Временное сопротивление это напряжение

Предел прочности

Предел прочности — это то же, что и временное сопротивление материала. Но несмотря на то, что правильнее использовать термин временное сопротивление, понятие предел прочности лучше прижилось в технической разговорной речи. В то же время в нормативной документации, стандартах применяют термин «временное сопротивление».

Прочность — это сопротивление материала деформации и разрушению, одно из основных механических свойств. Другими словами, прочность — это свойство материалов, не разрушаясь, воспринимать те или иные воздействия (нагрузки, температурные, магнитные и другие поля).

К характеристикам прочности при растяжении относятся модуль нормальной упругости, предел пропорциональности, предел упругости, предел текучести и временное сопротивление (предел прочности).

Предел прочности — это максимальное механическое напряжение, выше которого происходит разрушение материала, подвергаемого деформации; предел прочности при растяжении обозначается σВ и измеряется в килограммах силы на квадратный сантиметр (кгс/см 2 ), а также указывается в мегапаскалях (МПа).

Различают:

  • предел прочности при растяжении,
  • предел прочности при сжатии,
  • предел прочности при изгибе,
  • предел прочности при кручении.

Предел кратковременной прочности (МПа) определяется с помощью испытаний на растяжение, деформацию проводят до разрушения. С помощью испытаний на растяжение определяют временное сопротивление, удлинение, предел упругости и др.. Испытания на длительную прочность предназначены главным образом для оценки возможности использования материалов при высоких температурах (длительная прочность, ползучесть); в результате определяется σB/Zeit — предел ограниченной длительной прочности на заданный срок службы. [1]

Прочность металлов

Физику прочности основал Галилей: обобщая свои опыты, он открыл (1638 г.), что при растяжении или сжатии нагрузка разрушения P для данного материала зависит только от площади поперечного сечения F. Так появилась новая физическая величина — напряжение σ=P/F — и физическая постоянная материала: напряжение разрушения [4].

Физика разрушения как фундаментальная наука о прочности металлов возникла в конце 40-х годов XX века [5]; это было продиктовано острой необходимостью разработки научно обоснованных мер для предотвращения участившихся катастрофических разрушений машин и сооружений. Раньше в области прочности и разрушения изделий учитывалась только классическая механика, основанная на постулатах однородного упруго-пластического твёрдого тела, без учёта внутренней структуры металла. Физика разрушения учитывает также атомно-кристаллическое строение решётки металлов, наличие дефектов металлической решётки и законы взаимодействия этих дефектов с элементами внутренней структуры металла: границами зёрен, второй фазой, неметаллическими включениями и др.

Большое влияние на прочность материала оказывает наличие ПАВ в окружающей среде, способных сильно адсорбироваться (влага, примеси); происходит уменьшение предела прочности.

К повышению прочности металла приводят целенаправленние изменения металлической структуры, в том числе — модифицирование сплава.

Учебный фильм о прочности металлов (СССР, год выпуска:

Предел прочности металла

Предел прочности меди. При комнатной температуре предел прочности отожжённой технической меди σВ=23 кгс/мм 2 [8]. С ростом температуры испытания предел прочности меди уменьшается. Легирующие элементы и примеси различным образом влияют на предел прочности меди, как увеличивая, так и уменьшая его.

Предел прочности алюминия. Отожжённый алюминий технической чистоты при комнатной температуре имеет предел прочности σВ=8 кгс/мм 2 [8]. С повышением чистоты прочность алюминия уменьшается, а пластичность увеличивается. Например, литой в землю алюминий чистотой 99,996% имеет предел прочности 5 кгс/мм 2 . Предел прочности алюминия уменьшается естественным образом при повышении температуры испытания. При понижении температуры от +27 до -269°C временное сопротивление алюминия повышается — в 4 раза у технического алюминия и в 7 раз у высокочистого алюминия. Легирование повышает прочность алюминия.

Предел прочности сталей

В качестве примера представлены значения предела прочности некоторых сталей. Эти значения взяты из государственных стандартов и являются рекомендуемыми (требуемыми). Реальные значения предела прочности сталей, равно как и чугунов, а также других металлических сплавов зависят от множества факторов и должны определяться при необходимости в каждом конкретном случае.

Для стальных отливок, изготовленных из нелегированных конструкционных сталей, предусмотренных стандартом (стальное литьё, ГОСТ 977-88), предел прочности стали при растяжении составляет примерно 40-60 кг/мм 2 или 392-569 МПа (нормализация или нормализация с отпуском), категория прочности К20-К30. Для тех же сталей после закалки и отпуска регламентируемые категории прочности КТ30-КТ40, значения временного сопротивления уже не менее 491-736 МПа.

Читайте также: Область применения трансформатора напряжения

Для конструкционных углеродистых качественных сталей (ГОСТ 1050-88, прокат размером до 80 мм, после нормализации):

  • Предел прочности стали 10: сталь 10 имеет предел кратковременной прочности 330 МПа.
  • Предел прочности стали 20: сталь 20 имеет предел кратковременной прочности 410 МПа.
  • Предел прочности стали 45: сталь 45 имеет предел кратковременной прочности 600 МПа.

Категории прочности сталей

Категории прочности сталей (ГОСТ 977-88) условно обозначаются индексами «К» и «КТ», после индекса следует число, которое представляет собой значение требуемого предела текучести. Индекс «К» присваивается сталям в отожженном, нормализованном или отпущенном состоянии. Индекс «КТ» присваивается сталям после закалки и отпуска.

Предел прочности чугуна

Метод определения предела прочности чугуна регламентируется стандартом ГОСТ 27208-87 (Отливки из чугуна. Испытания на растяжение, определение временного сопротивления).

Предел прочности серого чугуна. Серый чугун (ГОСТ 1412-85) маркируется буквами СЧ, после букв следуют цифры, которые указывают минимальную величину предела прочности чугуна — временного сопротивления при растяжении (МПа*10 -1 ). ГОСТ 1412-85 распространяется на чугуны с пластинчатым графитом для отливок марок СЧ10-СЧ35; отсюда видно, минимальные значения предела прочности серого чугуна при растяжении в литом состоянии или после термической обработки варьируются от 10 до 35 кгс/мм 2 (или от 100 до 350 МПа). Превышение минимального значения предела прочности серого чугуна допускается не более, чем на 100 МПа, если иное не оговорено отдельно.

Предел прочности высокопрочного чугуна. Маркировка высокопрочного чугуна также включает в себя цифры, обозначающие временное сопротивление при растяжении чугуна (предел прочности), ГОСТ 7293-85. Предел прочности при растяжении высокопрочного чугуна составляет 35-100 кг/мм 2 (или от 350 до 1000 МПа).

Из вышеизложенного видно, что чугун с шаровидным графитом может успешно конкурировать со сталью.

Подготовлено: Корниенко А.Э. (ИЦМ)

  1. Циммерман Р., Гюнтер К. Металлургия и материаловедение. Справ. изд. Пер. с нем. – М.: Металлургия, 1982. – 480 с.
  2. Иванов В.Н. Словарь-справочник по литейному производству. – М.: Машиностроение, 1990. – 384 с.: ил. — ISBN 5-217-00241-1
  3. Жуковец И.И. Механические испытания металлов: Учеб. для сред. ПТУ. — 2-е изд., перераб. и доп. – М.: Высш.шк., 1986. — 199 с.: ил. — (Профтехобразование). — ББК 34.2/ Ж 86/ УДЖ 620.1
  4. Штремель М.А. Прочность сплавов. Часть II. Деформация: Учебник для вузов. — М.:*МИСИС*, 1997. — 527 с.
  5. Мешков Ю.Я. Физика разрушения стали и актуальные вопросы конструкционной прочности // Структура реальных металлов: Сб. науч. тр. — Киев: Наук. думка, 1988. — С.235-254.
  6. Френкель Я.И. Введение в теорию металлов. Издание четвёртое. — Л.: «Наука», Ленингр. отд., 1972. 424 с.
  7. Получение и свойства чугуна с шаровидным графитом. Под редакцией Гиршовича Н.Г. — М.,Л.: Ленинградское отделение Машгиза, 1962, — 351 с.
  8. Бобылев А.В. Механические и технологические свойства металлов. Справочник. — М.: Металлургия, 1980. 296 с.

Конкурс «Я и моя профессия: металловед, технолог литейного производства». Узнать, участвовать >>> —>

Предел прочности материалов (разрыв металлов) при растяжении и сжатии: что это такое, виды, фото

При строительстве объектов обязательно необходимо использовать расчеты, включающие подробные характеристики стройматериалов. В обратном случае на опору может быть возложена слишком большая, непосильная нагрузка, из-за чего произойдет разрушения. Сегодня поговорим о пределе кратковременной прочности материала при разрыве и натяжении, расскажем, что это такое, его определение и обозначение, как работать с этим показанием.

Что это значит

ПП – будем использовать это сокращение, а также можно говорить об официальном сочетании «временное сопротивление» – это максимальная механическая сила, которая может быть применена к объекту до начала его разрушения. В данном случае мы не говорим о химическом воздействии, но подразумеваем, что нагревание, неблагоприятные климатические условия, определенная среда могут либо улучшать свойства металла (а также дерева, пластмассы), либо ухудшать.

Ни один инженер не применяет при проектировании крайние значения, потому что необходимо оставить допустимую погрешность – на окружающие факторы, на длительность эксплуатации. Рассказали, что называется пределом прочности, теперь перейдем к особенностям определения.

