ЛЕКЦИЯ 6. Осевое растяжение-сжатие стержней. Определение напряжений, деформаций и перемещений. Расчёты на прочность и жёсткость
1. Определение внутренних сил в растягиваемых и сжимаемых стержнях.
2. напряжения при растяжении (сжатии) прямого стержня. Понятие о допускаемом напряжении.
3. Определение деформаций и перемещений. Закон Гука.
4. Опытное изучение свойств материалов.
Растяжение и сжатие – это простой и часто встречающийся случай напряженного состояния элементов конструкции и деталей машин.
Читайте также: Собственная частота колебаний пружинного маятника
В таких условиях работает буксировочный канат или трос подъемного механизма, колонна здания.
Чистое (центральное) растяжение или сжатие возникает в элементе конструкции, если внешняя нагрузка вызывает в нем только одно внутреннее усилие, которое сопротивляется этой внешней нагрузке, — нормальную продольную силу.
При определении значений внутренних нормальных сил, действующих в поперечных сечениях стержней, примем следующее правило знаков:
— нормальная сила положительна, если сопротивляется растяжению стержня;
— нормальная сила отрицательна – если сопротивляется сжатию.
Для определения значений внутренней нормальной силы в любом из поперечных сечений используется метод сечений.
Пусть прямой стержень постоянной толщиной в одном конце закреплен, а к его другому торцу приложена растягивающая его вдоль оси стержня внешняя сила F.
Какое по величине внутреннее продольное усилие возникает в некотором поперечном сечении стержня n-n?
Прежде всего, отметим, что под действием закрепления и внешней силы стержень растягивается (деформируется), но никуда не движется, т.е. остается в равновесии.
Удобно вначале мысленно «снять» со стержня закрепление. Заменим его влияние на стержень эквивалентно действующей внешней силой. Эта сила равна реакции закрепления.
Т.е. в закреплении возникает некоторое усилие, благодаря которому верхний край стержня остается неподвижным. Это усилие называют реакцией закрепления на внешнюю нагрузку, передающееся на это закрепление через деформируемый стержень.
Незакрепленный стержень, теперь уже под действием двух внешних воздействий: известной силы и неизвестной пока реакции также никуда не движется, т.е. находится в равновесии.
Определить величину реакции поможет математическая формулировка этого факта.
Проведем координатную ось Оz, для удобства совпадающую с осью стержня. Стержень никуда не движется под действием силы и реакции в частности, не движется и вдоль оси, потому что проекции этих внешних сил на ось уравновешивают друг друга.
Такого рода факт в механике формулируется уравнением общего равновесия стержня: суммарная проекция на ось Оz всех действующих на стержень внешних сил, равна нулю:
Читайте также: Mypleer ♫ Слушать музыку онлайн и радио онлайн бесплатно без регистрации в плеере + Новости в фотографиях
При построении уравнений общего равновесия механики принято использовать следующее правило знаков:
· Проекция усилия на ось положительна, если ее направление совпадает с выбранным направлением этой оси;
· И наоборот – проекция отрицательна, если направлена в противоположную сторону.
Эпюры – графики внутренних усилий, напряжений, перемещений, деформаций, возникающих в элементах конструкций и деталях машин под воздействием внешней нагрузки.
Напряжения при растяжении (сжатии) прямого стержня
Предположим, растягивающую брус внешнюю силу удалось распределить равномерно по его торцам.
Опыты показывают. Что в этом случае каждое продольное волокно бруса подвержено только растяжению и в любом его поперечном сечении внутренние силы действуют только по нормали к этим сечениям.
Поперечные сечения бруса, плоские до деформации, под действием внешних сил перемещаются параллельно своему начальному положению и остаются постоянными.
Растягивающие стержень внешние силы не всегда удается распределить по площади стержня равномерно.
Но опыты показывают, что поведение поперечных сечений растягиваемых стержней, расположенных на некотором расстоянии от места приложения внешней нагрузки, уже не зависит от способа приложения этих сил и всегда соответствует гипотезе плоских сечений.
При рассмотрении деформаций растяжения или сжатия, а также при рассмотрении последующих простых деформаций нами будет рассматриваться принцип Сен-Венана, названный по имени французского ученого XIX века, который заключается в том, что внутренние силовые факторы, возникающие в результате действия внешних сил, распределяются по сечениям рассматриваемого тела равномерно.
