Волновая диаграмма напряжения и тока

Однофазные электрические цепи переменного тока

Для получения, передачи и распределения электрической энергии применяются в основном устройства переменного тока: генераторы, трансформаторы, линии электропередачи и распределительные цепи переменного тока.

Постоянный ток, необходимый в некоторых областях народного хозяйства (транспорт, связь, электрохимия и др.), получают выпрямлением переменного тока.

Переменным электрическим током называют ток, периодически изменяющийся по величине и направлению.

Основное достоинство переменного тока заключается в возможности трансформировать напряжение. Кроме того, электрические машины переменного тока надежней в работе, проще по устройству и эксплуатации.

Говоря о переменном токе, обычно имеют в виду синусоидальный переменный ток, т. е. ток, изменяющийся по синусоидальному закону. При синусоидальном токе ЭДС электромагнитной индукции, самоиндукции и взаимоиндукции изменяются по синусоидальному закону.

Синусоидальный переменный ток проходит в замкнутой линейной электрической цепи под действием синусоидальной ЭДС.

Однофазные электрические цепи переменного тока

Рассмотрим получение синусоидальной ЭДС. Если в однородном магнитном поле с индукцией В равномерно со скоростью V вращается рамка (рис. 10.1), то в каждой активной стороне этой рамки длиной

Однофазные электрические цепи переменного тока

где а — угол, под которым активный проводник рамки пересекает магнитное поле (угол между Однофазные электрические цепи переменного тока), или угол поворота рамки относительно нейтральной плоскости Однофазные электрические цепи переменного токакак углы со взаимно перпендикулярными сторонами.

Однофазные электрические цепи переменного тока

Плоскость называется нейтральной, т. к. ЭДС в рамке, расположенной в этой плоскости, равна нулю (а = 0, следовательно, sin а = 0).

Однофазные электрические цепи переменного тока

Однофазные электрические цепи переменного тока

как — величина постоянная по условию, то е пропорциональна sin а, т. е. ЭДС в этой рамке, при вращении ее вокруг оси изменяется по синусоидальному закону. Если к этой рамке включить нагрузку (потребитель), то в замкнутой цепи (рис. 10.1) идет ток, который, как и ЭДС, изменяется по синусоидальному ну. Поэтому такой ток и называется синусоидальным.

Однофазные электрические цепи переменного тока

Синусоидальная ЭДС изображена на графике рис. 10.2. график принято называть «волновая диаграмма». (Если изменяющаяся величина изображена в зависимости от времени то ее называют «временная диаграмма».) На этой диаграмме синусоида ограничивает величины ЭДС (ординаты) при раз-личных углах поворота рамки относительно нейтральной плоскости NN». Как видно, синусоидальная ЭДС изменяется по величине и направлению.

Однофазные электрические цепи переменного тока

Величины, характеризующие синусоидальную ЭДС

Амплитуда — это максимальное значение периодически изменяющейся величины.

Однофазные электрические цепи переменного тока

Обозначаются амплитуды прописными буквами с индексом m, т. е.

Нетрудно видеть (рис. 10.2), что ЭДС достигает своих амплитудных значений тогда, когда рамка повернется на угол а = 90° или на угол а = 270°, так как Однофазные электрические цепи переменного тока. Следовательно, Однофазные электрические цепи переменного тока

Однофазные электрические цепи переменного тока

Тогда

Период — это время, в течение которого переменная величина делает полный цикл своих изменений, после чего изменения повторяются в той же последовательности.

Однофазные электрические цепи переменного тока

Обозначается период буквой Т и измеряется в секундах, с (сек) т.е. = с.

Значение ЭДС через каждый период определяется следующим равенством (рис. 10.3):

Однофазные электрические цепи переменного тока

где к — целое число.

На рис. 10.3 изображена временная диаграмма синусоидальной ЭДС при вращении рамки в магнитном поле.

Частота — число периодов в единицу времени, т. е. величина, обратная периоду.

Однофазные электрические цепи переменного тока

Обозначается частота буквой , и измеряется в герцах (Гц):

Однофазные электрические цепи переменного тока

Стандартной частотой в электрических сетях России является частота Однофазные электрические цепи переменного тока= 50 Гц. Для установок электронагрева пользуются частотами Однофазные электрические цепи переменного токаГц ( Однофазные электрические цепи переменного токаГц = 1 МГц — мегагерц).