Читайте также: Генератор напряжения его нагрузка

Как производится испытание

Изначально особенных мероприятий не было. Люди брали предмет, использовали его, а как только он ломался, анализировали поломку и снижали нагрузку на аналогичное изделие. Теперь процедура гораздо сложнее, однако, до настоящего времени самый объективный способ узнать ПП – эмпирический путь, то есть опыты и эксперименты.

Все проверки проходят в специальных условиях с большим количеством точной техники, которая фиксирует состояние, характеристики подопытного материала. Обычно он закреплен и испытывает различные воздействия – растяжение, сжатие. Их оказывают инструменты с высокой точностью – отмечается каждая тысячная ньютона из прикладываемой силы. Одновременно с этим фиксируется каждая деформация, когда она происходит. Еще один метод не лабораторный, а вычислительный. Но обычно математический анализ используется вместе с испытаниями.

Определение термина

Образец растягивается на испытательной машине. При этом сначала он удлиняется в размере, а поперечное сечение становится уже, а затем образуется шейка – место, где самый тонкий диаметр, именно здесь заготовка разорвется. Это актуально для вязких сплавов, в то время как хрупкие, к ним относится чугун и твердая сталь, растягиваются совсем незначительно без образования шейки. Подробности посмотрим на видео:

Виды ПП

Временное сопротивление разрыву определяют по различным воздействиям, согласно этому его классифицируют по:

  • сжатию – на образец действуют механические силы давления;
  • изгибу – деталь сгибают в разные стороны;
  • кручению – проверяется пригодность для использования в качестве крутящегося вала;
  • растягиванию – подробный пример проверки мы привели выше.

Предел прочности на растяжение стали

Стальные конструкции давно заменили прочие материалы, так как они обладают отличными эксплуатационными характеристиками – долговечностью, надежностью и безопасностью. В зависимости от применяемой технологии, он подразделяется на марки. От самой обычной с ПП в 300 Мпа, до наиболее твердой с высоким содержанием углерода – 900 Мпа. Это зависит от двух показателей:

  • От способов термообработки – отжиг, закалка, криообработка.
  • Какие примеси содержатся в составе. Одни считаются вредными, от них избавляются для чистоты сплава, а вторые добавляют для укрепления.

Предел прочности материала: что называют текучестью

Новый термин обозначается в технической литературе буквой Т. Показатель актуален исключительно для пластичных образцов и показывает, как долго он может деформироваться без увеличения на него внешней нагрузки.

Обычно после преодоления этого порога кристаллическая решетка сильно меняется, перестраивается. Результатом выступают пластические деформации. Они не являются нежелательными, напротив, происходит самоупрочнение сплава.

Усталость стали

Обозначается буквой R. Это аналогичный параметр, то есть он определяет, какая сила может воздействовать на элемент, но не в единичном случае, а в цикле. То есть на подопытный эталон циклично, раз за разом действуют определенные давления. Среднее количество повторений – 10 в седьмой степени. Именно столько раз металл должен без деформирования и потери своих характеристик выдержать воздействие.

Если проводить эмпирические испытания, то потребуется множество времени – нужно проверить все значения векторной величины, прикладывая ее по множеству циклов. Поэтому обычно коэффициент рассчитывается математически.

Предел пропорциональности

Это показатель, определяющий длительность оказываемых нагрузок к деформации тела. При этом численные характеристики должны изменяться в разный степени по закону Гука. Простыми словами: чем больше оказывается сжатие (растяжение), тем сильнее деформируется образчик.

Параметр каждого из них находится между абсолютной и классической упругостью. То есть если изменения обратимы, после того как сила перестала действовать (форма прежняя – пример, сжимание пружины), то такие качества нельзя называть пропорциональными.

Как определяют свойства металлов

Проверяют не только то, что называется пределом прочности, но и такую характеристику стали как твердость. Испытания проводят следующим образом: в образец вдавливают шарик или конус из алмаза – наиболее прочной породы. Чем крепче материал, тем меньше след остается. Более глубокие, с широким диаметром отпечатки остаются на мягких сплавах. Еще один опыт – на удар. Воздействие оказывается только после заранее сделанного надреза на заготовке. То есть разрушение проверяется для наиболее уязвимого участка.

Механические свойства

Различают 5 характеристик:

  • Пластичность – это возможность деформироваться, менять форму, но сохранять внутреннюю структуру.
  • Твердость – готовность встретиться с более твердым материалом и не получить значительных ущербов.
  • Ударная вязкость – способность сопротивляться ударам.
  • Усталость – длительность сохранения качеств под воздействием цикличных нагрузок.
  • Предел прочности стали при растяжении и на разрыв – это обозначение временного сопротивления внешним силам, напряжения (МПа), возникающего внутри.

Читайте также: Блок управления зажиганием а низкое напряжение

Классы

Все категории записаны в нормативных документах – ГОСТах, по ним все российские предприниматели изготавливают любой металлопрокат и прочие металлические изделия. Вот соответствие обозначения и параметра в таблице:

Класс Временное сопротивление, Н/мм2
265 430
295 430
315 450
325 450
345 490
355 490
375 510
390 510
440 590

Видим, что для некоторых классов остаются одинаковыми показатели ПП, это объясняется тем, что при равных значениях у них может различаться текучесть или относительное удлинение. В зависимости от этого возможна различная максимальная толщина металлопроката.

Формула для механического напряжения

R с индексом «у» – обозначение данного параметра в физике. Рассчитывается как ПП (в записи – R) поделенное на плотность – d. То есть этот расчет имеет практическую ценность и учитывает теоретические знания о свойствах стали для применения в жизни. Инженеры могут сказать, как меняется временное сопротивление в зависимости от массы, объема изделия. Логично, что чем тоньше лист, тем легче его деформировать.

Здесь будет логичным объяснить, в чем измеряется прочность материала и что понимается под удельным пределом прочности металла. В Н/мм2 – это вытекает из предложенного алгоритма вычисления.

Использование свойств металлов

Два важных показателя – пластичность и ПП – взаимосвязаны. Материалы с большим первым параметром намного медленнее разрушаются. Они хорошо меняют свою форму, подвергаются различным видам металлообработке, в том числе объемной штамповке – поэтому из листов делают элементы кузова автомобиля. При малой пластичности сплавы называют хрупкими. Они могут быть очень твердыми, но при этом плохо тянуться, изгибаться и деформироваться, например, титан.

Сопротивление

  • Нормативное – прописано для каждого типа стали в ГОСТах.
  • Расчетное – получается после вычислений в конкретном проекте.

Первый вариант скорее теоретический, для практических задач используется второй.

Пути увеличения прочностных характеристик

Есть несколько способов это сделать, два основных:

  • добавка примесей;
  • термообработка, например, закал.

Иногда они используются вместе.

Общие сведения о сталях

Все они обладают химическими свойствами и механическими. Ниже подробнее поговорим о вариантах увеличения прочности, но для начала представим схему, на которой представлены все разновидности:

Также посмотрим более подробное видео:

Углерод

Чем больше углеродность вещества, тем выше твердость и меньше пластичность. Но в составе не должно быть более 1% химического компонента, так как большее количество приводит к обратному эффекту.

Марганец

Очень полезная добавка, но при массовой доле не более двух процентов. Обычно Mn добавляют для улучшения качеств обрабатываемости. Материал становится более подвержен ковке и свариванию. Это объясняется вытеснением кислорода и серы.

Кремний

Эффективно повышает прочностные характеристики, при этом не затрагивая пластичность. Максимальное содержание – 0,6%, иногда достаточно и 0,1%. Хорошо сочетается с другими примесями, в совокупности можно увеличить устойчивость к коррозии.

Азот и кислород

Если они попадают в сплав, но ухудшают его характеристики, при изготовлении от них пытаются избавиться.

Легирующие добавки

Также можно встретить следующие примеси:

  • Хром – увеличивает твёрдость.
  • Молибден – защищает от ржавчины.
  • Ванадий – для упругости.
  • Никель – хорошо влияет на прокаливаемость, но может привести к хрупкости.

Эти и другие химические вещества должны применяться в строгих пропорциях. В статье мы рассказали про предел прочности металла (кратковременное сопротивление материала) – что это, формулы, как определяется и обозначается сигма при растяжении и сжатии в единицах измерения. А также дали несколько таблиц, которыми можно пользоваться при работе. В качестве завершения давайте посмотрим видеоролик:

Чтобы уточнить интересующую вас информацию, свяжитесь с нашими менеджерами по телефонам 8 (908) 135-59-82; (473) 239-65-79; 8 (800) 707-53-38. Они ответят на все ваши вопросы.

  • Напряжение
  • Реле
  • Трансформатор
  • Что такое рекуперация на электровозе
  • Чем отличается электровоз от тепловоза
  • Чем глушитель отличается от резонатора
  • Стойки стабилизатора как определить неисправность
  • Стабилизатор поперечной устойчивости как работает

© 2023
Информация, опубликованная на сайте, носит исключительно ознакомительный характер

Временное сопротивление разрыву это напряжение

Трактор+

— это то же, что и временное сопротивление материала. Но несмотря на то, что правильнее использовать термин
временное сопротивление
, понятие предел прочности лучше прижилось в технической разговорной речи. В то же время в нормативной документации, стандартах применяют термин «временное сопротивление».

— это сопротивление материала деформации и разрушению, одно из основных
механических свойств
. Другими словами, прочность — это свойство материалов, не разрушаясь, воспринимать те или иные воздействия (нагрузки, температурные, магнитные и другие поля).