Рассмотрим стержень, подверженный действию продольных сил
Если на поверхность призматического стержня нанести сетку линий параллельных и перпендикулярных оси стержня, и приложить к нему растягивающую силу, то можно убедиться в том, что линии сетки и после деформации останутся взаимно-перпендикулярными, но расстояние между ними изменятся.
Читайте также: Как подключить проводку к счетчику
Все горизонтальные линии, например, cd, переместятся вниз, оставаясь горизонтальными и прямыми.
Можно предположить, что и внутри стержня будет происходить то же самое, т.е. поперечные сечения стержня плоские и нормальные к его оси до деформации, останутся плоскими и нормальными к оси и после деформации.
Эту гипотезу называют гипотезой плоских сечений (гипотезой Бернулли).
Продольная сила N есть равнодействующая нормальных напряжений в поперечном сечении:
В частном случае, когда на стержень действует одна внешняя сила, из уравнения равновесия получим:
И вместо общей формулы получим частный вид формулы для растяжения:
Эти формулы справедливы и для сжатия, с той только разницей, что сжимающие напряжения считаются отрицательными.
Кроме того, сжатые стержни помимо расчета на прочность рассчитываются также и на устойчивость.
Очевидно, что эти напряжения в реальных условиях нельзя создавать больше или много меньше определенной величины. Поэтому вводится понятие допускаемого напряжения: — условие прочности.
Определение деформаций и перемещений. Закон Гука.
Опыты показывают, что при растяжении длина стержня увеличивается, а поперечные размеры уменьшаются, при сжатии – наоборот.
Для многих материалов при нагружении до определенных пределов опыты показали следующую зависимость между относительным удлинением стержня и напряжением :
— абсолютное удлинение стержня
— длина образца до деформации
— длина образца после деформации
Эта зависимость носит название закона Гука и формулируется следующим образом: линейные деформации прямо пропорциональны нормальным напряжениям.
— коэффициент, зависящий от материала, т.е. его способность сопротивляться деформированию. Он характеризует жесткость материала, т.е. его способность сопротивляться деформированию.
Для других материалов значение можно найти в справочниках.
Имея ввиду, что для стержня постоянного сечения:
Можно получить формулу для определения полного (абсолютного) удлинения (укорочения) стержня:
Между продольным удлинением и поперечным существует зависимость:
Читайте также: Силикон для форм жидкий на основе олова Artline Silicone PRO
Здесь — коэффициент поперечной деформации (коэффициент Пуассона),который характеризует способность материала к поперечным деформациям.
При пользовании этой формулой удлинение считается положительным, а укорочение – отрицательным.
Для всех материалов .
Для стали при упругих деформациях можно принимать =0,3.
Зная можно определить полное поперечное сужение или расширение стержня : , где — поперечный размер стержня до деформации
— поперечный размер стержня после деформации.
В стержнях переменного сечения напряжения в поперечных сечениях можно считать распределенными равномерно (если угол конусности ) и определять их по той же формуле, что и для стержня постоянного сечения.
Для определения деформаций стержня переменного сечения, в поперечных сечениях которого действует продольная сила N, найдем сначала удлинение элемента длиной , которое является дифференциалом полного удлинения .
Согласно закону Гука, имеем:
Полное удлинение стержня получим, интегрируя выражение в пределах :
, если и — величины постоянные, то
Чтобы воспользоваться этой формулой, необходимо знать закон изменения в зависимости от .
Для ступенчатых стержней интегрирование заменяется суммирование, и полное изменение длины бруса определяется как алгебраическая сумма деформаций его отдельных частей, в пределах которых :
Например, для стержня изображенного на схеме, имеем:
Определим теперь удлинение стержня постоянного сечения под действием силы тяжести, которая представляет собой нагрузку, равномерно распределенную вдоль стержня.
Удельный вес материала обозначим через .
Рассмотрим деформацию элемента , выделенного на расстоянии от нижнего конца.
Удлинение элемента равно:
Интегрируя это выражение в пределах, получим
Это выражение можно представить в другом виде, если учесть, что сила тяжести бруса равна: или , тогда получим — формула по определению перемещения с учетом собственного веса при известной длине
Следовательно, удлинение бруса постоянного сечения от собственной силы тяжести в два раза меньше удлинения от действия силы, равной силе тяжести и приложенной к его концу.
Опытное изучение свойств материалов
Для изучения свойств материалов и установления значения предельных (по разрушению или по пластическим деформациям) производят испытания образцов материала вплоть до разрушения. По виду деформации различают испытания на растяжение, сжатие, кручение и изгиб.
Испытания производят при статической и ударной (испытание на усталость и выносливость) нагрузках на ГМС – 50.