Однофазные электрические цепи переменного тока

При частоте =50 Гц, т.е. 50 периодов в секунду, период

Однофазные электрические цепи переменного тока

Однофазные электрические цепи переменного тока

Угловая частота (угловая скорость) характеризуется углом поворотом рамки в единицу времени.

Однофазные электрические цепи переменного тока

Обозначается угловая частота буквой (омега):

Однофазные электрические цепи переменного тока

Измеряется угловая частота в единицах радиан в секунду, так как угол измеряется в радианах (рад).

Так, время одного периода Т рамка повернется на угол 360° = рад. Следовательно, угловую частоту можно выразить следующим образом:

Однофазные электрические цепи переменного тока

Мгновенное значение — это значение переменной величины в й конкретный момент времени.

Мгновенные значения обозначаются строчными буквами..

Однофазные электрические цепи переменного тока

Из выражения (10.2) следует, что угол поворота рамки , мгновенные значения синусоидальных величин можно записать так:

Однофазные электрические цепи переменного тока

Таким образом, любая синусоидальная величина характеризуется амплитудой и угловой частотой, которые являются постоянными для данной синусоиды. Следовательно, по формулам (10.4) можно определить синусоидальную величину в любой конкретный момент времени t, если известны амплитуда и угловая частота.

Фаза и сдвиг фаз

Однофазные электрические цепи переменного тока

Если в магнитном поле вращаются две жестко скрепленные между собой под каким-то углом одинаковые рамки (рис. 10.4а), т.е. амплитуды ЭДС и угловые частоты со их одинаковы, то мгновенное значение их ЭДС можно записать в виде

Однофазные электрические цепи переменного тока

где Однофазные электрические цепи переменного тока— углы, определяющие значения синусоидальных величин Однофазные электрические цепи переменного токав начальный момент времени (t = 0), т.е.

Однофазные электрические цепи переменного тока

Однофазные электрические цепи переменного тока

Поэтому эти углы называют начальными фазами синусоид.

Однофазные электрические цепи переменного тока

Однофазные электрические цепи переменного тока

Начальные фазы этих ЭДС различны.

Таким образом, согласно (10.5) каждая синусоидальная величина характеризуется амплитудой Однофазные электрические цепи переменного тока, угловой частотой со и начальной фазой Однофазные электрические цепи переменного тока. Для каждой синусоиды эти величины Однофазные электрические цепи переменного токаявляются постоянными. В выражениях (10.4) начальные фазы Однофазные электрические цепи переменного токасинусоид равны нулю ( Однофазные электрические цепи переменного тока= 0).

Однофазные электрические цепи переменного тока

Величина называется фазой синусоиды.

Разность начальных фаз двух синусоидальных величин одинаковой частоты определяет угол сдвига фаз этих величин:

Однофазные электрические цепи переменного тока

При вращении против часовой стрелки (рис. 10.4а) ЭДС в первой рамке достигает амплитудного и нулевого значения раньше, чем во второй, т. е. Однофазные электрические цепи переменного токаопережает по фазе Однофазные электрические цепи переменного токаили Однофазные электрические цепи переменного токаотстает по фазе Однофазные электрические цепи переменного тока(рис. 10.46). Угол сдвига фаз Однофазные электрические цепи переменного токапоказывает, на какой угол синусоидальная величина опережает или отстает от другой, достигает своих амплитудных и нулевых значений раньше позже).

Две синусоидальные величины одинаковой частоты, достигаю-одновременно своих амплитудных (одного знака) и нулевых сечений, считаются совпадающими по фазе (рис. 10.5а).

Однофазные электрические цепи переменного тока

Если две синусоиды одинаковой частоты достигают одновременно своих нулевых и амплитудных значений разных знаков (рис. 10.56), то они находятся в противофазе.

Время, на которое одна синусоидальная величина опережает и отстает от другой, характеризует время сдвига фаз Однофазные электрические цепи переменного тока, которое можно выразить через период Т и частоту Однофазные электрические цепи переменного токасинусоиды следующим образом:

Однофазные электрические цепи переменного тока

Среднее и действующее значения переменного тока

Кроме амплитудных и мгновенных значений переменный ток, напряжение, ЭДС характеризуются еще средними и действующими (эффективными) значениями.