К характеристикам прочности при растяжении

Читайте также: Ютуб видео смотреть. Ветрогенератор из шуруповерта своими руками

относятся модуль нормальной упругости, предел пропорциональности, предел упругости, предел текучести и временное сопротивление (предел прочности).

Предел прочности

— это максимальное механическое напряжение, выше которого происходит разрушение материала, подвергаемого деформации; предел прочности при растяжении обозначается σВ и измеряется в килограммах силы на квадратный сантиметр (кгс/см 2 ), а также указывается в мегапаскалях (МПа).

  • предел прочности при растяжении,
  • предел прочности при сжатии,
  • предел прочности при изгибе,
  • предел прочности при кручении.

Предел кратковременной прочности (МПа)

определяется с помощью испытаний на растяжение, деформацию проводят до разрушения. С помощью испытаний на растяжение определяют временное сопротивление, удлинение, предел упругости и др.. Испытания на длительную прочность предназначены главным образом для оценки возможности использования материалов при высоких температурах (длительная прочность, ползучесть); в результате определяется σB/Zeit — предел ограниченной длительной прочности на заданный срок службы. [1]

Физику прочности

основал Галилей: обобщая свои опыты, он открыл (1638 г.), что при растяжении или сжатии нагрузка разрушения
P
для данного материала зависит только от площади поперечного сечения
F
. Так появилась новая физическая величина — напряжение
σ=P
/
F
— и физическая постоянная материала: напряжение разрушения [4].

Физика разрушения как фундаментальная наука о прочности металлов

возникла в конце 40-х годов XX века [5]; это было продиктовано острой необходимостью разработки научно обоснованных мер для предотвращения участившихся катастрофических разрушений машин и сооружений. Раньше в области прочности и разрушения изделий учитывалась только классическая механика, основанная на постулатах однородного упруго-пластического твёрдого тела, без учёта внутренней структуры металла. Физика разрушения учитывает также атомно-кристаллическое строение решётки металлов, наличие дефектов металлической решётки и законы взаимодействия этих дефектов с элементами внутренней структуры металла: границами зёрен, второй фазой, неметаллическими включениями и др.

Большое влияние на прочность материала

оказывает наличие ПАВ в окружающей среде, способных сильно адсорбироваться (влага, примеси); происходит уменьшение предела прочности.

К повышению прочности металла приводят целенаправленние изменения металлической структуры, в том числе — модифицирование сплава.

Учебный фильм о прочности металлов (СССР, год выпуска:

Читайте также: Как пользоваться макетной платой для монтажа без пайки. Как пользоваться беспаечной макетной платой

Предел прочности металла

Предел прочности меди

. При комнатной температуре предел прочности отожжённой технической меди σВ=23 кгс/мм 2 [8]. С ростом температуры испытания предел прочности меди уменьшается. Легирующие элементы и примеси различным образом влияют на предел прочности меди, как увеличивая, так и уменьшая его.

Предел прочности алюминия

. Отожжённый алюминий технической чистоты при комнатной температуре имеет предел прочности σВ=8 кгс/мм 2 [8]. С повышением чистоты прочность алюминия уменьшается, а пластичность увеличивается. Например, литой в землю алюминий чистотой 99,996% имеет предел прочности 5 кгс/мм 2 . Предел прочности алюминия уменьшается естественным образом при повышении температуры испытания. При понижении температуры от +27 до -269°C временное сопротивление алюминия повышается — в 4 раза у технического алюминия и в 7 раз у высокочистого алюминия. Легирование повышает прочность алюминия.

Проволока качественная

Проволока углеродистая

Диаметр, мм Временное сопротивление разрыву, Н/мм2 Нормативный документ Марка стали Нормативный документ на химсостав стали Назначение продукции Предприятие- производитель
0,03-0,49 согласно ТУ 14-4-189-72 ТУ 14-4-189-72 Св-08; Св-08А ГОСТ 2246-70 применяется в качестве керна для вольфрамовых спиралей Белорецкий металлургический комбинат
10 ГОСТ 1050-88
0,10-0,18 согласно ТУ 14-4-94-72 ТУ 14-4-94-72 08; 10; 08кп; 10кп ГОСТ 1050-88 для щёток
0,14-10,00 согласно ТУ 14-4-1563-89 ТУ 14-4-1563-89 Ст0-3; 08-15 ГОСТ 1050-88 для сеток
0,20-1,50 согласно ТУ 14-4-933-78 ТУ 14-4-933-78 35-60 ГОСТ 1050-88 для щёток
У7А-У9А
0,30-2,80 согласно ТУ 14-4-851-77 ТУ 14-4-851-77 Св-08 ГОСТ 2246-70 для гибких валов автомобилей ВАЗ
35; 45; 50
0,30-8,00 согласно ТУ 14-4-1566-89 ТУ 14-4-1566-89 45; 50; 55 ГОСТ 1050-88 для сеток Белорецкий металлургический комбинат
0,33 1850-2010 ТУ 14-4-121-72 10; 45; 50 ГОСТ 1050-88 для гибких валов автомобилей ВАЗ
0,38 1700-1930
0,40-6,00 согласно ТУ 14-4-131-73 ТУ 14-4-131-73 (08 по нормали «ФИАТ» 52605) 08кп ГОСТ 1050-88 для деталей автомобилей ВАЗ
0,46 740-1180 ТУ 14-4-121-72 10; 45; 50 ГОСТ 1050-88 для гибких валов автомобилей ВАЗ
0,85-2,00 согласно ТУ 14-173-124-2002 ТУ 14-173-124-2011 10 ГОСТ 1050-88; ГОСТ 10702-78 для мебельных скрепок Белорецкий металлургический комбинат
1,00; 1,20 ТУ 14-173-171-89 для закалки с отпуском
1,50-6,00 согласно ТУ 14-4-132-88 ТУ 14-4-132-88 (А 34 по нормали «ФИАТ» 52122) 10; 10кп; 15 ГОСТ 1050-88 для деталей автомобилей ВАЗ
2,30-5,00 440-640 ТУ 14-4-450-73 50 ГОСТ 1050-88 для профильной заготовки пильчатой ленты с закаленным зубом
2,35 1240-1390 ТУ 14-4-121-72 10; 45; 50 ГОСТ 1050-88 для гибких валов автомобилей ВАЗ
2,50-4,50 540-700 ТУ 14-173-71-2002 70 ГОСТ 14959-79 для дюбелей
3,60-4,00 1320-1570 ТУ 14-173-88-98 50 ГОСТ 1050-88 для обвязки хлопковых кип

По запросу продукция может быть изготовлена по другим техническим требованиям.

Проволока углеродистая отожженная

Диаметр, мм Временное сопротивление разрыву, Н/мм2 Нормативный документ Марка стали Нормативный документ на химсостав стали Назначение продукции Предприятие- производитель
2,50-4,48 согласно ТУ 14-4-777-76 ТУ 14-4-777-76 70 ГОСТ 14959-79 для деталей автомобилей ВАЗ Белорецкий металлургический комбинат

По запросу продукция может быть изготовлена по другим техническим требованиям.

Проволока оцинкованная

Диаметр, мм Временное сопротивление разрыву, Н/мм2 Нормативный документ Марка стали Нормативный документ на химсостав стали Назначение продукции Предприятие- производитель
4,0; 5,0 min 980 ТУ 14-4-1383-86 45-55 ГОСТ 1050-88 для централизации сигналов и стрелок Белорецкий металлургический комбинат

По запросу продукция может быть изготовлена по другим техническим требованиям.

Проволока с полимерным покрытием

Читайте также: Как проверить трансформатор мультиметром: особенности прямого и косвенного методов проверки

Диаметр, мм Временное сопротивление разрыву, Н/мм2 Нормативный документ Марка стали Нормативный документ на химсостав стали Назначение продукции Предприятие- производитель
2,8-3,0 max 687 ТУ 14-178-290-95 08-10 ГОСТ 1050-88 для сеток и ограждений Вяртсильский метизный завод

По запросу продукция может быть изготовлена по другим техническим требованиям.

Проволока шплинтовая

Размер, (толщина)×(ширина), мм Временное сопротивление разрыву, Н/мм2 Нормативный документ Марка стали Нормативный документ на химсостав стали Назначение продукции Предприятие- производитель
(0,45-2,80)×(0,90-5,60) согласно ТУ 14-4-183-72 ТУ 14-4-183-72 Ст0-1 ГОСТ 380-2005 для шплинтов Белорецкий металлургический комбинат
10; 20 ГОСТ 1050-88

По запросу продукция может быть изготовлена по другим техническим требованиям.

Проволока спицевая

Диаметр, мм Временное сопротивление разрыву, Н/мм2 Нормативный документ Марка стали Нормативный документ на химсостав стали Назначение продукции Предприятие- производитель
3,0; 3,5; 4,0; 4,5 980-1225 ГОСТ 3110-74 30; 40; 50 ГОСТ 1050-88 общего назначения Белорецкий металлургический комбинат
1,75; 2,00; 2,58 1080-1270 ТУ 14-173-21-92 35; 40; 45 ГОСТ 1050-88 для изготовления спиц велосипедов и мотоциклов
3,96; 4,5 980-1230 ТУ 14-173-25-92

По запросу продукция может быть изготовлена по другим техническим требованиям.