Цель испытания на растяжение – определение механических характеристик материала.
При проведении испытания автоматически записывается диаграмма зависимости между растягивающей силой и удлинением образца.
Условия и порядок выполнения работы
1. Стальной стержень ступенчатого сечения находится под действием внешней силы и собственного веса.
2. Необходимо построить эпюры:
· нормальных продольных сил
· перемещения сечений стержня относительно жесткой заделки.
Площадь большего поперечного сечения стержня в 2 раза превышает меньшую.
2.5. Расчеты на жесткость при растяжении
2.5. РАСЧЕТЫ НА ЖЕСТКОСТЬ ПРИ РАСТЯЖЕНИИ Иногда наряду с условиями прочности добавляют ограничения на перемещение некоторых элементов конструкции, то есть вводят условие жесткости δmax ≤ [δ], где [δ] – величина допускаемого перемещения (изменение положения в пространстве) некоторого контролируемого сечения. Деформацию растягиваемого или сжимаемого элемента вычисляют по формуле (2. 4) закона Гука. Пример 2.1. Выполнить поверочный и проектный расчеты ступенчатого бруса. По результатам проектного расчета построить эпюру перемещения сечений. Исходные данные представлены в таблице: Решение Разбиваем брус на участки. Границей участка считают: а) точку приложения силового фактора; б) изменение размеров или формы поперечного сечения; в) изменение материала бруса. Брус одним концом защемлен, и в опоре возникает реакция R (рис. 2.5, а). Для нахождения внутренних усилий при подходе слева направо, придется определять опорную реакцию R. Указанную процедуру можно избежать при подходе справа налево, то есть со свободного конца. 1. Поверочный расчет А. Определение внутренних усилий. Применяем метод сечений. Рассекаем брус на две части в произвольном сечении участка I. Отбрасываем одну из частей (левую). Заменяем действие отброшенной части внутренним усилием NI. Внутреннее усилие всегда принимаем положительным, растягивающим; его вектор направлен от сечения (рис. 2.5, б). Уравнение равновесия составляем проецируя все силы на продольную ось x бруса Знак минус указывает на то, что усилие является сжимающим. Аналогично находим внутренние усилия на втором и третьем участках (рис. 2.5, в и г): Строим эпюру внутренних усилий – график, изображающий закон изменения внутренних усилий по длине бруса. Параллельно оси бруса проводим базисную линию (абсциссу графика) и по нормали к ней откладываем найденные выше значения внутренних усилий (ординаты графика) в выбранном масштабе с учетом знака. Положительные значения откладываем выше базисной линии, отрицательные – ниже (рис. 2.5, д). Поскольку в пределах каждого из участков внутренние усилия неизменны, высоты ординат графика – постоянны и огибающие линии (жирные) – горизонтальны. Б. Определение напряжений на каждом из участков: Строим эпюру напряжений. В. Коэффициенты запаса прочности по отношению к пределу текучести: Вывод: недогружен участок I, перегружен участок III. Для этих участков выполняем проектный расчет. 2. Проектный расчет Из условия прочности при растяжении σ = ≤ [σ] выполняем подбор размеров поперечных сечений I и III участков, предварительно назначив допускаемое напряжение Нормативный коэффициент запаса прочности выбрали из рекомендуемого диапазона значений [nт] = 1,3–2,2. 3. Определение перемещений сечений А. Удлинения каждого из участков Б. Перемещения сечений. За начало отсчета принимаем сечение d. Оно защемлено, его перемещение равно нулю δd = 0. Строим эпюру перемещений. Выводы 1. Выполнен поверочный расчет ступенчатого бруса. Прочность одного из элементов обеспечена; другого – избыточна; третьего – не- достаточна. 2. Из условия прочности при растяжении подобраны площади попе- речных сечений двух элементов конструкции. 