыми установками стабилизатора напряжения.

Назначение реле контроля напряжения (РКН)

Вся техника потребителя работает от номинального напряжения, заложенного в сетях, равного 220 В. На самом деле колебания напряжения постоянно присутствуют и на выходе в электрических сетях клиент получает постоянные скачки. Нормальным считают отклонения в 10%. Но не редки случаи, когда измерительные приборы фиксируют падения показаний до 70 В, всплески — до 370 В. Для электропотребителей опасно одинаково низкое и высокое напряжение. Работа такой системы без защитных приборов крайне нежелательна.

Реле контроля напряжения

Защитное отключение, возложенное на реле напряжения, обесточит электроприбор во время перепада напряжения, а функция автоматического отключения (включения) сохранит жизнь изделию или отдельным его электронным устройствам (предохранитель, системные платы, реле, др.). Не стоит путать РКН с устройствами для контроля обрыва нуля, нейтрали, короткого замыкания, др.

Защитное реле напряжения применяют:

  • для защиты однофазных и трехфазных сетей;
  • для защиты от слипания, обрыва, перекоса фаз, чрезмерных токов нагрузки;
  • для защиты оборудования от неисправностей;
  • в устройствах с применением высоконагруженных моторов;
  • в общественных организациях с большим наборов приборов с высоким током нагрузки и мощностью нагрузки электросети.

Устройство и принцип работы

Реле контроля напряжения представляет собой малогабаритный корпус (чаще всего пластиковый) с вмонтированной в него контролирующей, отключающей частью. Электромагнитное реле состоит из двух составляющих:

Устройство реле напряжения

  • силовая часть;
  • электронная схема.

Благодаря использованию реле со встроенным микропроцессором, устройство способно плавно устанавливать пороги срабатывания защитного устройства. Основное свойство оборудования – быстрое действие и срабатывание при изменении параметров сети. Современны реле способны отключать только те участки сети, которая подвержена перегрузкам или недогрузкам по напряжению. Параметры работы устанавливают при помощи встроенного потенциометра.

Технические характеристики

Рабочий интервал напряжений для работы устройства – 50-400 Вольт. Такой вариативный запас позволяет предупредить большое количество неисправностей, аварий. Уязвимым местом остается работа системы в грозовую погоду. Молния создает более высокие и резкие перепады напряжений и реле не способно организовать защиту в этих условиях.

Реле контроля рабочего напряжения электросети обладают большим набором других технических характеристик, в зависимости от которых потребитель выбирает устройство для конкретных технических условий применения:

  • номинальное входное напряжение;
  • контроль перенапряжения;
  • задержка срабатывания защиты;
  • контроль снижения напряжения;
  • частота входного напряжения;
  • степень защиты по корпусу, силовым контактам автомата;
  • габаритные параметры, масса, диапазон рабочих температур, др.

Разновидности

Реле контроля напряжения – широко распространенное устройство, используемое как в быту, так и для защиты оборудования на промышленных объектах. Это обуславливает отличие устройств друг от друга по габаритам, допустимым пределам нагрузки, исполнению, способам подключения.

По типу исполнения (подключения)

Весь модельный ряд защитных устройств по типу подключения укрупненно разделяют на три категории:

Портативный переходник «розетка-вилка»

  • удлинители (фильтры) на 1-6 розеток;
  • портативные переходники «розетка-вилка»;
  • «пакетники» для монтажа в комплексе с DIN-рейкой.

Первый и второй типы реле работают по одному принципу и конструктивно схожи друг с другом. Единственное отличие – удлинители обычно имеют более одной точки подключения (розеток), что позволяет организовать защиту сразу на несколько отдельных потребителей. Принцип работы устройств следующий – реле втыкается в обычную розетку электросети помещения, а к нему выполняют подсоединение бытовых приборов. Встроенный микроконтроллер анализирует напряжение в сети и выполняет защиту потребителей.

Индикация напряжения, а также другие рабочие параметры могут быть выведены на цифровое табло устройства. Непосредственно за отключение отвечает электромагнитное реле. Допустимые верхние, нижние пороги напряжения регулируют специальными кнопками управления, выведенными на корпус РКН.

Устройства типа «пакетников» — многофункциональное оборудование, предназначенное для установки в распределительном шкафу на DIN-рейку. Благодаря комплектации, способу подключения, заданным параметрам, изделие способно вести мониторинг параметров электросети полностью объекта и снимать напряжение в аварийных случаях полностью с комплекса или его отдельных секторов.

По виду нагрузки

По виду нагрузки и области применения элементы защиты делят на следующие категории:

Реле контроля напряжения однофазное

  • однофазные реле;
  • трехфазные реле.