Среднее значение переменного тока

Среднее значение переменного тока равно величине такого постоянного тока, при котором через поперечное сечение провод-проходит то же количество электричества Q, что и при переменном токе.

Таким образом, среднее значение переменного тока эквивалентно постоянному току по количеству электричества Q, проходящему через поперечное сечение проводника в определенный промежуток времени.

Однофазные электрические цепи переменного тока

Средние значения переменных величин обозначаются прописными буквами с индексом «с», т. е. .

Однофазные электрические цепи переменного тока

Если ток изменяется по синусоидальному закону, то за половину периода через поперечное сечение проводника проходит определенное количество электричества Q в определенном направлении, а за вторую половину периода через то же сечение проходит то же количество электричества в обратном направлении. Таким образом, среднее значение синусоидального тока за период равно нулю, т. е. = 0.

Поэтому для синусоидального переменного тока определяется его среднее значение за половину периода Т/2, т. е.

Однофазные электрические цепи переменного тока

Из выражения (2.1) значение переменного тока Однофазные электрические цепи переменного тока, откуда Однофазные электрические цепи переменного тока. Следовательно, среднее значение синусоидального тока Однофазные электрические цепи переменного токас начальной фазой Однофазные электрические цепи переменного тока= 0 за полупериод определяется (рис. 10.6) выражением

Однофазные электрические цепи переменного тока

Однофазные электрические цепи переменного тока

где

Графически среднее за полупериод значение синусоидального тока равно высоте прямоугольника с основанием, равным Т/2, и площадью, равной площади, ограниченной кривой тока и осью абсцисс за половину периода (рис. 10.6).

Однофазные электрические цепи переменного тока

Под средним значением переменной величины понимают постоянную составляющую этой величины.

Средние значения синусоидального напряжения и ЭДС за полупериод можно определить по аналогии с током.

Однофазные электрические цепи переменного тока

Действующее значение переменного тока

Действующее (или эффективное) значение переменного тока — значение переменного тока, эквивалентное постоянному току тепловому действию.

Действующее значения переменных величин обозначается прочими буквами без индексов: I, U, Е.

Действующее значение переменного тока I равно величине такого постоянного тока, которое за время, равное одному периоду первого тока Т, выделит в том же сопротивлении R такое же количество тепла, что и переменный ток i:

Однофазные электрические цепи переменного тока

Откуда действующее значение переменного тока

Однофазные электрические цепи переменного тока

Однофазные электрические цепи переменного тока

Если переменный ток изменяется по синусоидальному закону с начальной фазой, равной нулю, т.е. , то действующее сечение такого синусоидального тока будет равно

Однофазные электрические цепи переменного тока

Однофазные электрические цепи переменного тока

Действующее значение синусоидального тока в =1 ,41 раза меньше его амплитудного значения. Так же можно определить действующие значения синусоидального напряжения и ЭДС.

Однофазные электрические цепи переменного тока

Номинальные значения тока и напряжения в электрических цепей и устройствах выражаются их действующими значениями.

Так, например, стандартные напряжения электрических сетей U= 127 В или U = 220 В выражают действующие значения этих напряжений. А изоляцию необходимо рассчитывать на амплитудное значение этих напряжений, т. е.

Однофазные электрические цепи переменного тока

При расчете цепей переменного тока и их исследованиях чаще всего пользуются действующими (эффективными) значениями тока, напряжения и ЭДС.

На шкалах измерительных приборов переменного тока указывается действующие значение переменного тока или напряжения.

Именно действующие значения тока, напряжения и ЭДС указываются в технической документации, если нет специальных оговорок.

Коэффициенты формы и амплитуды

Отклонения кривых тока, напряжения и ЭДС от синусоиды характеризуются коэффициентами формы Однофазные электрические цепи переменного токаи амплитуды Однофазные электрические цепи переменного тока.

Однофазные электрические цепи переменного тока

Коэффициент формы определяется отношением действующего значения переменной величины к ее среднему значению:

Однофазные электрические цепи переменного тока

Коэффициент формы необходимо учитывать при проектировании и изучении выпрямительных устройств и электрических машин.