3. По результатам проектного расчета вычислены деформации каждого элемента конструкции. Крайнее сечение переместится относительно защемления на 217 мкм в сторону от защемления. Пример 2.2. К стальному брусу постоянного сечения вдоль его оси приложены две силы. По условиям эксплуатации введено ограничение на величину перемещения [δ] концевого сечения С. Из условий прочности и жесткости подобрать размер поперечного сечения. Решение 1. Определение внутренних усилий Покажем возникающую в опоре реакцию R; определение внутренних усилий методом сечений начнем вести со свободного конца. Ось х – про- дольная ось бруса (на рисунке не показана). I участок: ∑ x = 0; − NI + F1 = 0; ⇒ NI = F1 = 40кН. II участок: ∑ x = 0; − NII + F1 − F2 = 0; ⇒ NII = F1 − F2 = 40 − 60 = −20кН . F1 = 40 кН; F2 = 60 кН; a = 0,5 м; [σ] = 180 МПа; [δ] = 1 мм. Строим эпюру внутренних усилий. Опасным является участок I, на котором действует Nmax = – 40 кН (пластичные материалы одинаково сопротивляются деформации растяжения и сжатия). 2. Проектный расчет из условия прочности Из условия прочности при растяжении находим требуемую площадь поперечного сечения стержня 3. Проектный расчет из условия жесткости Перемещение сечения С является суммой двух слагаемых: откуда требуемая площадь поперечного сечения стержня Сравнивая результаты проектных расчетов из условия прочности и жесткости, назначаем большее из двух значений площади поперечного сечения: 2,22 и 1,5 см2, удовлетворяющее обоим условиям: А ≥ 2,22 см2. Пример 2.3. Жесткая балка (ее деформацией пренебречь) подперта стальным стержнем (подкосом). Проверить прочность стержня. Определить допускаемую нагрузку F для заданного размера поперечного сечения стержня. Выполнить проектный расчет из условия прочности и жесткости ([δF] – допускаемая величина перемещения балки в точке приложения силы). Решение 1. Поверочный расчет А. Определение внутреннего усилия в стержне Рассекаем стержень на две части (рис. а). Отбрасываем одну из частей и показываем внешнюю нагрузку F, внутреннее усилие N и две составляющих опорной реакции R (рис. б). Составляем такое уравнение равновесия, в которое не вошли бы опорные реакции. Усилие в стержне сжимающее. Б. Определение напряжения В. Коэффициент запаса прочности Фактический коэффициент запаса 1,06 не входит в рекомендуемый (нормативный) диапазон значений [nт]=1,3−2,3. Вывод: прочность недостаточна. 2. Определение допускаемой нагрузки на конструкцию для заданного размера поперечного сечения стержня Из условия прочности при растяжении σ = ≤ [σ] находим допускаемую нагрузку на стержень [N]≤ A⋅[σ]= 15⋅10−4 ⋅170⋅106 = 255 кН. Здесь допускаемое Нормативный коэффициент запаса по текучести назначили из рекомендуемого диапазона n[ т]=1,3−2,3. Из условия равновесия (см. этап 1) находим связь между допускаемой внешней нагрузкой [F] на конструкцию и внутренним усилием [N] в стержне: 3. Проектный расчет из условия прочности Требуемое значение площади поперечного сечения из условия прочности при растяжении: 4. Проектный расчет из условия жесткости Под действием внешней нагрузки стержень деформируется; сечения балки изменяют свое положение в пространстве. Установим связь между внутренним усилием, деформацией стержня и перемещением заданного сечения конструкции. Покажем схему в исходном и деформированном (пунктирные линии) состояниях (рис. в). Контролируемое перемещение сечения балки в точке D приложения силы δF связано с перемещением узла С точки прикрепления стержня к балке соотношением: Вследствие перемещения узла С стержень укорачивается на Δ = CC′⋅sinα. Деформацию стержня определяем по закону Гука: Здесь ℓ – длина стержня, определяется из схемы нагружения (рис. а). Тогда из условия жесткости конструкции: Сравнивая результаты проектных расчетов из условия прочности и жесткости, назначаем большее из двух значений: 28,2 и 33,3 см2, удовлетворяющее обоим условиям, то есть А ≥ 33,3 см2. Выводы 1. Выполнен поверочный расчет стержня. Прочность элемента конструкции недостаточна. 2. Для заданного размера поперечного сечения нагрузка F, приложенная к конструкции, не должна превышать 42,5 кН. 3. Из условий прочности и жесткости при растяжении найдено значение площади поперечного сечения элемента конструкции, удовлетворяющее обоим условиям: 33,3 см2.