Для защиты однофазных потребителей, сетей используют защитные РКН первого типа. Таким способом защищают моторы практически всех распространенных бытовых электроприборов: холодильник, кондиционер, компрессор, др.

Реле контроля напряжения трехфазное

Трехфазные потребители защищают посредством установки реле защиты второго типа. Работа таких устройств позволяет контролировать напряжение на каждой фазе и защищать технику при аварии на одной из фаз. У этой системы есть свой недостаток – это полное обесточивание даже при небольшом перекосе напряжения между фазами, что зачастую не является опасной ситуацией. Поэтому в таком случае часто прибегают к установке однофазных реле защиты на каждую фазу в отдельности. При этом стоит обратить внимание на один нюанс – пропускная способность устройства по силе тока в сети. Для нормальной работы РКН необходимо использовать устройства с максимальным током несколько выше номинальных токов сети питания.

Установка и схемы подключения РКН

При подключении РКН в электрическую сеть объекта следует помнить несколько основных условий. Защитное реле напряжения устанавливают после счетчика напряжения, разрывая провод соответствующей фазы. То есть, устройство должно контролировать именно фазу и при необходимости воздействовать на нее. Другие способы подключения работать не будут или будут некорректно выполнять свои функции.

На практике зачастую при монтаже однофазных реле используют стандартные схемы подключения через реле с прямой нагрузкой на нем. Само же защитное реле может быть подключено двумя способами:

Схема подключения реле контроля напряжения

  1. с прямой нагрузкой на РКН;
  2. через контактор.

Для схем, которые монтируют внутри помещения преимущественно применяют первый вариант подключения реле. Для организации системы приобретают необходимый по мощностным характеристикам устройство и монтируют его в распределительной коробке.

Схема подключения РКН в однофазной сети

Непосредственно подключение не вызовет никаких трудностей. На корпусе однофазного РКН расположены три силовые клеммы (точки подключения проводников). Одна – «ноль», две другие – вход и выход фазы. Задача персонала состоит лишь в том, чтобы не перепутать метки. При подключении трехфазных устройств необходимо внимательно развести входы и выходы соответствующих фазных проводников, чтобы в будущем вся система работала корректно, безаварийно.

Для подключения реле защиты электромонтеру необходим следующий набор оборудования и приспособлений:

  • само РКН;
  • металлическая рейка для установки автомата;
  • провод соответствующего сечения;
  • ручной инструмент, контрольные приборы.

Перед началом работ необходимо обесточить электросеть объекта. Это делают посредством отключения входного питающего автомата. Реле контроля устанавливают возле входных защитных автоматов, поэтому в выбранном месте монтируют металлическую рейку для дальнейшего крепления «пакетника». Далее разрывают провод фазы. Один конец подключают к входной клемме, второй – к выходной. Следующий этап – отрезком ранее приготовленного провода подсоединяют «ноль» на входном защитном автомате к нулевому контакту на реле контроля напряжения. Монтаж на этом окончен, на объект подают напряжение и проверяют работоспособность системы.

Советы по выбору РКН

Чтобы правильно и рационально выбрать устройство для защиты приборов и техники, необходимо следовать следующим советам:

  1. оборудование целесообразно приобретать в специализированных торговых точках, где окажут консультационную помощь по подбору, монтажу, эксплуатации изделия и предоставят гарантию на проданный товар;
  2. чем сложнее и функциональней устройство, тем стоимость его будет выше. Цена РКН зависит от следующих факторов:
  • тип устройства – розеточного типа будет наименее дорогим, реечное – наиболее дорогостоящее;
  • производитель;
  • дизайн, материал деталей реле;
  • дополнительные функции изделия;
  1. правильный подбор устройства по мощности защищаемых бытовых приборов. Для нормальной работы системы целесообразно использование реле с мощностью на 25% выше номинальной по сумме всех включенных в электрический контур потребителей. То есть, при номинальной мощности используемого трансформатора 10 А необходимо установить защитное реле с порогом не ниже 13 А. Стоит отметить, что все трехфазные аппараты рассчитаны на 16 А;
  2. наличие цифрового индикатора (дисплея) для визуального контроля рабочих параметров сетей;
  3. материал корпуса желательно должен быть выполнен из материалов, не поддерживающих горение;
  4. наличие функции регулировки время защитного отключения для предотвращения частого срабатывания устройства;
  5. наличие паспорта с техническими характеристиками прибора, электрической схемой;
  6. наличие функции защиты прибора от перегрева, измерения мощности сети для отключения нагрузки.

Типовые часто задаваемые вопросы от читателей

Как подключить реле контроля напряжения РКН 3-15-15 в трёхфазную цепь?

При подключении любого реле необходимо пользоваться паспортными данными устройства или инструкцией завода изготовителя. Для подключения реле контроля напряжения РКН 3-15-15 в трехфазную цепь используется следующая схема.