Проволока канатная

Диаметр, мм Временное сопротивление разрыву, Н/мм2 Нормативный документ Марка стали Нормативный документ на химсостав стали Предприятие- производитель
0,18-3,50 (оцинкованная); 0,18-4,00 (светлая) согласно ГОСТ 7372-79; EN 10264-2 ГОСТ 7372-79; EN 10264-2 40-65 ГОСТ 1050-88 Белорецкий металлургический комбинат
70-85 ГОСТ 14959-79
С42D2-С86D2 EN 10016-4

По запросу продукция может быть изготовлена по другим техническим требованиям.

Проволока из конструкционной стали

Диаметр, мм Временное сопротивление разрыву, Н/мм2 Нормативный документ Марка стали Нормативный документ на химсостав стали Назначение продукции Предприятие- производитель
0,038-0,50 согласно ТУ 14-4-76-72 ТУ 14-4-76-72 10; 15; 20 ГОСТ 1050-88 для бердного производства Белорецкий металлургический комбинат
0,50-10,00 согласно ГОСТ 17305-91 ГОСТ 17305-91 08кп-50 для металлических изделий
1,60-6,00 08кп; 10кп
Вяртсильский метизный завод

По запросу продукция может быть изготовлена по другим техническим требованиям.

Проволока подшипниковая

Диаметр, мм Временное сопротивление разрыву, Н/мм2 Нормативный документ Марка стали Нормативный документ на химсостав стали Назначение продукции Предприятие- производитель
1,0-11,2 590-720 ГОСТ 4727-83 ШХ15 ГОСТ 801-78 для шариков роликов и подшипников качения Белорецкий металлургический комбинат
1,4-9,8 570-750 ТУ 14-173-121-2002 для деталей, изготавливаемых методом холодной механической обработки или высадки

По запросу продукция может быть изготовлена по другим техническим требованиям.

Предел прочности сталей

В качестве примера представлены значения предела прочности некоторых сталей. Эти значения взяты из государственных стандартов и являются рекомендуемыми (требуемыми). Реальные значения предела прочности сталей, равно как и чугунов, а также других металлических сплавов зависят от множества факторов и должны определяться при необходимости в каждом конкретном случае.

Для стальных отливок, изготовленных из нелегированных конструкционных сталей, предусмотренных стандартом (стальное литьё, ГОСТ 977-88), предел прочности стали при растяжении составляет примерно 40-60 кг/мм 2 или 392-569 МПа (нормализация или нормализация с отпуском), категория прочности К20-К30. Для тех же сталей после закалки и отпуска регламентируемые категории прочности КТ30-КТ40, значения временного сопротивления уже не менее 491-736 МПа.

Для конструкционных углеродистых качественных сталей (ГОСТ 1050-88, прокат размером до 80 мм, после нормализации):

  • Предел прочности стали 10
    : сталь 10 имеет предел кратковременной прочности 330 МПа.
  • Предел прочности стали 20
    : сталь 20 имеет предел кратковременной прочности 410 МПа.
  • Предел прочности стали 45
    : сталь 45 имеет предел кратковременной прочности 600 МПа.

Категории прочности сталей

Категории прочности сталей (ГОСТ 977-88) условно обозначаются индексами «К» и «КТ», после индекса следует число, которое представляет собой значение требуемого предела текучести. Индекс «К» присваивается сталям в отожженном, нормализованном или отпущенном состоянии. Индекс «КТ» присваивается сталям после закалки и отпуска.

Политика cookie

Выбор режущего инструмента согласно значениям предела прочности стали H/мм2

Для правильного подбора режущего инструмента (кольцевой фрезы, конусной зенковки, корончатого или ступенчатого сверла), ознакомитесь со значением «Предел кратковременной прочности» в разделе таблицы «Механические свойства» для вашего материала (Примечание: Далее в тексте — предел прочности).

Эта информация находиться в свободном доступе, достаточно ввести в поисковике название или марку вашей стали.

Предел прочности — это максимальное механическое напряжение, выше которого происходит разрушение материала, подвергаемого деформации (в данном случае лезвийной обработки при помощи режущего инструмента).

Предел прочности при растяжении обозначается в таблице механических свойств, буквами σв(МПа) и измеряется в килограммах силы на квадратный сантиметр (кгс/см2), а также указывается в мега Паскалях (МПа). В нормативной документации и стандартах обозначен термином «временное сопротивление».

Читайте также: Как открутить гайку звездочку

σв — временное сопротивление разрыву (предел кратковременной прочности), Мпа. 1 МПа = 1 Н/мм²

Предел прочности стали зависит от марки и изменяется в пределах от 300 Н/мм2 у обычной низкоуглеродистой конструкционной стали до 900 и выше Н/мм2 у специальных и высоколегированных марок.

Режущий инструмент выполненный из специальной высоколегированной быстрорежущей стали HSS-XE от производителя Karnasch (Германия), предназначен для сверления и обработки отверстий в сталях обычного и повышенного качества прочностью до 900 H/мм2.

Дополнительно, режущий инструмент усилен упрочняющим покрытием Gold Tech которое эффективно способствует повышенной износостойкости металлообрабатывающего инструмента.

Для сверления и обработки отверстий в прочных сталях и сталях высокого качества, рекомендуется использовать режущий инструмент, оснащенный твердосплавными напайками, выполненными из карбид вольфрама или инструментов выполненным целиком из специальной порошковой стали с возможностью обрабатывать материалы с прочностью до 1400 Н/мм2.

В таблице, представленной ниже, вы сможете ознакомится с некоторыми видами сталей и их значениями предела прочности. Стали разделены на группы прочности.

В графе «Марка стали» указаны наименования, а в графе «Предел прочности», указаны значения для этой группы. Выбрав марку стали с обозначением ее предела прочности вы можете сравнить это значение со значением для выбранного инструмента которые можно увидеть на этикетке пластового футляра или на странице интернет магазина Metallrent.ru перейдя по ссылке, расположенной на странице с выбранным инструментом.

Например, для сверления обычной конструкционной стали С235 с пределом прочности до

360 Н/мм2 вполне подойдет кольцевая фреза, изготовленная из высоколегированной, специальной стали HSS XE с возможностью сверления материалов, прочностью до 900 Н/мм2 .

Или для зенковки закладных пластин, изготовленных из стали С390 подойдет конический зенкер из высоколегированной стали HSS XE с упрочняющим покрытием для повышения износостойкости к материалам с пределом прочности до 900 Н/мм2.

Так же вы сможете рассверлить или высверлить отверстие в мостовой стали 15ХСНД используя кольцевую фрезу из быстрорежущей высоколегированной стали HSS XE с TIN или BlueTek покрытием. Но даже с правильно подобранными оборотами и подачей, этих отверстий будет выполнено меньше чем при использовании инструмента с твердосплавными режущими пластинами, специально предназначенного для обработки прочных, качественных сталей с прочностью до 1400 Н/мм2.

И конечно для обработки нержавеющих сталей прочностью более 510 H/мм2, предпочтительней использовать режущий инструмент, (корончатые сверла или конусные зенкеры), с сменными твердосплавными пластинами. Metallrent.ru

Для обработки отверстий в износостойких сталях специального назначения используется режущий инструмент, специально предназначенный для этого. Производитель Karnasch (Германия), выпускает корончатые сверла, специально спроектированные для сверления таких крепких материалов как Hardox или железнодорожных рельс с наименованием Hardox-Line или Rail-Line.

Самым крепким инструментом, имеющимся у производителя, считаются цельные корончатые и спиральные сверла, выполненные из специальной порошковой стали. Прочность материалов для которых они предназначены имеет значение 1400 Н/мм2 или до 65 HRC.

Предел прочности чугуна

Метод определения предела прочности чугуна регламентируется стандартом ГОСТ 27208-87 (Отливки из чугуна. Испытания на растяжение, определение временного сопротивления).

Предел прочности серого чугуна

. Серый чугун (ГОСТ 1412-85) маркируется буквами СЧ, после букв следуют цифры, которые указывают минимальную величину предела прочности чугуна — временного сопротивления при растяжении (МПа*10 -1 ). ГОСТ 1412-85 распространяется на чугуны с пластинчатым графитом для отливок марок СЧ10-СЧ35; отсюда видно, минимальные значения
предела прочности серого чугуна при растяжении
в литом состоянии или после термической обработки варьируются от 10 до 35 кгс/мм 2 (или от 100 до 350 МПа). Превышение минимального значения предела прочности серого чугуна допускается не более, чем на 100 МПа, если иное не оговорено отдельно.

Методы испытания стали

Стальные изделия, используемые для создания строительных конструкций, в процессе эксплуатации испытывают значительные напряжения на растяжение, сжатие, резкие механические воздействия. Прилагаемые усилия могут быть как статическими, так и динамическими. Для обеспечения прочности и долговечности конструкции необходимо использовать металлоизделия с механическими характеристиками, соответствующими запланированным эксплуатационным нагрузкам. Испытания на растяжение – один из наиболее распространенных методов определения марки стали или решения спорных вопросов при расследовании причин возникновения нештатных ситуаций и аварий.

МЕХАНИЧЕСКИЕ СВОЙСТВА МЕТАЛЛОВ

Механические свойства

характеризуют способность матери­ала сопротивляться внешним механическим воздействиям. К основным механическим свойствам относятся прочность, пла­стичность, твердость, ударная вязкость и др.

Основные характеристики механических свойств сплавов цветных металлов:

Для стальных и железобетонных конструкций применяются углеродистые и низколегированные стали повышенной и высокой прочности. Стали для конструкций классифицируются по способу выплавки, технологии раскисления, химическому составу, способу упрочнения, качеству и назначению, а также по прочности.