Для синусоидальных величин коэффициент формы будет равен

Однофазные электрические цепи переменного тока

Однофазные электрические цепи переменного тока

Коэффициент амплитуды определяется отношением амплитудного значения переменной величины к ее действующему значению:

Однофазные электрические цепи переменного тока

Для синусоидальных величин коэффициент амплитуды равен

Однофазные электрические цепи переменного тока

Чем больше коэффициент формы и коэффициент амплитуды отличается от значений Однофазные электрические цепи переменного тока= 1,11 и Однофазные электрические цепи переменного тока= 1,41, тем больше рассматриваемая кривая отличается от синусоиды. Так, например, если Однофазные электрические цепи переменного тока= 1,41, то исследуемая кривая имеет более острую форму, чем синусоида, а если Однофазные электрические цепи переменного тока

При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org

Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи

Сайт пишется, поддерживается и управляется коллективом преподавателей

Telegram и логотип telegram являются товарными знаками корпорации Telegram FZ-LLC.

Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.

Векторная диаграмма токов и напряжений

Процессы, протекающие в электроцепи переменного тока с активным сопротивлением и реактивной индуктивностью, можно наглядно выразить в графическом виде.

Векторная диаграмма

Статья даст описание, что такое векторные диаграммы, где и для чего они используются. Также будет описана временная диаграмма и ее назначение. В конце будет дан пример построения простой диаграммы для электроцепи с последовательным соединением элементов.

Определение

Векторная диаграмма токов и напряжений — это геометрическое изображение всех процессов, величин и амплитуд синусоидального тока. Все имеющиеся величины располагаются на плоскости в виде векторов.

Построение векторной диаграммы использует физика и электротехника. Благодаря созданию такой диаграммы можно значительно упростить выполняемые расчеты, а так же в наглядном и доступном виде отобразить происходящие процессы.

Метод векторных диаграмм позволяет также увидеть в цепи переменного тока возникающие короткие и межфазовые замыкания, а также вычислить возможные потери мощности.

векторная и временная диаграмма

Обычно такая диаграмма строится вместе с временной. Временная диаграмма — это графическое изображение входа и выхода в электрической цепи. Временные диаграммы помогают определить временной промежуток между началом, протеканием и окончанием сигнала. Например, при нажатии на кнопку возникает сигнал, который поступает к приемнику и запускает процесс его работы.

Временные диаграммы также применимы к синусоидальной электрической цепи, так как этот ток имеет начальную точку отсчета (включение питания) и время движения от источника тока к потребителю. Такие диаграммы представляют собой график, на котором изображается начальная точка отсчета, вектор времени и углы смещения фаз.

Разновидности

Разобравшись, что такое и для чего применяется векторная диаграмма, нужно узнать какие разновидности построения существуют. Они отличаются по характеру построения и типу. По характеру бывают:

  1. Точными. Векторная точная диаграмма — это отображение выполненного численного расчета в соответствующем масштабе. С помощью нее определяют параметры фаз и амплитудные значения строго геометрическим способом.
  2. Качественные. Такие гистограммы строят для наблюдения взаимосвязи между электровеличинами без использования числовых характеристик. Такой способ позволяет экспериментировать с различными параметрами и моделировать процессы в электроцепях.

Векторную диаграмму токов можно построить 2 разными способами:

Круговая диаграмма

  1. Круговым. В ее принципе лежит вектор, который описывает изменение характеристик путем образования круга или полукруга на плоскости. При таком варианте учитывается направление движения с учетом направления положения вектора.
  2. Линейным. Такой векторной диаграмме при изменении характеристик направление изменяется строго прямолинейно.

Линейная диаграмма

Оба построения могут использоваться для расчета характеристик переменного тока в цепи с сопротивлением и индуктивностью.

Построение

Построение простых векторных диаграмм будет рассмотрено в данном разделе. Для примера можно взять простую цепь с несколькими элементами и их значениями. Такая схема подразумевает последовательное соединение элементов между собой. Цепь состоит из катушки индуктивности, конденсатора и активного сопротивления. Параметры каждого элемента цепи приведены ниже.

  1. Катушка индуктивности UL с напряжением 15 вольт. Ток в индуктивном сопротивлении имеет сдвиг фазы 90°.
  2. Конденсатор UC с напряжением 20 вольт и опережением на 90 градусов.
  3. Напряжение резистора UR 10 вольт, его направление совпадает с током I.
  4. Сила тока в цепи I равняется 3 ампера.