На зажимы реле контроля напряжения L1, L2, L3 подключаются фазные проводники соответствующих фаз. К зажиму N обязательно подключается нейтральный проводник согласно требований паспорта устройства. При подаче напряжения на вводные зажимы, реле проверяет его соответствие контролируемым параметрам:

• Наличие напряжения во всех трех фазных проводниках;
• Величина напряжения находится в установленных пределах;
• Порядок чередования фаз соответствует заданному;
• Отсутствует обрыв или слипание фазных проводников;
• Отсутствует обрыв нейтрального проводника.

Если параметры напряжения соответствуют вышеперечисленным критериям, реле РКН 3-15-15 переведет контакт 11-14 и 21 – 24 во включенное положение. К выводам этих зажимов подключается пускатель или контактор для коммутации трехфазной нагрузки. В данном примере включение осуществляется от зажимов 11 – 14, а зажимы 21 – 24 применяются для питания цепей сигнализации. Но такая распиновка не критична, при желании, вы можете поменять их местами или задействовать только одну пару.

В случае выявления неисправности, в зависимости от ее характера, реле контроля напряжения либо включит соответствующий индикатор, либо разомкнет контакты зажимов 11 – 14.

Использованная литература

  • Корогидский В.Н. «Релейная защита электродвигателей» 1987
  • Шабад М.А. «Защита трансформаторов распределительных сетей» 1981
  • Фигурнов Е. П. «Релейная защита» 2004
  • Темкина Р.В. «Измерительные органы релейной защиты на интегральных микросхемах» 1985
  • Шалимов М.Г., Маценко В.П. «Релейная защита тяговых подстанций» 1981
  • Андреев В.А. «Релейная защита и автоматика систем электроснабжения» 1991

Пусковые режимы асинхронных электродвигателей

Пусковые режимы асинхронных электродвигателей

Момент начала питания электродвигателя напряжением сети сопровождается высоким пусковым током. Поэтому, если участок линии электропередачи относительно слаб, фиксируется снижение напряжения, что оказывает влияние на работу рецептора. Падение напряжения может достигать значительных величин, что также сказывается на функциональности систем освещения. Исключить подобные явления призваны отраслевые правила, которыми запрещается пуск электродвигателей в режиме непосредственного старта, если оборудование выходит за пределы заданной мощности. Следует применять такие пусковые режимы электродвигателей, при которых питающая сеть и периферийное оборудование не испытывают дестабилизации в работе.

  • 1 Пусковые режимы электрических моторов
    • 1.1 Пусковые режимы свободно вращающегося мотора
    • 1.2 Пусковые режимы переключением «звезда-треугольник»
    • 1.3 Каким моторам нужен пуск «звезда – треугольник»?
    • 1.4 Пусковые режимы с питанием части обмотки
    • 1.5 Резистивно-статорные пусковые режимы моторов
    • 1.6 Пусковые режимы автотрансформаторного хода
    • 1.7 Режим пуска асинхронных двигателей с фазным ротором
    • 1.8 Режим плавного пуска: «запуск с замедлением»
    • 1.9 Пусковые режимы с преобразователем частоты
      • 1.9.1 Техника плавного старта мотора на видео

      Пусковые режимы электрических моторов

      Существуют и применяются на практике разные пусковые режимы асинхронных электродвигателей. Каждый имеет свои плюсы и минусы в зависимости от технических характеристик моторов и нагрузки.

      Выбор конкретного режима пуска определяется электрическими, механическими, экономическими факторами. Вид управляемой нагрузки, также является важным фактором выбора режима запуска. Рассмотрим наиболее часто практикуемые варианты пусков.

      Пусковые режимы свободно вращающегося мотора

      Этот режим пуска асинхронного электродвигателя видится самым простым из всех существующих схем. Здесь статор мотора напрямую подключается к источнику питания. Электродвигатель стартует в соответствии с определённой для него характеристикой.

      Схема прямого пуска электродвигателя

      Когда имеет место момент включения, электрический мотор, в данном случае, работает подобно вторичной обмотке трансформатора. Пусковые режимы здесь характеризуются короткозамкнутым ротором, имеющим крайне малое сопротивление.

      На роторе формируется высокий индуцированный ток, превышающий в 5-8 раз номинальный параметр, за счёт чего возрастает пиковый ток в сети питания. Среднее значение пускового момента при этом составляет 0,5-1,5 от номинала.

      Несмотря на явные преимущества (простая схема, высокий пусковой момент, быстрый старт, экономия), режим прямого пуска асинхронных моторов видится разумным лишь в следующих обстоятельствах:

      • мощность электродвигателя низка по сравнению с мощностью сети и не создаёт помехи от пускового тока;
      • привод не нуждается в плавном разгоне или имеет демпфирующее устройство, ограничивающее удар при запуске,
      • пусковой момент не влияет на работу ведомой машины или нагрузку, приводимую в движение.