По способу выплавки стали делятся на мартеновские, кислородно-конверторные и бессемеровские; по технологии раскисления — на спокойные, полуспокойные и кипящие (в том числе закупоренные кипящие); по способу упрочнения — на холоднодеформированные и термически обработанные (термоупрочненные).

Сталь по назначению подразделяется: на сталь общего назначения — углеродистая горячекатаная обыкновенного качества и сталь разных назначений — углеродистая горячекатаная повышенного качества (низколегированная) и высокой прочности.

Установлены следующие классы прочности стали (по значениям временного сопротивления и предела текучести): С 38/23, С 44/30, С 46/34, С 52/40, С 60/45, С 70/60.

Предел пропорциональности σпц — напряжение, при котором отступление от линейной зависимости между напряжениями и удлинениями достигает некоторой устанавливаемой техническими условиями или стандартом величины (например, уменьшения тангенса угла наклона касательной к диаграмме растяжения по отношению к оси деформаций на 20 или 33% своего первоначального значения).

Предел упругости σуп — напряжение, при котором остаточные удлинения достигают некоторой малой величины, устанавливаемой техническими условиями или стандартом (например, 0,001; 0,01% и т. д.). Иногда предел упругости обозначается соответственно допуску σ0,001; σ0,01 и т. д.

Предел текучести σт для материалов, имеющих площадку текучести (малоуглеродистая сталь), определяется как напряжение, соответствующее нижней точке площадки текучести; для материалов, не имеющих площадки текучести, определяется условный предел текучести σ0,2 — напряжение, при котором остаточное удлинение образца достигает 0,2%.

Временное сопротивление (предел прочности) σв — напряжение, равное отношению наибольшей нагрузки, предшествовавшей разрушению образца, к первоначальной площади сечения образца. Временное сопротивление можно отождествлять с пределом прочности только для хрупких материалов, разрушающихся без образования шейки. Для пластичных материалов это характеристика своеобразной потери устойчивости при растяжении, т. е. характеристика сопротивления значительным пластическим деформациям.

Относительное удлинение при разрыве δ — отношение (обычно в %) приращения расчетной длины образца после разрыва к ее исходной величине. Для длинного круглого образца (lрасч=10d) – δ10; для короткого образца (lрасч=5d) – δ5.

Относительное сужение при разрыве ψ — отношение уменьшения площади наименьшего поперечного сечения образца (после разрыва) к исходной площади поперечного сечения образца.

Условный предел текучести при изгибе σт.и — нормальное напряжение, вычисленное условно по формулам для упругого изгиба, при котором остаточное удлинение наиболее напряженного крайнего волокна достигает 0,2% или другой величины того же порядка соответственно требованиям технических условий.

Временное сопротивление (предел прочности) при изгибе σв.и — нормальное напряжение, вычисленное условно по формулам для упругого изгиба и соответствующее наибольшей нагрузке, предшествовавшей излому образца.

Условный предел текучести при кручении τ0,2, τт — касательное напряжение, вычисленное условно по формулам для упругого кручения, при котором остаточные деформации удлинения или сдвига по поверхности образца достигают 0,2% или другой величины того же порядка соответственно требованиям технических условий.

Временное сопротивление (предел прочности) при кручении τв — касательное напряжение, вычисленное условно по формулам для упругого кручения и соответствующее наибольшему скручивающему моменту, предшествовавшему разрушению образца.

Твердость по Бринеллю НВ — твердость материала, определяемая путем вдавливания в него стального шарика и вычисляемая как частное от деления нагрузки на поверхность полученного отпечатка. Для некоторых материалов существует приблизительно прямая пропорциональность между твердостью НВ и временным сопротивлением; например, для углеродистых сталей σв ≈ 0,36 НВ.

Твердость по Роквеллу HRC, HRB — твердость материала, определяемая путем вдавливания стального шарика или алмазного конуса стандартных размеров и измеряемая в условных единицах с помощью разных шкал по приращению оставшейся глубины погружения при переходе от малого стандартного груза к большому.

Твердость по Виккерсу HV — твердость материала, определяемая путем вдавливания алмазной четырехгранной пирамиды стандартных размеров и вычисляемая как частное от деления стандартной нагрузки на боковую поверхность полученного отпечатка.

Временное сопротивление разрыву это напряжение

Модуль продольной упругости

. Е, кг/мм 2 ,- постоянная упругости, представляющая собой отношение нормального напряжения к соответствующему относительному удлинению при простом растяжении (сжатии) прямого стержня в пределах применимости закона Гука, т. е. в пределах, когда деформация пропорциональна напряжению. Модуль Е нелегированных и низколегированных сталей равен 2,0-2,2 ×10 4 кГ/мм 2 .

Читайте также: Как проверить резистор на работоспособность мультиметром

Коэффициент Пуассона

, υ или μ — абсолютная величина отношения поперечного укорочения к продольному удлинению при простом растяжении прямого стержня в пределах применимости закона Гука.

Предел упругости,

σуп, кГ/мм 2 , — напряжение, при котором остаточные деформации впервые достигают некоторой величины, характеризуемой определенным допуском, устанавливаемым техническими условиями (например, 0,001; 0,003; 0,005; 0,03 %). Обозначаются соответственно σ0,001, σ0,002 и т. д.

Предел пропорциональности,

σпц или τпц или σp, кГ/мм 2 ,- напряжение, при котором отступление от линейной зависимости между напряжениями и деформациями (от закона Гука) достигает некоторой определенной величины, устанавливаемой техническими условиями (например, увеличение тангенса угла, образуемого касательной к кривой деформации с осью напряжений, на 10, 25, 50% своего первоначального значения).

— нарастание во времени пластической деформации материала, не связанное с повышением напряжений.

Предел текучести физический

σT или σS, кГ/мм 2 , наименьшее напряжение, вызывающее распространение по рабочей части образца остаточной (пластической) деформации, без заметного увеличения нагрузки, т. е. напряжение, отвечающее нижнему положению площадки текучести в диаграмме растяжения (для материалов, обладающих текучестью).

Предел текучести условный,

σ0,2, кГ/мм 2 — напряжение, при котором остаточная деформация образца достигает некоторой определенной величины, устанавливаемой техническими условиями (большей, чем это установлено для определяемого предела упругости). Если допуск особо не оговорен, подразумевается 0,2%.

Предел прочности

(временное сопротивление разрыву), σпч или σb, кГ/мм 2 ,- условное (т. е. относящееся к исходной площади поперечного сечения образца) напряжение, отвечающее наибольшей нагрузке, предшествовавшей разрушению образца.

Истинное сопротивление разрыву

, Sk, кГ/мм 2 ,- истинное нормальное напряжение в момент разрыва в наименьшем поперечном сечении образца в месте разрыва.

Относительное удлинение образца при разрыве,

δ, %, -отношение остающегося приращения расчетной длины образца (после разрыва) к ее исходной величине.

Индексы при символах δs и δ10 обозначают отношение расчетной длины образца к его диаметру.

Относительное сужение

(сужение), ψ, %, -отношение уменьшения площади наименьшего поперечного сечения образца (после разрыва) к исходной площади поперечного сечения.

Испытание на кручение

Сдвиг при кручении

(относительный), γ — отношение длины дуги поворота (сдвига) окружности одного поперечного образца относительно окружности другого его поперечного сечения к расстоянию между этими сечениями, выраженное в процентах или отвлеченным числом.

Сдвиг разделяется на упругий, исчезающий после снятия нагрузки, и остаточный, остающийся после снятия нагрузки.

Модуль сдвига

, G, кГ/мм 2 ,- постоянная упругости, представляющая собой отношение касательного напряжения к соответствующему углу сдвига в пределах применимости закона Гука.

Предел упругости при кручении, τуп

или τe, кГ/мм 2 ,- наибольшее касательное напряжение (вычисленное условно по формулам для упругого кручения), при котором наибольшие остаточные удлинения или сдвиг на поверхности образца достигают впервые некоторой величины, характеризуемой определенными допусками, устанавливаемыми для них техническими условиями (напр. 0,001; 0,002; 0,003; 0,005; 0,03%). Обозначаются соответственно τ0,001; τ0,002 и т. д.

Предел пропорциональности при кручении

, τпц или τр кГ/мм 2 — наибольшее касательное напряжение (вычисленное условно по формулам для упругого кручения), при котором отступление от линейной зависимости между напряжениями и деформациями (от закона Гука) по поверхности образца достигает некоторой определенной величины, устанавливаемой техническими условиями, большей, чем это установлено для определяемого предела упругости (например, уменьшение тангенса угла, образуемого касательной кривой деформации с осью деформации на 10, 25, 50% своего первоначального значения).

Предел текучести при кручении

(условный), τ0,3, кГ/мм 2 — касательное напряжение, вычисленное условно по формулам для упругого кручения, при котором остаточные деформации удлинения или сдвига по поверхности образца достигают 0,2%; 0,3% или другой, ранее установленной величины того же порядка, соответственно требованиям технических условий.

Условный предел прочности при кручении

, τпч кГ/мм 2 ,- наибольшее касательное напряжение, вычисленное по формулам для упругого кручения и отвечающее наибольшему скручивающему моменту, предшествовавшему разрешению образца.

Истинный предел прочности при кручении

, tk кГ/мм 2 — наибольшее касательное напряжение, вычисленное по формуле для кручения с учетом пластической деформации и отвечающее наибольшему скручивающему моменту, предшествовавшему разрушению образца.