Далее можно сделать простую диаграмму, которая поможет определить напряжение для всей схемы.

  1. Отложить на плоскости I в виде горизонтальной линии с масштабом 1 A/см (масштаб может быть любым, главное — выполнять все элементы диаграммы одного типа в одном масштабе). Сам ток равен 3 ампера, поэтому его длина будет равна 3 см.Откладываем вектор тока I
  2. Теперь необходимо отложить вертикальный вектор UL в масштабе 5 В/см. Он отображает напряжение катушки индуктивности и равен 15 вольт. Его длина на плоскости составит в данном масштабе так же 3 см.Откладываем вектор катушки UL
  3. Далее нужно графически обозначить вектор напряжения активного сопротивления. Его точка отсчета располагается на окончании вертикального вектора UL. Для принятого масштаба 5 В/см ему соответствует вектор длиной 2 см. Линия должна быть строго параллельна горизонтальному вектору I.Откладываем вектор резистора UR
  4. Теперь нужно отобразить на данной диаграмме напряжение конденсатора UC. Его началом будет конечная точка вектора UR, а конец данного вектора будет расположен ниже горизонтального вектора I. В масштабе 5 В/см ему соответствует вектор длиной 4 см.Откладываем вектор конденсатора UC
  5. Чтобы определить соответствующее такой схеме общение напряжение U надо будет сделать следующее. Начало вектора расположено в принятой точке отсчета, а конец его будет расположен в конечной точке вектора UC.

Получаем общее напряжение U

Поэтому если есть схема с последовательным соединением элементов, то всегда можно довольно просто построить векторную диаграмму и рассчитать общее напряжение для такой схемы.

Способ 2

Построение векторных диаграмм с учетом всех известных значений для цепи переменного тока с последовательным соединением конденсатора, резистора и катушки индуктивности. При таком построении нам так же известно напряжение самой цепи. Цепь состоит из:

  • Резистора UR;
  • Конденсатора UC;
  • Катушки UL.
  1. На плоскости Im откладывается вектор UR (резистор). Его направление точно совпадает с током, поэтому это будет горизонтальная линия.Вектор UR
  2. От точки отсчета откладывается вниз вектор UC (конденсатор). Вектор откладывается под углом 90 градусов вниз, так как он имеет указанное ранее опережение 90°.Вектор UС
  3. От этой же точки отсчета откладывается вектор UL (катушка индуктивности). Ее значение откладывается ровно на 90 градусов вертикально, так как есть сдвиг фазы на 90 градусов.

Общая диаграмма

Данная диаграмма может использоваться для контроля и расчета влияния всех известных параметров цепи и элементов, а также их взаимосвязи между собой.

  1. Показать результат сложения вектора UL и UC.Сложение двух значений
  2. При увеличении величины сопротивления определить разницу между напряжением и сопротивлением можно, используя новый вектор Um.Увеличение сопротивления
  3. Кроме того можно определить угол сдвига фазы φ в цепи.

Сдвиг фазы

Основное преимущество векторной диаграммы заключается в следующем — простое и быстрое сложение, вычитание двух параметров во время расчета электрических цепей.

Понятие о векторах и векторных диаграммах также подразумевает расчет цепи питания трехфазной сети, подключенной по методу звезды. Она строится с учетом сразу 3 отложенных векторов от 0 оси ординат. Такое построение определяет вектор от источника тока к приемнику. Строится вектор со следующими значениями:

  1. На оси ОХ откладываются настоящие значения величин, а на оси OY мнимые значения.
  2. Угловая величина обозначается как W.
  3. Также присутствует сам вектор Im и угол сдвига фаз φ.

Далее нужно сделать:

  1. На плоскости выбрать точку отсчета.
  2. От нее отложить вектор Im, учитывая угол сдвига фаз равный 90°.
  3. Длина вектора Im равна значению его напряжения и откладывается в выбранном масштабе.

Вектор трехфазной цепи

Таким же образом на плоскость накладываются еще две прямые линии. Общая диаграмма покажет симметричность фаз или их сдвиг при появлении короткого замыкания. Такая диаграмма может стать примером для расчета напряжения, тока или нагрузки на каждую фазу с моделированием различных параметров.