      Пусковые режимы переключением «звезда-треугольник»

      Вариант с переключением схемы обмоток применим только на электродвигателях, где начальные и конечные проводники всех трёх обмоток статора выведены на клеммы БРНО. Кроме того, обмотка мотора должна иметь исполнение, когда соединение треугольником соответствует сетевому напряжению.

      Схема пуска электродвигателя

      Например, для 3-фазной линейной сети 380В подойдёт электродвигатель с параметрами обмотки 380В – «треугольник» и 660В — «звезда». Принцип на пусковые режимы асинхронного электродвигателя для этого варианта — старт мотора звездообразным подключением обмотки к сетевому трёхфазному напряжению. Здесь теоретически номинальное напряжение «звезды» электродвигателя делится на корень квадратный из 3 (380В = 660В / √3). Пик пускового тока также делится на 3 и составит:

      ПТ = 1,5 — 2,6 НТ (номинальный ток)

      Электродвигатель с обмоткой под напряжения 380В / 660В, под номинальное напряжение 660В, потребляет меньше тока в 3,3 раза, чем на соединении «треугольник» при напряжении 380В. В режиме соединения «звездой» при напряжении 380В, ток вновь делится на √3, учитывая наличие 3 фаз. Поскольку пусковой момент (ПМ) пропорционален квадратуре значения питающего напряжения, значение ПМ также делится на 3 и составит:

      ПМ = 0.2 — 0.5 НПМ (номинальный пусковой момент)

      Скорость электродвигателя стабилизируется при балансировке и резистивных крутящих моментах, как правило, на уровне 75-85% от номинальной скорости. Затем обмотки соединяются «треугольником», после чего электродвигатель восстанавливает рабочие характеристики.

      Переход от соединения «звезда» на соединение «треугольник», как правило, контролируется таймером. Контактор «треугольника» закрывается спустя 30-50 миллисекунд после открытия контактора «звезды». Этой последовательностью предотвращается короткое замыкание между фазами.

      Течение тока через обмотки нарушается, когда контактор «звезды» открывается и восстанавливается вновь, когда закрывается контактор «треугольника». В этот момент (сдвиг на «треугольник») формируется короткий, но сильный переходный пик тока по причине противоэлектродвижущей силы электродвигателя.

      Каким моторам нужен пуск «звезда – треугольник»?

      Пусковые режимы «звезда – треугольник» подходят для машин с низким резистивным крутящим моментом или когда старт выполняется без подключенной нагрузки. Для ограничения переходных явлений выше определенного уровня мощности, могут потребоваться дополнительные меры. Например, 1-2-секундная задержка на сдвиг от «звезды» к «треугольнику».

      Применение такой задержки по времени способствует ослаблению противоэлектродвижущей силы. Следовательно, уменьшается пиковая составляющая переходного тока. Однако задержка рекомендуется только в том случае, когда машина имеет достаточную инерцию. Иначе время задержки значительного снижает скорость вращения. Также применим другой вариант – трёхступенчатый, где выполняется последовательность:

      1. Соединение «звезда-треугольник».
      2. Подключение сопротивления.
      3. Соединение «треугольник».

      Разрыв по-прежнему имеет место, но резистор, включенный последовательно с обмотками подключенными «треугольником» в течение примерно трех секунд понижает переходный ток. Так предотвращается нарушение течения тока и образование переходных негативных явлений.

      Пусковые режимы с питанием части обмотки

      Подобный вариант режима пуска асинхронного электродвигателя — редкость для России и Европы. Эта схема на пусковые режимы электродвигателей распространена в США (для моторов напряжением 230/460В).

      Пуск частью обмотки электродвигателя

      Такие двигатели имеют обмотку статора, разделенную на две параллельные обмотки, с выводом шести или двенадцати концевых проводников. Этот вариант, по сути, эквивалентен двум «половинным моторам» равной мощности.

      В режиме запуска один «половинный двигатель» подключается непосредственно к полному напряжению сети. Пусковой ток и крутящий момент делятся примерно на два. Крутящий момент, однако, существенно больше, чем для электродвигателя с короткозамкнутым ротором равной мощности в режиме пуска «звезда-треугольник».

      Конечным этапом режима пуска становится подключение к сети второй обмотки. В этот момент, текущий пиковый ток отмечается низким уровнем и протекает кратковременно, потому что электродвигатель не отключается от сети и уже частично раскручен.

      Резистивно-статорные пусковые режимы моторов

      Применение резистивно-статорного режима пуска электродвигателя отмечается пониженным напряжением. Причина понижения — резисторы, включенные последовательно с обмотками статора.