Внутренние напряжения сжатия это
Основное отличие — растяжение против напряжения сжатия
Растягивающие и сжимающие напряжения — это два типа напряжений, которым может подвергаться материал. Тип напряжения определяется силой, действующей на материал. Если это растягивающая (растягивающая) сила, материал испытывает растягивающее напряжение. Если это сила сжатия (сжатия), материал испытывает напряжение сжатия. главный разница между растягивающим и сжимающим напряжением является то, что растягивающее напряжение приводит к удлинению, тогда как сжимающее напряжение приводит к укорочению.Некоторые материалы прочны при растягивающих напряжениях, но слабы при сжимающих напряжениях. Однако такие материалы, как бетон, слабы при растягивающих напряжениях, но прочны при сжимающих напряжениях. Таким образом, эти две величины очень важны при выборе подходящих материалов для применения. Важность количества зависит от приложения. В некоторых случаях требуются материалы, которые прочны при растягивающих напряжениях. Но для некоторых применений требуются материалы, которые прочны при сжимающих напряжениях, особенно в конструкционной инженерии.
Что такое растягивающее напряжение
Растягивающее напряжение — это величина, связанная с растягивающими или растягивающими силами. Обычно растягивающее напряжение определяется как сила на единицу площади и обозначается символом σ. Растягивающее напряжение (σ), которое возникает, когда на объект действует внешняя сила растяжения (F), определяется как σ = F / A, где A — площадь поперечного сечения объекта. Следовательно, единица измерения напряжения растяжения в СИ составляет Нм -2 или Па. Чем выше нагрузка или растягивающее усилие, тем выше растягивающее напряжение. Растягивающее напряжение, соответствующее силе, приложенной к объекту, обратно пропорционально площади поперечного сечения объекта. Объект удлиняется при приложении к нему силы растяжения.
Форма графика растягивающего напряжения в зависимости от деформации зависит от материала. Существует три важных этапа растягивающего напряжения, а именно: предел текучести, предел прочности и предел прочности на разрыв (точка разрыва). Эти значения можно найти, построив график зависимости растягивающего напряжения от деформации. Данные, необходимые для построения графика, получены при проведении испытания на растяжение. График зависимости растягивающего напряжения от напряжения является линейным вплоть до определенного значения растягивающего напряжения, после чего он отклоняется. Закон Крюка действует только до этой величины.
Материал, который находится под растягивающим напряжением, возвращается к своей первоначальной форме после снятия нагрузки или растягивающего напряжения. Эта способность материала известна как упругость материала. Но упругие свойства материала можно увидеть только до определенного значения растягивающего напряжения, называемого пределом текучести материала. Материал теряет свою эластичность в пределе текучести.После этого материал претерпевает постоянную деформацию и не возвращается к своей первоначальной форме, даже если внешняя сила растяжения полностью устранена. Пластичные материалы, такие как золото, подвергаются заметной пластической деформации. Но хрупкие материалы, такие как керамика, подвергаются небольшой пластической деформации.
Предел прочности материала при растяжении — это максимальное растягивающее напряжение, которое материал может выдержать. Это очень важное количество, особенно в сфере производства и машиностроения. Прочность материала на разрыв — это растягивающее напряжение в точке разрушения. В некоторых случаях предел прочности при растяжении равен разрывному напряжению.
Что такое компрессионный стресс
Сжимающее напряжение противоположно растягивающему напряжению. Объект испытывает сжимающее напряжение, когда к нему прикладывается сила сжатия. Таким образом, объект, подвергающийся сжимающему напряжению, укорачивается. Сжимающее напряжение также определяется как сила на единицу площади и обозначается символом σ. Сжимающее напряжение (σ), которое возникает, когда на объект действует внешняя сжимающая или сжимающая сила (F), определяется как σ = F / A. Чем выше сила сжатия, тем выше напряжение сжатия.
Способность материала выдерживать более высокие сжимающие напряжения является очень важным механическим свойством, особенно в инженерных целях. Некоторые материалы, такие как сталь, прочны как при растяжении, так и при сжатии. Однако некоторые материалы, такие как бетон, прочны только при сжимающих напряжениях. Бетон относительно слаб при растягивающих напряжениях.
Когда структурный компонент изгибается, он одновременно удлиняется и укорачивается. На следующем рисунке показана бетонная балка, подверженная изгибающей силе. Его верхняя часть удлинена из-за растягивающего напряжения, тогда как нижняя часть укорочена из-за сжимающего напряжения. Поэтому очень важно выбрать подходящий материал при разработке таких конструктивных элементов. Типичный материал должен быть достаточно прочным при растягивающих и сжимающих напряжениях.
Разница между растягивающим и сжимающим напряжением
Физический результат:
Растягивающее напряжение: Растягивающее напряжение приводит к удлинению.
Сжимающее напряжение: Сжимающее напряжение приводит к укорочению.
Вызванный:
Растягивающее напряжение: Растягивающее напряжение вызвано растягивающими силами.