Заключение

Векторные диаграммы сложны в понимании при расчете сложных цепей, с большим количеством сопротивлений и индуктивностью. Также, при расчете стоит учитывать тип соединения всех элементов, симметрию цепи и основные ее значения.

Видео по теме

Векторные диаграммы трехфазных цепей

Векторная диаграмма — способ изображения переменных напряжений и токов с помощью векторов.

Векторная диаграмма трехфазной системы ЭДС и график ЭДС фаз А, B и С:

Векторная диаграмма трехфазной симметричной системы ЭДС:

Векторная диаграмма напряжений симметричной нагрузки, соединенной звездой:

Построение диаграммы напряжений симметричной нагрузки, соединенной звездой:

Векторная диаграмма токов активной несимметричной нагрузки, соединенной звездой:

Построение векторной диаграммы для несимметричной нагрузки при обрыве нейтрального провода:

Несимметричная нагрузка при обрыве нейтрального провода:

Построение диаграммы для несимметричной нагрузки. Звезда без нейтрального провода:

Векторная диаграмма симметричной нагрузки, соединенной звездой:

Векторные диаграммы напряжений и токов при соединении приемников треугольником:

Векторная диаграмма напряжений и токов при соединении приемников треугольником:

Векторная диаграмма напряжений и токов при соединении приемников треугольником (несимметричная нагрузка):

Векторная диаграмма напряжений и токов несимметричной нагрузки, соединенной треугольником:

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Подписывайтесь на наш канал в Telegram!

Просто пройдите по ссылке и подключитесь к каналу.

Не пропустите обновления, подпишитесь на наши соцсети:

Временная(волновая) диаграмма

Временная диаграмма представляет графическое изображение синусоидальной величины в заданном масштабе в зависимости от времени (рис. 2.1).

Графоаналитический способ

Рис. 2.2

Графически синусоидальные величины изображаются в виде вращающегося вектора (рис. 2.2). Предполагается вращение против часовой стрелки с частотой вращения ω. Величина вектора в заданном масштабе представляет амплитудное значение. Проекция на вертикальную ось есть мгновенное значение величины.

Совокупность векторов, изображающих синусоидальные величины (ток, напряжение, ЭДС) одной и той же частоты называют векторной диаграммой.

Векторные величины отмечаются точкой над соответствующими переменными.

Использование векторных диаграмм позволяет существенно упросить анализ цепей переменного тока, сделать его простым и наглядным.

В основе графоаналитического способа анализа цепей переменного тока лежит построение векторных диаграмм.

34 Цепь однофазного переменного тока с активным сопротивлением. Активная мощность.

Зададимся изменением тока в резисторе по синусоидальному закону

Воспользуемся законом Ома для мгновенных значений тока и напряжения

Формальная запись синусоидального напряжения имеет вид

Соотношения (2.13) и (2.14) будут равны если будут выполнены условия равенства амплитуд и фаз

Соотношение (2.15) может быть записано для действующих значений

Соотношение (2.16) показывает, что фазы напряжения и тока в резисторе совпадают. Графически это представлено на временной диаграмме (рис. 2.7) и на комплексной плоскости (рис. 2.8).


Рис. 2.7 и 2.8

По аналогии с мощностью в цепях постоянного тока P = U I, в цепях переменного тока рассматривают мгновенную мощность p = u i.

АКТИВНАЯ МОЩНОСТЬ

Зададим напряжение и ток в виде соотношений

Читайте также: Падение напряжения в электролите это

Известно, что для резистора ψu = ψi, тогда для р получим

Из уравнения (2.32) видно, что мгновенная мощность всегда больше нуля и изменяется во времени. В таких случаях принять рассматривать среднюю за период Т мощность

Если записать Um и Im через действующие значения U и I: , , то получим

По форме уравнение (2.34) совпадает с мощностью на постоянном токе. Величину Р равную произведению действующих значений тока и напряжения называют активной мощностью. Единицей ее измерения является Ватт (Вт).