      Когда скорость вращения ротора стабилизируется, резисторы отключаются, а статор электродвигателя подключается непосредственно к сети. Как правило, схема выстроена с участием таймера.

      Этот режим пуска асинхронных электродвигателей не изменяет соединения статорных обмоток. Поэтому не требуется, чтобы на клеммы колодки БРНО выводились все концевые проводники обмотки.

      Схема пуска электродвигателя через резисторы

      Значение сопротивления рассчитывается в соответствии с максимальным пиковым током при пуске. Или же с учётом минимального тока, необходимого для крутящего момента привода машины. Значения пускового тока и крутящего момента следующие:

      ПТ = 4.5 НТ

      ПМ = 0,75 НПМ

      На этапе ускорения с резисторами, приложенное на клеммах электродвигателя напряжение не является полным, а равно разнице, полученной от величины напряжения сети, минус падение напряжения на сопротивлении.

      Падение напряжения пропорционально току потребления электродвигателя. Поскольку ток снижается по мере ускорения вращения ротора мотора, то же самое происходит и при падении напряжения на сопротивлении.

      Поэтому напряжение, приложенное на клеммы асинхронного электродвигателя, находится на самом низком уровне при запуске, а затем постепенно увеличивается.

      Поскольку крутящий момент пропорционален квадрату напряжения на клеммах мотора, этот момент увеличивается быстрее, чем при пуске в режиме «звезда-треугольник», где напряжение остается постоянным на всём протяжении времени, пока действует подключение «звездой».

      Таким образом, резистивно-статорный режим пуска подходит для машин с резистивным крутящим моментом, который увеличивается с набором скорости. Такой пуск оптимален для оборудования, подобного вентиляторам и центробежным насосам.

      Однако есть недостаток — довольно высокий пиковый ток на запуске. Снижение тока возможно увеличением сопротивления. Но увеличение значения сопротивления грозит падением напряжения на клеммах электродвигателя и, как следствие, приводит к резкому снижению пускового момента.

      Пусковые режимы автотрансформаторного хода

      Режим автотрансформаторного пуска асинхронного электродвигателя характерен способом питания. На мотор подводится пониженное напряжение, благодаря автотрансформатору.

      Схема пуска мотора через автотрансформатор

      По завершению процесса старта автотрансформатор отключается. Пуск выполняется в три этапа:

      1. Автотрансформатор подключается к обмоткам мотора, соединённым «звездой». Понижение напряжения регулируется коэффициентом трансформации путём автоматического выбора оптимального отношения.
      2. Режим «звезды» остаётся активным до перехода на полное напряжение. Питание осуществляется через часть катушки индуктивности, соединённой последовательно с обмоткой электродвигателя. Операция продолжается до набора оптимальной скорости вращения.
      3. Полное соединение. На эту часть процесса отводятся миллисекунды. Часть обмотки автотрансформатора, последовательно включенной с двигателем, замыкается накоротко, после чего автотрансформатор отключается.

      Пусковой процесс проходит без фактора разрыва прохождения тока в обмотках электродвигателя. Поэтому переходные явления по причине разрывов отсутствуют.

      Между тем если не соблюдать определённые меры предосторожности, подобные явления переходного процесса могут появляться при подключении полного напряжения.

      Этот дефект обусловлен высоким значением индуктивности, включенной последовательно с двигателем, по сравнению с режимом работы мотора на всём протяжении времени подключения «звездой».

      Отмечается резкое падение напряжения, чем вызывается высокий рост переходного тока при подключении полного напряжения. Чтобы преодолеть этот недостаток, магнитная цепь автотрансформатора выполняется с воздушным зазором.

      Наличие такого зазора способствует снижению значения индуктивности. Это значение рассчитывается для предотвращения изменения напряжения на клеммах электродвигателя, когда осуществляется переход на второй шаг процесса пуска.

      Воздушный зазор вызывает увеличение тока намагничивания катушки автотрансформатора. Ток намагничивания увеличивает пусковой ток электросети при включении автотрансформатора.

      Автотрансформаторный режим пуска обычно используется при эксплуатации двигателей мощностью более 150 кВт. Подобные схемы считаются экономически невыгодными по причине высокой стоимости автотрансформатора.

      Режим пуска асинхронных двигателей с фазным ротором

      Нельзя запускать асинхронный электродвигатель с фазным ротором сразу после короткого замыкания роторных обмоток. Этот метод приводит к появлению предельных пиковых токов.

      Схема пуска электродвигателя с фазным ротором

      Необходимо использовать резисторы в цепях питания ротора. Замыкать роторные обмотки следует постепенно, по мере набора статором полного сетевого напряжения. Сопротивление на каждой фазе необходимо рассчитывать с учётом точного определения кривой крутящего момента.