Относительный угол закручивания образца

— отношение разности углов поворота двух сечений образца к расстоянию между ними при испытании на кручение образцов постоянного сечения или предел этого отношения.

Испытание на выносливость (усталость)

— процесс постепенного возникновения и затем развития трещины в материале под влиянием многократно повторяемых силовых воздействии на него.

Предел прочности

ПП – будем использовать это сокращение, а также можно говорить об официальном сочетании «временное сопротивление» – это максимальная механическая сила, которая может быть применена к объекту до начала его разрушения. В данном случае мы не говорим о химическом воздействии, но подразумеваем, что нагревание, неблагоприятные климатические условия, определенная среда могут либо улучшать свойства металла (а также дерева, пластмассы), либо ухудшать.

Ни один инженер не использует при проектировании крайние значения, потому что необходимо оставить допустимую погрешность – на окружающие факторы, на длительность эксплуатации. Рассказали, что называется пределом прочности, теперь перейдем к особенностям определения.

Как производится испытание на прочность

Изначально особенных мероприятий не было. Люди брали предмет, использовали его, а как только он ломался, анализировали поломку и снижали нагрузку на аналогичное изделие. Теперь процедура гораздо сложнее, однако, до настоящего времени самый объективный способ узнать ПП – эмпирический путь, то есть опыты и эксперименты.

Все испытания проходят в специальных условиях с большим количеством точной техники, которая фиксирует состояние, характеристики подопытного материала. Обычно он закреплен и испытывает различные воздействия – растяжение, сжатие. Их оказывают инструменты с высокой точностью – отмечается каждая тысячная ньютона из прикладываемой силы. Одновременно с этим фиксируется каждая деформация, когда она происходит. Еще один метод не лабораторный, а вычислительный. Но обычно математический анализ используется вместе с испытаниями.

Определение термина

Образец растягивается на испытательной машине. При этом сначала он удлиняется в размере, а поперечное сечение становится уже, а затем образуется шейка – место, где самый тонкий диаметр, именно здесь заготовка разорвется. Это актуально для вязких сплавов, в то время как хрупкие, к ним относится чугун и твердая сталь, растягиваются совсем незначительно без образования шейки. Подробнее посмотрим на видео:

Предел прочности на растяжение стали

Стальные конструкции давно заменили прочие материалы, так как они обладают отличными эксплуатационными характеристиками – долговечностью, надежностью и безопасностью. В зависимости от применяемой технологии, он подразделяется на марки. От самой обычной с ПП в 300 Мпа, до наиболее твердой с высоким содержанием углерода – 900 Мпа. Это зависит от двух показателей:

  • Какие способы термообработки применялись – отжиг, закалка, криообработка.
  • Какие примеси содержатся в составе. Одни считаются вредными, от них избавляются для чистоты сплава, а вторые добавляют для укрепления.

Динамические испытания стальных образцов

Основной вид такого исследования – испытания на изгиб, производимые по ГОСТу 9454-78. При таком виде анализа стальных образцов закон подобия неактуален, поэтому используют образцы с размерами и формой надреза, строго соответствующими нормативам. Основной образец имеет квадратное сечение площадью 10х10 мм и следующие виды надрезов:

  • U-образный (образцы Шарпи) – располагается в середине стержня. Такие образцы применяются для установления норм для стержней, на которые будет наноситься V-образный надрез.
  • V-образный (образцы Менаже). Основной тип стальных стержней, применяемый для исследований материалов, которые будут использоваться в конструкциях ответственного назначения.
  • С Т-образным концентратором. Размеры стержней имеют несколько вариантов. Такие образцы применяют при исследованиях сплавов, предназначенных для эксплуатации в конструкциях, в которых важным является сопротивление росту трещин.

В результате динамических испытаний на изгиб рассчитывают величину ударной вязкости – характеристики, которая зависит от сочетания прочностных и пластических свойств стали. Чем она выше, тем надежней материал работает при динамических нагрузках.

Все стали, изделия из которых предназначаются для эксплуатации при динамических нагрузках, подвергаются испытаниям на ударный изгиб. В зависимости от запланированных рабочих условий, ударную вязкость определяют при нормальных, пониженных или повышенных температурах.

Усталость стали

Второе название – предел выносливости. Его обозначают буквой R. Это аналогичный показатель, то есть он определяет, какая сила может воздействовать на элемент, но не в единичном случае, а в цикле. То есть на подопытный эталон циклично, раз за разом действуют определенные давления. Среднее количество повторений – 10 в седьмой степени. Именно столько раз металл должен без деформаций и потери своих характеристик выдержать воздействие.

Если проводить эмпирические испытания, то потребуется множество времени – нужно проверить все значения силы, прикладывая ее по множеству циклов. Поэтому обычно коэффициент рассчитывается математически.

Предел пропорциональности

Это показатель, определяющий длительность оказываемых нагрузок к деформации тела. При этом оба значения должны изменяться в разный степени по закону Гука. Простыми словами: чем больше оказывается сжатие (растяжение), тем сильнее деформируется образец.

Значение каждого материала находится между абсолютной и классической упругостью. То есть если изменения обратимы, после того как сила перестала действовать (форма стала прежняя – пример, сжатие пружины), то такие параметры нельзя называть пропорциональными.

Как определяют свойства металлов

Проверяют не только то, что называют пределом прочности, но и остальные характеристики стали, например, твердость. Испытания проводят следующим образом: в образец вдавливают шарик или конус из алмаза – наиболее прочной породы. Чем крепче материал, тем меньше след остается. Более глубокие, с широким диаметром отпечатки остаются на мягких сплавах. Еще один опыт – на удар. Воздействие оказывается только после заранее сделанного надреза на заготовке. То есть разрушение проверяется для наиболее уязвимого участка.

Механические свойства

Различают 5 характеристик:

  • Предел прочности стали при растяжении и на разрыв это – временное сопротивление внешним силам, напряжение, возникающее внутри.
  • Пластичность – это возможность деформироваться, менять форму, но сохранять внутреннюю структуру.
  • Твердость – готовность встретиться с более твердым материалом и не получить значительных ущербов.
  • Ударная вязкость – способность сопротивляться ударам.
  • Усталость – длительность сохранения качеств под воздействием цикличных нагрузок.

Временное сопротивление

14. Временное сопротивление

Напряжение, соответствующее наибольшей нагрузке P

max, предшествующей разрушению образца

Смотри также родственные термины:

Временное сопротивление материала при 20 °С, МПа (кгс/см 2 )

3.3 временное сопротивление при растяжении sв

,
Н/мм 2 :
Напряжение, соответствующее наибольшей нагрузке перед разрывом.

Словарь-справочник терминов нормативно-технической документации . academic.ru . 2015 .

ГОСТ 10705. ТРУБЫ СТАЛЬНЫЕ ЭЛЕКТРОСВАРНЫЕ

ГОСТ 10705-80: Трубы стальные электросварные Группа В62

Технические условияElectrically welded steel tubes. Specifications

Дата введения 01.01.1982

ОКП 13 7300, 13 8100, 13 8300

1.1 Размеры и предельные отклонения труб должны соответствовать ГОСТ 10704.

(Измененная редакция, Изм. N 5).

2.4. Механические свойства основного металла термически обработанных и горячередуцированных труб из углеродистых сталей должны соответствовать нормам, указанным в табл.1. Механические свойства термически обработанных труб из стали марки 22ГЮ устанавливаются по соглашению сторон.

Марка стали Временное сопротивление разрыву σв, Н/мм2(кгс/мм2) Предел текучести σт , Н/мм2 (кгс/мм2 ) Относительное удлинение δ5, %
не менее
08Ю 255 (26) 174 (18) 30
08кп 294 (30) 174 (18) 27
08, 08пс, 10кп 314 (32) 196 (20) 25
10, 10пс, 15кп, 333 (34) 206 (21) 24
Ст2сп, Ст2пс, Ст2кп
15, 15пс, 20кп 372 (38) 225 (23) 22
Ст3сп, Ст3пс, Ст3кп
20, 20пс, Ст4сп, 412 (42) 245 (25) 21
Ст4пс, Ст4кп

Примечание. По требованию потребителя трубы с толщиной стенки 4 мм и более из стали марок Ст3сп, 15, 15пс изготовляют с пределом текучести 235 H/мм (24 кгс/ мм), относительным удлинением 23%; из стали марок Ст4сп, 20, 20пс — с пределом текучести 255 H/мм (26 кгс/ мм), относительным удлинением 22%.

(Измененная редакция, Изм. N 5).

2.5. Механические свойства основного металла труб диаметром от 10 до 152 мм включительно без термической обработки и с термической обработкой сварного соединения должны соответствовать нормам, указанным в табл.2. Механические свойства основного металла труб диаметром свыше 152 до 530 мм включительно без термической обработки и с термической обработкой сварного соединения должны соответствовать нормам, указанным в табл.3.

(Измененная редакция, Изм. N 5).

2.6. На поверхности труб не допускаются трещины, плены, закаты, рванины и риски. Рябизна, забоины, вмятины, мелкие риски, слой окалины и следы зачистки допускаются при условии, если они не выводят толщину стенки и диаметр трубы за предельные отклонения. Допускается смещение кромок до 10% от номинальной толщины стенки. Поверхность труб, термически обработанных в защитной атмосфере, не должны иметь окалины. Допускается наличие окисной пленки. Непровары швов должны быть заварены, место заварки зачищено. По соглашению с потребителем на трубах диаметром 159 мм и более в местах ремонта швов сваркой допускается смещение свариваемых кромок не более 20% от номинальной толщины стенки и высота валика усиления не более 2,5 мм.