35 Цепь однофазного переменного тока с индуктивным сопротивлением. Реактивная мощность

Зададим изменение тока в индуктивности по синусоидальному закону

Используем уравнение связи между током и напряжением в индуктивности

Заменим cos на sin и получим

Формальная запись синусоидального напряжения имеет вид

Соотношения (2.18) и (2.19) будут равны если выполняется условие равенства амплитуд и фаз

Уравнение (2.20) можно переписать для действующих значений

Уравнение (2.21) показывает, что фаза тока в индуктивности отстает от фазы напряжения на 90°. Величину XL = ωL в уравнении (2.20) называют индуктивным сопротивлением. Единицей его измерения является Ом. Графически электрические процессы в индуктивности представлены на рис. 2.10, 2.11.

РЕАКТИВНАЯ МОЩНОСТЬ

Известно, что в индуктивности соотношение фаз ψu = ψi + 90°. Для мгновенной мощности имеет

Усредняя уравнение (2.35) по времени за период Т получим

Для количественной оценки мощности в индуктивности используют величину QL равную максимальному значению рL

и называют ее реактивной (индуктивной) мощностью. Единицей ее измерения выбрали ВАр (вольт-ампер реактивный). Уравнение (2.36) можно записать через действующие значения U и I и используя формулу UL = I XL получим

36 Цепь однофазного переменного тока с активным и индуктивным сопротивлениями.

37 Цепь однофазного переменного тока с емкостным сопротивлением.

Зададим изменение тока в емкости по синусоидальному закону

Используем уравнением связи между током и напряжением в емкости

Формальная запись синусоидального напряжения имеет вид

Соотношения (2.23) и (2.24) будут равны если выполняется условие равенства амплитуд и фаз

Уравнение (2.25) можно переписать для действующих значений

Уравнение (2.26) показывает, что фаза напряжения в емкости отстает от фазы тока на 90°. Величину XC = 1 / (ωC) в уравнении (2.25) называют емкостным сопротивлением цепи и измеряют его в Омах. Графически электрические процессы в емкости представлены на рис. 2.13, 2.14.


Рис. 2.13 и 2.14

38 Цепь однофазного переменного тока с последовательным соединением активного, индуктивного и емкостного сопротивлений.

Проведем анализ работы электрической цепи с последовательным соединением элементов R, L, С.

Положим, что в этой задаче заданы величины R, L, С, частота f, напряжение U. Требуется определить ток в цепи и напряжение на элементах цепи. Из свойства последовательного соединения следует, что ток во всех элементах цепи одинаковый. Задача разбивается на ряд этапов.

Читайте также: Цифровой индикатор напряжения сети переменного тока

1. Определение сопротивлений.

Реактивные сопротивления элементов L и С находим по формулам

Полное сопротивление цепи равно

2. Нахождение тока. Ток в цепи находится по закону Ома

Фазы тока и напряжения отличаются на угол φ.

3. Расчет напряжений на элементах. Напряжения на элементах определяются по формулам

Для напряжений выполняется второй закон Кирхгофа в векторной форме.

39 Резонанс напряжений. Условие резонанса. Векторная диаграмма.

В зависимости от величин L и С возможны следующие варианты: XL > XC; XL XC угол φ > 0, UL > UC. Ток отстает от напряжения на угол φ. Цепь имеет активно-индуктивный характер. Векторная диаграмма напряжений имеет вид (рис. 2.16).

Для варианта XL 2 обозначена величина названная активной проводимостью первой ветви. Аналогичным образом получим

где g2 = R2 / Z2 2 ; а величину g = g1 + g2 называют активной проводимостью всей цепи.

Используя уравнение (2.31) запишем реактивные составляющие токов

где b1 и b2 – реактивные проводимости ветвей b1 = XL / Z1 2 , b2 = XC / Z2 2 . Для реактивной проводимости всей цепи имеем

В этом уравнении взят знак минус, из тех же соображений, как и в уравнении (2.44). Величина тока I и угол φ находятся из соотношений (2.45) и (2.46).

41 Резонанс токов. Условие резонанса

В зависимости от соотношения реактивных проводимостей b1 и b2 возможны три варианта: b1 > b2; b1 b2 имеем I > I, φ > 0. Цепь имеет активно-индуктивный характер. Векторная диаграмма изображена на рис. 2.21.