      На практике расчётное сопротивление полностью включается при запуске и замыкается накоротко только при достижении ротором полной скорости вращения.

      Режим пуска электродвигателя с фазным ротором является лучшим выбором для всех случаев, когда пиковые токи машин должны быть низкими, а запуск осуществляется при полной нагрузке.

      Такой пуск обладает чрезвычайно плавным ходом, так как достаточно легко регулировать количество и форму кривых, представляющих собой последовательные шаги по механическим и электрическим требованиям (резистивный крутящий момент, значение ускорения, максимальный пик тока и т. д.).

      Режим плавного пуска: «запуск с замедлением»

      Один из эффективных стартовых режимов, подходящих для плавного пуска и останова электродвигателя. Применяется с целью ограничение тока, регулировки крутящего момента. Контроль по ограничению тока устанавливается на максимум (кратность 3-4 от номинала) при пуске, чем снижается характеристика крутящего момента.

      Этот способ удачно подходит для центробежных насосов, вентиляторов и т.п. Регулирование с помощью настройки крутящего момента оптимизирует крутящие моменты в процессе пуска и снижает пусковой ток.

      Схема пуска электродвигателей в каскаде

      Такой режим оптимально подходит для машин с постоянным крутящим моментом. Этим режимом поддерживается много разных вариаций:

      • симплексная работа,
      • дуплексная работа,
      • шунтирование устройства в конце пуска,
      • запуск и замедление каскадных двигателей.

      Пусковые режимы с преобразователем частоты

      Современная эффективная пусковая система, применимая для использования, когда необходимо контролировать и настраивать в широком диапазоне скорость вращения вала мотора. Поддерживаются условия:

      • пуск с высокими инерционными нагрузками;
      • пуск с высокой нагрузкой, распределением мощности и с низкой ёмкостью короткого замыкания;
      • оптимизация потребления электроэнергии;
      • адаптация к скоростям вращения агрегатов.

      Этот режим пуска асинхронных электродвигателей допустимо использовать на всех типах электрических машин. Однако подобные решения в основном используются для регулировки скорости вала электродвигателя, начиная с пусков второстепенного назначения.

      Техника плавного старта мотора на видео

      Как плавно запускать асинхронный мотор? Методика и возможные пусковые режимы показаны на видеоролике. Смотрите ниже познавательный видео-материал, который должен стать полезным уроком потенциального электрика.

      Напряжение генератора автомобиля, норма на холостом ходу и под нагрузкой

      Из статьи вы узнаете какое напряжение генератора считается нормой на холостом ходу и под нагрузкой, как влияет данный параметр на срок службы аккумуляторной батареи.

      Важные моменты

      Напряжение (U) и емкость АКБ автомобиля — главные параметры, на которые необходимо уделять внимание при выборе и проверке источника питания.

      Главным назначением аккумулятора является пуск двигателя в период, когда генератор машины еще не подключился к работе, а АКБ является единственным источником питания.

      Чтобы исключить проблемы в эксплуатации, автовладелец должен знать следующие моменты:

      • От чего зависит ресурс аккумуляторной батареи;
      • Каким должно быть напряжение (в обычном режиме, после пуска двигателя и под нагрузкой);
      • Чем вызвано снижение емкости в холодное время года и прочие моменты.

      Рассмотрим эти вопросы подробно.

      От чего зависит срок годности АКБ?

      Каждый производитель после изготовления батареи устанавливает гарантийный срок ее эксплуатации.

      Кроме этого параметра, существует и фактический период, зависящий от многих факторов — своевременности обслуживания, соблюдения правил эксплуатации, состояния электропроводки и прочих моментов.

      Из-за того, что условия обслуживания АКБ отличаются, различается и срок годности изделия.

      У автовладельцев, которые эксплуатируют машину только в теплое время года, аккумулятор живет дольше всего. Другое дело, когда автомобиль нужен круглый год, вне зависимости от температуры на улице.

      В такой ситуации срок годности АКБ снижается. Это вызвано и тем, что во втором случае водитель может накатать больший километраж.

      Также на ресурс аккумулятора влияет:

      • Исправность и правильность работы генератора и регулятора напряжения.
      • Подключение к электропроводке автомобиля дополнительного оборудования, имеющего большой номинальный ток.
      • Режим эксплуатации. Меньше всего «живут» аккумуляторные батареи на такси, которые прохаживают большой километраж в течение года. Кроме того, такие автомобили работают в режиме частого пуска двигателя, что создает нагрузку на АКБ и генератор. При активном применении транспортного средства срок службы источника питания не превышает 1,5 лет.

      При обычном режиме эксплуатации, когда автовладелец регулярно проверяет аккумулятор и проводит ТО, ресурс батареи составляет 4-5 лет при общем пробеге за этот период в 60-80 тысяч километров.