Марка стали Временное сопротивление разрыву σв, Н/мм2 (кгс/мм2), при наружном диаметре труб , мм Предел текучести σт , Н/мм2(кгс/мм2) Относительное удлинение δ5, %, при наружном диаметре труб , мм
от 10 до 19 св. 19 до 60 св. 60 до 152 от 10 до 60 при толщине стенки св. 60 до 152
более 0,06 0,06 и менее
не менее
08Ю 314 (32) 294 (30) 264 (27) 176 (18) 7 16 25
08пс, 08кп
Ст1пс, Ст1кп 372 (38) 314 (32) 294 (30) 176 (18) 6 15 23
08, Ст1сп 372 (38) 314 (32) 294 (30) 186 (19) 6 15 23
10кп, Ст2кп 372 (38) 333 (34) 314 (32) 176 (18) 6 15 23
10пс, Ст2пс 372 (38) 333 (34) 314 (32) 186 (19) 6 15 23
10, Ст2сп 372 (38) 333 (34) 314 (32) 196 (20) 6 15 23
15кп 441 (45) 372 (38) 353 (36) 186 (19) 5 14 21
15пс, 20кп 441 (45) 372 (38) 353 (36) 196 (20) 5 14 21
15, 20пс 441 (45) 372 (38) 353 (36) 206 (21) 5 14 21
20 441 (45) 372 (38) 353 (36) 216 (22) 5 14 21
Ст3кп 441 (45) 392 (40) 372 (38) 196 (20) 5 13 20
Ст3пс 441 (45) 392 (40) 372 (38) 206 (21) 5 13 20
Ст3сп 441 (45) 392 (40) 372 (38) 216 (22) 5 13 20
Ст4кп, Ст4пс 490 (50) 431 (44) 412 (42) 216 (22) 4 11 19
Ст4сп 490 (50) 431 (44) 412 (42) 225 (23) 4 11 19
22ГЮ 490 (50) 344 (35) 15

Примечание. По требованию потребителя для труб всех марок стали диаметром от 10 до 60 мм относительное удлинение увеличивается на 3% по сравнению с нормами, приведенными в табл.2.

Марка стали Толщина стенки, мм Временное сопротивление разрыву σв, Н/мм2 (кгс/мм2) Предел текучести σт , Н/мм2(кгс/мм2) Относительное удлинение δ5, %, при диаметре труб , мм
св. 152 до 244,5 св. 244,5 до 377 св. 377 до 530
не менее
08, 08пс, 08кп 6 и менее 18 20 20
10, 10пс, 10кп, Ст2кп Более 6 314 (32) 196 (20) 15 15 16
Ст2сп, Ст2пс 6 и менее 17 18 20
Более 6 333 (34) 206 (21) 14 14 15
15, 15пс, 15кп, 6 и менее 353 (36) 216 (22) 17 18 20
20, 20пс, 20кпп Более 6 14 14 15
Ст3сп, Ст3пс, 6 и менее 353 (36) 216 (22) 17 17 19
Ст3кп Более 6 14 14 14
Ст4сп, Ст4пс, 6 и менее 402 (41) 225 (23) 15 17 18
Ст4кп Более 6 11 12 13
22ГЮ Все толщины 490 (50) 344 (35) 15 15 15

Ремонт сваркой основного металла труб не допускается. В случае ремонта сваркой труб, прошедших термическую обработку, они подвергаются повторной термической обработке (соответственно по всему объему или по сварному соединению)».

(Измененная редакция, Изм. N 5).

2.7. На трубах диаметром 57 мм и более допускается один поперечный шов. По соглашению изготовителя с потребителем один поперечный шов допускается на трубах диаметром менее 57 мм.

(Измененная редакция, Изм. N 5).

2.8. Наружный грат на трубах должен быть удален. В месте снятия грата допускается утонение стенки на 0,1 мм сверх минусового допуска. По требованию потребителя на трубах внутренним диаметром 33 мм и более внутренний грат должен быть частично удален или сплющен, при этом высота грата или его следов не должна превышать 0,35 мм при толщине стенки 2 мм; 0,4 мм — при толщине стенки от 2 до 3 мм; 0,5 мм — при толщине стенки свыше 3 мм. Высоту внутреннего грата или его следов для труб внутренним диаметром менее 33 мм устанавливают по согласованию изготовителя с потребителем.

(Измененная редакция, Изм. N 1, 3).

2.9. Концы труб должны быть обрезаны под прямым углом и зачищены от заусенцев. Допускается образование фаски. Косина реза для труб диаметром до 219 мм не должна превышать 1 мм, а для труб диаметром 219 мм и более — 1,5 мм. По согласованию изготовителя с потребителем трубы изготовляют разрезанными в линии стана.

(Измененная редакция, Изм. N 3).

2.10. По требованию потребителя на концах труб с толщиной стенки 5 мм и более должна быть снята фаска под углом 25-30° к торцу трубы и оставлено торцовое кольцо шириной 1,8 мм ± 0,8 мм. По согласованию изготовителя с потребителем угол скоса и ширина торцового кольца могут быть изменены.

2.11. Трубы должны выдерживать испытательное гидравлическое давление. В зависимости от величины испытательного давления трубы подразделяют на два вида: I — трубы диаметром до 102 мм — испытательное давление 6,0 МПа (60 кгс/см) и трубы диаметром 102 мм и более — испытательное давление 3,0 МПа (30 кгсру всей трубы гидравлическое испытание труб вида I разрешается не проводить. II — трубы группы А и В, поставляемые по требованию потребителя с испытательным гидравлическим давлением, рассчитанным по ГОСТ 3845-75, при допускаемом напряжении, равном 90% от нормативного предела текучести для труб из данной марки стали, но не превышающее 20 МПа (200 кгс/см). (Измененная редакция, Изм. N 5).

2.12. Термически обработанные трубы из сталей марок Ст3сп, Ст3пс (категории 3-5), 10, 15 и 20 с толщиной стенки не менее 6 мм должны выдерживать испытание на ударный изгиб основного металла. При этом нормы ударной вязкости должны соответствовать указанным в табл.4.

Марка стали Ударная вязкость KCU, Дж/см2 (кгс*м/см2), при температуре испытания, °C
+20 -20 +20 (после механического старения)
не менее
Ст3сп, Ст3пс, (категорий 3-5), 10, 15, 20 78,4 (8) 39,2 (4) 39,2 (4)

Испытание на ударный изгиб основного металла термообработанных труб из стали марки 22ГЮ проводят по требованию потребителя, нормы ударной вязкости устанавливают по соглашению сторон.

(Измененная редакция, Изм. N 5).

2.13. Термически обработанные трубы диаметром до 152 мм включительно, трубы горячередуцированные и без термической обработки диаметром более 20 до 152 мм включительно и толщиной стенки 0,06 Dн и менее, а также трубы с термической обработкой сварного соединения должны выдерживать испытание на сплющивание. Сплющивание термически обработанных труб должно проводиться до расстояния между сплющивающимися плоскостями Н, мм, вычисленного по формуле

H = (1 + a) / (a + S/DH)

где a — коэффициент для труб из стали марок 08Ю, 08кп, 08пс, 08, 10кп, Ст2кп равен 0,09, а для труб из остальных марок сталей равен 0,08; S — номинальная толщина стенки, мм; DH — номинальный наружный диаметр трубы, мм.

Сплющивание труб без термической обработки должно проводиться до расстояния, равного 213 DH. Сплющивание труб с термической обработкой сварного соединения должно проводиться до расстояния, равного 1/2 DH. По требованию потребителя сплющивание термически обработанных труб диаметром свыше 152 до 530 мм должно проводиться до расстояния, равного 213 DH.

(Измененная редакция, Изм. N 5).

2.14. Трубы диаметром до 108 мм должны выдерживать испытание на раздачу. Трубы без термической обработки диаметром до 20 мм, а также диаметром 20-60 мм с толщиной стенки более 0,06 на раздачу не испытывают. Увеличение наружного диаметра термически обработанных труб при раздаче должно соответствовать нормам, указанным в табл.5.

Марка стали Увеличение наружного диаметра труб, %, при толщине стенки
до 4 мм 4 мм и более
08Ю, 08, 08кп, 08пс 12 8
10, 10кп, 10пс, 15, 15кп, 15пс, Ст2 10 7
20, 20кп, 20пс, Ст3, Ст4 8 6

Увеличение наружного диаметра труб без термической обработки при раздаче должно составлять не менее 6%. По требованию потребителя увеличение наружного диаметра при раздаче термически обработанных труб с толщиной стенки до 4 мм из стали марок 10кп, Ст2кп должно быть не менее 12%.

(Измененная редакция, Изм. N 1, 3, 4).

2.15. По требованию потребителя трубы должны выдерживать испытания, предусмотренные пп.2.16-2.18.

2.16. Термически обработанные трубы диаметром до 530 мм включительно должны выдерживать испытание на загиб. Величина радиуса загиба для труб диаметром до 60 мм должна быть не менее 2,5, для основного металла труб диаметром свыше 60 до 530 мм по ГОСТ 3728. По согласованию изготовителя с потребителем величина радиуса загиба может быть уменьшена. (Измененная редакция, Изм. N 1).