Векторная диаграмма для трехфазной цепи

Цепь трехфазного тока может содержать в себе различные компоненты. Для ее стабильной работы, необходимо правильно рассчитать все напряжения, нагрузки и иные параметры. Статья даст подробное описание, что такое векторная диаграмма для трехфазной цепи, опишет ее разновидности, способы расчета.

Определение

Векторной диаграммой называют метод графического изображения расчета всех параметров цепи переменного тока в виде векторов. Данный метод предполагает изображение всех составных напряжений, токов и процессов в виде отложенных векторов на плоскости.

Назначение

Векторная диаграмма используется для расчетов напряжений, токов в трехфазной цепи и других цепях переменного тока. Метод помогает определить значение всех процессов, происходящих в схеме, их влияние на каждый проводник, нейтраль, а также провести расчет возникающих нагрузок.

Разновидности

Векторные диаграммы трехфазных сетей могут быть симметричными или несимметричными. Построение гистограммы прямо зависит от ее схемы. Разновидности цепей и их гистограмм описаны далее в статье.

Симметричные

Симметричные цепи переменного тока предполагают соединение 3 фаз от источника (генератора) с тремя приемниками.

При этом создаются совершенно независимые трехфазные схемы. При этом используется соединение трех фаз генератора звездой. Для симметричных схем должны соблюдаться требования:

  1. Амплитуда должна быть для всех фаз одинаковой.
  2. ЭДС должна иметь угол сдвига 120 градусов.
  3. Угловые частоты должны быть равными.

Читайте также: Что такое эффективное напряжение в цепи переменного тока

Также учитывается принцип чередования ЭДС во времени. Если ротор генератора вращается по часовой стрелке (правое вращение), то происходит чередование прямого типа (A, B, C). Такая система считается симметричной.

Если ротор вращается против часовой стрелки (левое вращение), чередование считается обратным (A, C, B), но общая система ЭДС остается все так же симметричной.

Для симметричных схем применяется расчет по векторной гистограмме, приведенной ниже.

Несимметричные

Несимметричные цепи предполагают разницу сопротивлений на каждой фазе. Подобная разница может возникнуть при возникновении обрыва одного проводника или нейтрали, его плохого контакта, короткого замыкания. Например, при обрыве нейтрального провода возникает:

  1. Увеличение сопротивления нейтрали.
  2. Полное отсутствие проводимости.
  3. Увеличение напряжения.
  4. Максимальное искажение фазных напряжений.

При расчете несимметричной цепи также берется расчет соединения источника с приемниками по схеме звезда. Разница состоит в дополнительном расчете смещений, сдвигов фаз и величин сопротивления каждого проводника.

Ниже приведена векторная диаграмма несимметричной цепи.

Построение диаграммы

Векторная диаграмма предполагает в своей основе следующие значения:

  1. Точку начала отсчета N для всех трех отдельных фаз.
  2. Векторное направление ABC как отдельных проводников источника напряжения (генератора). Каждый вектор имеет заданную длину, равную своему напряжению.
  3. Окончание векторов AВ, BС, CА, как приемников напряжения.

Данные значения дополняются единицей времени, за которое ток, под определенным напряжением и силой достигает приемников. Исходя из построения получаем результат: UAB=UBC=UCA.

А это значит то, что если фазная система напряжений симметрична, то линейная система также симметрична и равна, а кроме того имеет сдвиг на 120 градусов. Это простое определение вектора трехфазной цепи.

Переменный ток представляет собой синусоиду, которая может быть графически наложена на ось координат. При этом вектор имеет угловую скорость вращения, которая равна угловым частотам тока. При построении необходимо также учесть то, что вектор является графическим изображением амплитуды колебания, в котором угол колебания равен начальной точке отсчета.

Например, за ось координаты выбрано значение 0. Также известно значение угла смещения. Далее стоит провести вектор «Im», который определяет направление движения тока. При построении вектора с использованием этих значений станут видны параметры опережения, отставания или сдвига фазы. Таким образом можно визуально увидеть разницу величин на каждом проводнике схемы.

Заключение

Если вы работаете с трехфазными цепями, то векторная диаграмма используется для получения визуального отображения всех действующих процессов в таких цепях переменного трехфазного тока. Такая диаграмма полезна при определении несоответствий схемы между углами сдвига фаз, напряжениями и токами.

Видео по теме