      Чтобы избежать проблем, желательно периодически проверять напряжение генератора и аккумулятора.

      Но упомянутый срок службы не наивысший, ведь при аккуратном обслуживании АКБ может проработать до восьми лет.

      Но стоит знать, что рано или поздно замена аккумулятора потребуется, ведь с момента начала эксплуатации рабочие пластины постепенно изнашиваются. Чем больше циклов заряда и разрядки проходит батарея, тем быстрее она выходит из строя.

      Практика показывает, что ключевую роль играет генератор, его исправность и текущее напряжение. Вот почему этому аспекту необходимо уделять ключевое внимание.

      Какое напряжение генератора считается нормой?

      Чтобы проверить напряжение генератора, необходимо завести мотор и отключить всю нагрузку. В этом случае мультиметр должен показывать 14.3 -15,5 Вольт (смотрите видео в конце статьи). Допускается отклонение на 0,1 Вольта в одну и другую сторону.

      После этого необходимо поочередно подключать потребителей и проверять напряжение генератора.

      В идеале оно должно «подсесть» где-то на 0,2 Вольта при включении каждой новой нагрузки. При этом общее U не должно опуститься ниже уровня 12,8 Вольт. В противном случае АКБ разрядится.

      Минимальный параметр напряжения на входе батареи

      При проверке параметров генератора стоит брать во внимание характеристики самого АКБ.

      Многие автовладельцы интересуются, каким должно быть напряжение на выходе аккумулятора для нормального пуска двигателя.

      Точного ответа здесь нет, но средний параметр должен составлять 12,6-12,7 В. В зависимости от условий эксплуатации этот показатель может корректироваться.

      Некоторые производители уверяют, что их продукт имеет напряжение 13-13,2 Вольт. Этот параметр реален, но не стоит измерять напряжение сразу после подзарядки генератором или ЗУ.

      Перед проведением работы желательно выждать 1-2 часа. В этом случае U должно опуститься до уровня 12,7-13 В.

      Если этот параметр начинает «плавать» или опускается ниже 12 В, это говорит о разряде батареи на 50% или неисправности генератора.

      Здесь рекомендуется проверка цепи зарядки или применение внешнего зарядного устройства.

      Если продолжать эксплуатацию батареи в этом состоянии, возникает сульфатация свинцовых пластин, что уменьшает работоспособность АКБ и уменьшает срок ее службы.

      На практике такое снижение напряжение не является критичным, ведь запустить батарею еще можно, а дальше генератор производит подзарядку до необходимого уровня.

      Главное — убедиться в исправности цепи заряда и увеличении напряжении на выводах аккумуляторной батареи.

      Если U на выходе опустилось ниже 11,6 В, можно говорить о полном разряде источника питания.

      Дальнейшее применение батареи в этом случае невозможно — ее необходимо снимать, выполнить проверку исправности и обеспечить заряд от внешнего устройства.

      С учетом сказанного выше можно делать вывод, что напряжение на АКБ при исправном генераторе должно составлять (при заглушенном моторе) 12,6-13,2 В. На практике этот параметр немного ниже и составляет 12,3-12,5 В.

      Такое напряжение свидетельствует о незначительном недозарядке АКБ. В этом нет ничего страшного. Главное — не допускать уменьшение U ниже 12 В.

      Напряжение генератора на ХХ

      Для проверки работоспособности генератора необходимо завести двигатель и измерить напряжение на клеммах АКБ. Нормальное U составляет 13,5-14 В.

      Если этот параметр возрастает выше 14,2 В, можно сделать вывод о снижении заряда батареи и переходе генератора в усиленный режим заряда.

      Такая ситуация возникает в редких случаях, когда аккумулятор разрядился из-за длительного простоя на холоде или подключенной нагрузки.

      Возможны ситуации, когда электроника автомобиля не допускает повышения напряжения генератора, опираясь на температуру окружающего воздуха.

      Повышение уровня U, которое поступает на АКБ от генератора, не критично. Если электрооборудование машины исправно, уже через 5-10 минут напряжение заряда снизится до необходимого уровня в 13,5-14,0 Вольт.

      В случае, когда U не снижается, необходимо приступать к ремонту цепи питания или генератора. В противном случае дело закончится выкипевшим электролитом.

      Если при работающем моторе на ХХ генератор выдает напряжение 13,0-13,4 В, это свидетельствует о проблемах с АКБ (последний не берет часть заряда).

      В такой ситуации стоит выполнить проверку генератора при включении всех потребителей — фар, музыки, кондиционера и прочих. Об этом поговорим ниже.

      Напряжение генератора под нагрузкой

      Чтобы убедиться в работоспособности источника питания, рекомендуется выполнить проверку под нагрузкой.