2.17. Термически обработанные трубы диаметром от 30 до 159 мм с отношением D/s, равным 12,5 и более, должны выдерживать испытание на бортование. Ширина отгибаемого борта, отмеренная от внутренней поверхности, должна быть не менее 12 % внутреннего диаметра трубы и не менее 1,5 толщины стенки. Угол отбортовки должен составлять: 90° — для труб из стали марок 08, 10, 15, Ст2; 60° — для труб из стали марок 20, Ст3, Ст4.

2.18. Трубы диаметром 50 мм и более групп А и В должны выдерживать испытание сварного соединения на растяжение. Временное сопротивление сварного соединения труб диаметром от 219 до 530 мм, прошедших термическую обработку по всему объему трубы или термическую обработку сварного соединения, должно соответствовать нормам, указанным в табл.1. Временное сопротивление сварного соединения труб диаметром от 50 до 203 мм, прошедших термическую обработку по всему объему трубы или термическую обработку сварного соединения, должно быть не менее 0,9 норм, указанных в табл.1. Временное сопротивление сварного соединения труб без термической обработки диаметром от 50 мм и более должно соответствовать нормам, указанным в табл.2 и 3.

2.19. Трубы должны быть герметичными.

2.18, 2.19. (Измененная редакция, Изм. N 3).

3.1. Трубы принимают партиями. Партия должна состоять из труб одного размера, одной марки стали, одного вида термообработки и одной группы изготовления, сопровождаемых одним документом о качестве, по ГОСТ 10692 с дополнением: химический состав стали — в соответствии с документом о качестве предприятия — изготовителя заготовки. Количество труб в партии должно быть не более, шт.; 1000 — при диаметре до 30 мм; 600 — при диаметре св. 30 до 76 мм; 400 — при диаметре св. 76 до 152 мм; 200 — при диаметре св. 152 мм. (Измененная редакция, Изм. N 1).

3.2. При разногласиях в оценке качества химического состава для проверки отбирают не менее одной трубы от партии.

3.3. Контролю размеров и качества поверхности трубы подвергают каждую трубу. Допускается контроль размеров и поверхности проводить выборочно на каждой партии с одноступенчатым нормальным уровнем контроля в соответствии с требованиями ГОСТ 18242. Планы контроля устанавливаются по согласованию изготовителя с потребителем.

(Измененная редакция, Изм. N 3).

3.3а. Сварные швы труб групп А, Б и В должны быть подвергнуты 100%-му контролю неразрушающими методами. При контроле качества шва неразрушающими методами проводится дополнительный контроль гидравлическим давлением на 15% труб от партии. По соглашению изготовителя с потребителем испытание труб гидравлическим давлением не проводится. При проведении неразрушающего контроля по периметру всей трубы гидравлическое испытание труб вида I разрешается не проводить. Допускается взамен неразрушающего контроля сварных швов труб вида I производить испытание каждой трубы повышенным гидравлическим давлением, рассчитанным в соответствии с требованиями ГОСТ 3845-75 при допускаемом напряжении, равном 85% от предела текучести для труб диаметром 273 мм и более и 75% от предела текучести для труб диаметром менее 273 мм, но не превышающим 12 МПа (120 кгс/см). Трубы группы Д должны быть подвергнуты испытанию гидравлическим давлением или контролю сварного шва неразрушающими методами.

(Измененная редакция, Изм. N 5).

3.4. Для проверки высоты внутреннего грата отбирают 2% труб от партии.

3.5. Для испытаний на сплющивание, раздачу, бортование, загиб, ударную вязкость, склонность основного металла труб к механическому старению, растяжение основного металла и сварного шва отбирают две трубы от партии. Предел текучести основного металла труб определяют по требованию потребителя. По требованию потребителя определение ударной вязкости не проводят. Трубы, подвергнутые испытанию на сплющивание, испытанию на раздачу не подвергают.

(Измененная редакция, Изм. N 1).

3.6. При получении неудовлетворительных результатов испытаний хотя бы по одному из показателей по нему проводят повторные испытания на удвоенном количестве труб, отобранных от той же партии. Результаты повторных испытаний распространяются на всю партию.

3.7. Места заварки швов труб групп А, Б, В должны быть проконтролированы неразрушающими методами, а отремонтированные трубы испытаны гидравлическим давлением в соответствии с требованиями п.3.3а настоящего стандарта. Места заварки швов труб группы Д должны пройти контроль неразрушающими методами либо трубы после ремонта должны быть испытаны гидравлическим давлением.

(Измененная редакция, Изм. N 5).

4.1. Для контроля качества от каждой отобранной трубы вырезают по одному образцу для каждого вида испытаний, а для испытания на ударную вязкость — по три образца для каждой температуры испытаний.

4.2. Химический состав стали определяют по ГОСТ 22536.0 — ГОСТ 22536.6, ГОСТ 12344 — ГОСТ 12354. Пробы для определения химического состава отбирают по ГОСТ 7565.

4.3. Осмотр поверхности труб проводят визуально. Глубину дефектов проверяют надпиловкой или другим способом. Допускается контроль поверхности и размеров труб проводить неразрушающими методами по технической документации.

(Измененная редакция, Изм. N 1, 2).

4.4. Трубы измеряют: длину — рулеткой по ГОСТ 7502; наружный диаметр и овальность — регулируемой измерительной скобой по ГОСТ 2216 или штангенциркулем по ГОСТ 166, или микрометром по ГОСТ 6507; внутренний диаметр — пробкой по ГОСТ 14810 или калибром по ГОСТ 2015, или путем вычитания из наружного диаметра двух толщин стенок; кривизну — поверочной линейкой по ГОСТ 8026 и щупом по ТУ 2-034-225; толщину стенки, разностенность и высоту внутреннего грата — микрометром по ГОСТ 6507 или стенкомером по ГОСТ 11358; смещение кромок — шаблоном по технической документации или микрометром по ГОСТ 6507, или штангенглубиномером по ГОСТ 162; косина реза обеспечивается конструкцией оборудования для обработки торцов труб, угол скоса фаски — угломером по ГОСТ 5378. При разногласиях в оценке качества косину реза проверяют угольником и щупом; торцовое кольцо на концах труб — линейкой по ГОСТ 427; глубину поверхностных дефектов — штангенглубиномером по ГОСТ 162. Измерение наружного диаметра трубы проводят на расстоянии не менее 15 мм от торца трубы для труб с отношением наружного диаметра к толщине стенки / s, равным 35 и менее; на расстоянии не менее — для труб с отношением /s свыше 35 до 75; на расстоянии не менее — для труб с отношением /s свыше 75.

(Измененная редакция, Изм. N 1, 2, 3).

4.5. Испытание на ударный изгиб проводят на продольных образцах типа 3 по ГОСТ 9454, вырезанных из участка трубы, расположенного под углом около 90° к сварному шву. Ударную вязкость определяют как среднее арифметическое значение по результатам испытания трех образцов. На одном из образцов допускается снижение ударной вязкости на 9,8·10 Дж/м (1 кгс·м/см). Температуру испытания на ударный изгиб труб из стали марок 08, 10, 15 и 20 выбирает потребитель.

4.6. Склонность основного металла труб к механическому старению определяют по ГОСТ 7268. Допускается правка образцов статической нагрузкой.

4.7. Испытание на растяжение проводят по ГОСТ 10006 на продольном (в виде полосы или отрезка трубы) пропорциональном коротком образце. При испытании на образцах сегментного сечения последний вырезают из участка, расположенного под углом около 90° к сварному шву, и в расчетной части не выправляют. Допускается взамен испытания на растяжение проводить контроль временного сопротивления, предела текучести и относительного удлинения труб неразрушающими методами. При возникновении разногласий испытание труб проводят по ГОСТ 10006. 4.5-4.7.

(Измененная редакция, Изм. N 1).

4.8. Испытание на сплющивание проводят по ГОСТ 8695.

4.9. Испытание на раздачу проводят по ГОСТ 8694 на оправке с конусностью 30°. Допускается использование оправок с конусностью 1:10 и удаление грата на участке раздачи.

(Измененная редакция, Изм. N 3).

4.10. Испытание на загиб проводят по ГОСТ 3728. Трубы диаметром 114 мм испытывают на вырезанных продольных полосах шириной 12 мм.

4.11. Испытание на бортование проводят по ГОСТ 8693. На участке отбортовки допускается удаление грата.

4.12. Определение временного сопротивления сварного соединения труб диаметром 50-530 мм проводят на кольцевых образцах по технической документации. На трубах диаметром 219 мм и более допускается проводить испытание по ГОСТ 6996 на образцах типа XII со снятым усилением сварного соединения, вырезанных перпендикулярно оси трубы, с применением статической нагрузки при правке образцов.

4.13. Гидравлическое испытание труб проводят по ГОСТ 3845 с выдержкой под давлением 5 с.

4.14. Контроль сварного шва проводят неразрушающими методами (ультразвуковым, токовихревым, магнитным и рентгеновским равнозначным им методом) по технической документации.

  1. Маркировка, упаковка, транспортирование и хранение

5.1. Маркировка, упаковка, транспортирование и хранение — по ГОСТ 10692.

Текст документа сверен по: официальное издание М.: ИПК Издательство стандартов, 1998 Юридическим бюро «Кодекс» в текст документа внесено Изменение N 5, утвержденное МНТКС 28.05.98. Постановлением Госстандарта России от 27.04.99 N 141 введено на территории РФ с 01.01.2000.