Сжимающее напряжение: Сжимающее напряжение вызвано сжимающими силами.
Объекты под нагрузкой:
Растягивающее напряжение: Трос крана, нити, канаты, гвозди и т. Д. Подвергаются растягивающему напряжению.
Сжимающее напряжение: Бетонные столбы подвергаются сжимающему напряжению.
Сильные материалы
Растягивающее напряжение: Сталь прочна при растяжении.
Сжимающее напряжение: Сталь и бетон прочны под действием напряжения сжатия.
Деформация растяжения-сжатия — характеристики, расчеты, параметры
Не вдаваясь в теоретические основы физики процессом деформации твердого тела можно назвать изменение его формы под действием внешней нагрузки. Любой твердый материал имеет кристаллическую структуру с определенным расположением атомов и частиц, в ходе приложения нагрузки происходит смещение отдельных элементов или целых слоев относительно, другими словами возникают дефекты материалов.
Блок: 1/3 | Кол-во символов: 388
Источник: http://www.DeviceSearch.ru.com/article/3649
Внутренние усилия при растяжении-сжатии
Осевое (центральное) растяжение или сжатие прямого бруса вызывается внешними силами, вектор равнодействующей которых совпадает с осью бруса. При растяжении или сжатии в поперечных сечениях бруса возникают только продольные силы N. Продольная сила N в некотором сечении равна алгебраической сумме проекции на ось стержня всех внешних сил, действующих по одну сторону от рассматриваемого сечения. По правилу знаков продольной силы N принято считать, что от растягивающих внешних нагрузок возникают положительные продольные силы N, а от сжимающих — продольные силы N отрицательны (рис. 5).
Чтобы выявить участки стержня или его сечения, где продольная сила имеет наибольшее значение, строят эпюру продольных сил, применяя метод сечений, подробно рассмотренный в статье:
Анализ внутренних силовых факторов в статистически определимых системах
Ещё настоятельно рекомендую взглянуть на статью:
Расчёт статистически определимого бруса
Если разберёте теорию в данной статье и задачи по ссылкам, то станете гуру в теме «Растяжение-сжатие» =)
Блок: 2/8 | Кол-во символов: 1154
Источник: http://xn--80axfaegeoa.xn--p1ai/Theory/Theory-3.html
Виды деформации твердых тел
Деформация растяжения
Деформация растяжения — вид деформации, при которой нагрузка прикладывается продольно от тела, то есть соосно или параллельно точкам крепления тела. Проще всего растяжение рассмотреть на буксировочном тросе для автомобилей. Трос имеет две точки крепления к буксиру и буксируемому объекту, по мере начала движения трос выпрямляется и начинает тянуть буксируемый объект. В натянутом состоянии трос подвергается деформации растяжения, если нагрузка меньше предельных значений, которые может он выдержать, то после снятия нагрузки трос восстановит свою форму.
Схема растяжения образца
Посмотрите прибор измеряющий деформацию растяжения →
Деформация растяжения является одним из основных лабораторных исследований физических свойств материалов. В ходе приложения растягивающих напряжений определяются величины, при которых материал способен:
- воспринимать нагрузки с дальнейшим восстановлением первоначального состояния (упругая деформация)
- воспринимать нагрузки без восстановления первоначального состояния (пластическая деформация)
- разрушаться на пределе прочности
Данные испытания являются главными для всех тросов и веревок, которые используются для строповки, крепления грузов, альпинизма. Растяжение имеет значение также при строительстве сложных подвесных систем со свободными рабочими элементами.
Деформация сжатия
Деформация сжатия — вид деформации, аналогичный растяжению, с одним отличием в способе приложения нагрузки, ее прикладывают соосно, но по направлению к телу. Сдавливание объекта с двух сторон приводит к уменьшению его длины и одновременному упрочнению, приложение больших нагрузок образовывает в теле материала утолщения типа «бочка».
Схема сжатия образца
В качестве примера можно привести тот же прибор что и в деформации растяжения немного выше.
Деформация сжатия широко используется в металлургических процессах ковки металла, в ходе процесса металл получает повышенную прочность и заваривает дефекты структуры. Сжатие также важно при строительстве зданий, все элементы конструкции фундамента, свай и стен испытывают давящие нагрузки. Правильный расчет несущих конструкций здания позволяет сократить расход материалов без потери прочности.