      Для начала вспомним, что напряжение бывает трех видов:

      • Номинальным — указывается в инструкции по эксплуатации. Оно составляет 12 Вольт. Этот показатель далек от реального значения U.
      • Фактическим. Здесь речь идет о параметре напряжения после установки, подключения и начала пользования АКБ автомобиля. В среднем этот параметр 12.6-13,2 В (об этом упоминалось выше).
      • Под нагрузкой. Здесь параметр напряжения, которое выдается генератором, может меняться.

      Наличие нагрузки позволяет убедиться в исправности аккумулятора и генератора.

      С виду исправная батарея, имеющая на выходе 12 В, может существенно «подсаживаться» после включения потребителей. В процессе проверки применяется дополнительное устройство — нагрузочная вилка, позволяющая обеспечить повышенную нагрузку на АКБ.

      Если емкость вашего аккумулятора составляет 60 мА*ч, величина нагрузки должна быть равна 120 А. Продолжительность подключения — 3-5 секунд.

      Об исправности источника питания можно говорить, если напряжение не опускается ниже 9 Вольт. Если же параметр снизился до 5-6 В, это свидетельствует о полном разряде АКБ. После проверки под нагрузкой напряжение должно вернуться до уровня 12,2-12,4 В.

      При обнаружении сильной просадки необходимо проверить АКБ, а после еще раз повторить эксперимент с вилкой. При отсутствии просадки можно говорить об исправности батареи.

      Для проверки генератора можно поступить следующим образом — завести машину, включить максимум потребителей, после чего выполнить измерение. Напряжение должно быть 13,5-14 В.

      Если оно ниже, это свидетельствует о выходе из строя генератора. Нижним критичным пределом является 13,0 В.

      Если напряжение генератора автомобиля сильно низкое, не торопитесь делать выводы — убедитесь, что контакты на АКБ не окислились. Если это так, протрите их с помощью шкурки.

      Напряжение на генераторе для зарядки АКБ

      Не секрет, что при заряде аккумулятора с помощью стационарного ЗУ напряжение на входе должно быть в пределах 13,5—14,5В.

      Одновременно с этим необходимо следить за уровнем напряжения на клеммах АКБ. Как только U перестает расти, можно говорить о полном заряде. Если продолжить процесс, возможно «кипение» электролита.

      После пуска двигателя зарядный ток находится на уровне 5-10 Ампер (иногда больше), но через несколько минут он снижается до 1-3 А, что считается оптимальным параметром для АКБ.

      Косвенным показателем нормального режима работы генератора считается напряжение на выводах через несколько минут после пуска мотора. Этот показатель должен быть на уровне 13,9-14,2 В.

      Его величина во многом зависит от климатических условий, в которых эксплуатируется транспортное средство.

      Пара слов об электролите

      Одним из главных показателей, по которым можно судить об исправности батареи, является уровень электролита. Именно от него зависит напряжение источника питания при различных режимах работы.

      В процессе разрядки аккумулятора происходит расход кислоты, доля которой в общем объеме жидкости составляет третью часть (35-36%).

      Результатом является уменьшение плотности жидкости. Когда производится зарядка батареи, происходит обратный процесс.

      В такой ситуации вода расходуется, а кислота, наоборот, образовывается. Как результат, плотность электролита увеличивается.

      В обычном состоянии, когда напряжение на АКБ равно 12,7 В, плотность составляет 1,27 г/куб.см. При этом все параметры напрямую зависят друг от друга.

      Уменьшение напряжения зимой: чем это вызвано?

      Иногда автовладельцы сталкиваются с ситуацией, когда в холодное время года параметры АКБ ухудшаются, а автомобиль не удается завести.

      Чтобы избежать проблем, предусмотрительные водители снимают источник питания и относят его в тепло.

      На самом деле, суть проблем в следующем. При снижении температуры ниже «нуля» плотность электролита также меняется. Следовательно, корректируется и уровень напряжения (как отмечалось выше).

      Даже при нормальной зарядке батареи плотность электролита растет, из-за чего увеличивается и U. Следовательно, если АКБ нормально заряжена, бояться ей нечего.

      Хуже обстоит ситуация, если бросить на холоде разряженный аккумулятор. В этом случае плотность будет падать и появятся проблемы с пуском мотора. В ряде случаев жидкость может замерзнуть.

      Что касается проблем, связанных с пуском АКБ в холодное время года, они возникают из-за торможения химических процессов внутри устройства при снижении температуры ниже нуля.

      Это значит, что при нормальном заряде плотность и напряжение АКБ будут достаточными, чтобы пустить двигатель даже зимой.

      Зная, какое напряжение должно быть на генераторе автомобиля, можно избежать преждевременного выхода из строя или разряда АКБ, а также своевременно диагностировать неисправность самого генератора.