Деформация сдвига
Деформация сдвига — вид деформации, при котором нагрузка прикладывается параллельно основанию тела. В ходе деформации сдвига одна плоскость тела смещается в пространстве относительно другой. На предельные нагрузки сдвига испытываются все крепежные элементы — болты, шурупы, гвозди. Простейший пример деформации сдвига – расшатанный стул, где за основание можно принять пол, а за плоскость приложения нагрузки – сидение.
Схема сдвига образца
Посмотрите прибор измеряющий деформацию сдвига →
Деформация изгиба
Деформация изгиба — вид деформации, при котором нарушается прямолинейность главной оси тела. Деформации изгиба испытывают все тела подвешенные на одной или нескольких опорах. Каждый материал способен воспринимать определенный уровень нагрузки, твердые тела в большинстве случаев способны выдерживать не только свой вес, но и заданную нагрузку. В зависимости от способа приложения нагрузки при изгибе различают чистый и косой изгиб.
Схема изгиба образца
Посмотрите прибор измеряющий деформацию изгиба →
Значение деформации изгиба важно для проектирования упругих тел, таких, как мост с опорами, гимнастический брус, турник, ось автомобиля и другие.
Деформация кручения
Деформация кручения – вид деформации, при котором к телу приложен крутящий момент, вызванный парой сил, действующих в перпендикулярной плоскости оси тела. На кручение работают валы машин, шнеки буровых установок и пружины.
Схема кручения образца
Посмотрите прибор измеряющий деформацию кручения →
Блок: 2/3 | Кол-во символов: 3780
Источник: http://www.DeviceSearch.ru.com/article/3649
Напряжения при растяжении-сжатии
Определенная методом сечений продольная сила N, является равнодействующей внутренних усилий распределенных по поперечному сечению стержня (рис. 2, б). Исходя из определения напряжений, согласно выражению (1), можно записать для продольной силы:
где σ — нормальное напряжение в произвольной точке поперечного сечения стержня.
Чтобы определить нормальные напряжения в любой точке бруса необходимо знать закон их распределения по поперечному сечению бруса. Экспериментальные исследования показывают: если нанести на поверхность стержня ряд взаимно перпендикулярных линий, то после приложения внешней растягивающей нагрузки поперечные линии не искривляются и остаются параллельными друг другу (рис.6, а). Об этом явлении говорит гипотеза плоских сечений (гипотеза Бернулли): сечения, плоские до деформации, остаются плоскими и после деформации.
Так как все продольные волокна стержня деформируются одинаково, то и напряжения в поперечном сечении одинаковы, а эпюра напряжений σ по высоте поперечного сечения стержня выглядит, как показано на рис.6, б. Видно, что напряжения равномерно распределены по поперечному сечению стержня, т.е. во всех точках сечения σ = const. Выражение для определения величины напряжения имеет вид:
Таким образом, нормальные напряжения, возникающие в поперечных сечениях растянутого или сжатого бруса, равны отношению продольной силы к площади его поперечного сечения. Нормальные напряжения принято считать положительными при растяжении и отрицательными при сжатии.
Блок: 3/8 | Кол-во символов: 1705
Источник: http://xn--80axfaegeoa.xn--p1ai/Theory/Theory-3.html
Пластическая и упругая деформация
В процессе деформации важное значение имеет величина межатомных связей, приложение нагрузки достаточной для их разыва приводит к необратимым последствиям (необратимая или пластическая деформация). Если нагрузка не превысила допустимых значений, то тело может вернуться в исходное состояние (упругая деформация). Простейший пример поведения предметов, подверженных пластической и упругой деформацией, можно проследить на падении с высоты резинового мяча и куска пластилина. Резиновый мяч обладает упругостью, поэтому при падении он сожмется, а после превращения энергии движения в тепловую и потенциальную, снова примет первоначальную форму. Пластилин обладает большой пластичностью, поэтому при ударе о поверхность оно необратимо утратит свою первоначальную форму.
За счет наличия деформационных способностей все известные материалы обладают набором полезных свойств – пластичностью, хрупкостью, упругостью, прочностью и другими. Исследование этих свойств достаточно важная задача, позволяющая выбрать или изготовить необходимый материал. Кроме того, само по себе наличие деформации и его детектирование часто бывает необходимо для задач приборостроения, для этого применяются специальные датчики называемые экстензометрами или по другому тензометрами.
Если вам понравилась статья нажмите на одну из кнопок ниже
Блок: 3/3 | Кол-во символов: 1364
Источник: http://www.DeviceSearch.ru.com/article/3649
Деформации при растяжении-сжатии
Рассмотрим деформации, возникающие при растяжении (сжатии) стержня (рис.6, а). Под действием силы F брус удлиняется на некоторую величину Δl называемую абсолютным удлинением, или абсолютной продольной деформацией, которая численно равна разности длины бруса после деформации l1 и его длины до деформации l
Отношение абсолютной продольной деформации бруса Δl к его первоначальной длине l называют относительным удлинением, или относительной продольной деформацией:
При растяжении продольная деформация положительна, а при сжатии – отрицательна. Для большинства конструкционных материалов на стадии упругой деформации выполняется закон Гука (4), устанавливающий линейную зависимость между напряжениями и деформациями:
где модуль продольной упругости Е, называемый еще модулем упругости первого рода является коэффициентом пропорциональности, между напряжениями и деформациями. Он характеризует жесткость материала при растяжении или сжатии (табл. 1).
Модуль продольной упругости для различных материалов
Абсолютная поперечная деформация бруса равна разности размеров поперечного сечения после и до деформации:
Соответственно, относительную поперечную деформацию определяют по формуле:
При растяжении размеры поперечного сечения бруса уменьшаются, и ε’ имеет отрицательное значение. Опытом установлено, что в пределах действия закона Гука при растяжении бруса поперечная деформация прямо пропорциональна продольной. Отношение поперечной деформации ε’ к продольной деформации ε называется коэффициентом поперечной деформации, или коэффициентом Пуассона μ:
Экспериментально установлено, что на упругой стадии нагружения любого материала значение μ = const и для различных материалов значения коэффициента Пуассона находятся в пределах от 0 до 0,5 (табл. 2).
Абсолютное удлинение стержня Δl прямо пропорционально продольной силе N:
Данной формулой можно пользоваться для вычисления абсолютного удлинения участка стержня длиной l при условии, что в пределах этого участка значение продольной силы постоянно. В случае, когда продольная сила N изменяется в пределах участка стержня, Δl определяют интегрированием в пределах этого участка:
Произведение (Е·А) называют жесткостью сечения стержня при растяжении (сжатии).
Блок: 4/8 | Кол-во символов: 2744
Источник: http://xn--80axfaegeoa.xn--p1ai/Theory/Theory-3.html
Механические свойства материалов
Расчеты на прочность и жесткость при растяжении и сжатии
Опасным сечением при растяжении и сжатии называется поперечное сечение бруса, в котором возникает максимальное нормальное напряжение. Допускаемые напряжения вычисляются по формуле:
где σпред — предельное напряжение (σпред = σт — для пластических материалов и σпред = σв — для хрупких материалов); — коэффициент запаса прочности. Для пластических материалов = = 1,2 … 2,5; для хрупких материалов = = 2 … 5, а для древесины = 8 ÷ 12.
Блок: 6/8 | Кол-во символов: 565
Источник: http://xn--80axfaegeoa.xn--p1ai/Theory/Theory-3.html
Расчеты на прочность при растяжении и сжатии
Целью расчета любой конструкции является использование полученных результатов для оценки пригодности этой конструкции к эксплуатации при минимальном расходе материала, что находит отражение в методах расчета на прочность и жесткость.
Условие прочности стержня при его растяжении (сжатии):
При проектном расчете определяется площадь опасного сечения стержня:
При определении допускаемой нагрузки рассчитывается допускаемая нормальная сила:
Блок: 7/8 | Кол-во символов: 623
Источник: http://xn--80axfaegeoa.xn--p1ai/Theory/Theory-3.html
Расчет на жесткость при растяжении и сжатии
Работоспособность стержня определяется его предельной деформацией . Абсолютное удлинение стержня должно удовлетворять условию:
Часто дополнительно делают расчет на жесткость отдельных участков стержня.
Следующая важная статья теории:
Изгиб балки
Блок: 8/8 | Кол-во символов: 358
Источник: http://xn--80axfaegeoa.xn--p1ai/Theory/Theory-3.html
Кол-во блоков: 11 | Общее кол-во символов: 15041
Количество использованных доноров: 3
Информация по каждому донору:
- http://xn--80axfaegeoa.xn--p1ai/Theory/Theory-3.html: использовано 7 блоков из 8, кол-во символов 9345 (62%)
- https://isopromat.ru/sopromat/primery-reshenia-zadach/raschet-deformacij/pri-rastyazhenii-szhatii: использовано 1 блоков из 2, кол-во символов 164 (1%)
- http://www.DeviceSearch.ru.com/article/3649: использовано 3 блоков из 3, кол-во символов 5532 (37%)
Поделитесь в соц.сетях: