Вычислите действующее значение напряжения

Однофазные электрические цепи переменного тока

Для получения, передачи и распределения электрической энергии применяются в основном устройства переменного тока: генераторы, трансформаторы, линии электропередачи и распределительные цепи переменного тока.

Постоянный ток, необходимый в некоторых областях народного хозяйства (транспорт, связь, электрохимия и др.), получают выпрямлением переменного тока.

Переменным электрическим током называют ток, периодически изменяющийся по величине и направлению.

Основное достоинство переменного тока заключается в возможности трансформировать напряжение. Кроме того, электрические машины переменного тока надежней в работе, проще по устройству и эксплуатации.

Говоря о переменном токе, обычно имеют в виду синусоидальный переменный ток, т. е. ток, изменяющийся по синусоидальному закону. При синусоидальном токе ЭДС электромагнитной индукции, самоиндукции и взаимоиндукции изменяются по синусоидальному закону.

Синусоидальный переменный ток проходит в замкнутой линейной электрической цепи под действием синусоидальной ЭДС.

Однофазные электрические цепи переменного тока

Рассмотрим получение синусоидальной ЭДС. Если в однородном магнитном поле с индукцией В равномерно со скоростью V вращается рамка (рис. 10.1), то в каждой активной стороне этой рамки длиной

Однофазные электрические цепи переменного тока

где а — угол, под которым активный проводник рамки пересекает магнитное поле (угол между Однофазные электрические цепи переменного тока), или угол поворота рамки относительно нейтральной плоскости Однофазные электрические цепи переменного токакак углы со взаимно перпендикулярными сторонами.

Однофазные электрические цепи переменного тока

Плоскость называется нейтральной, т. к. ЭДС в рамке, расположенной в этой плоскости, равна нулю (а = 0, следовательно, sin а = 0).

Однофазные электрические цепи переменного тока

Однофазные электрические цепи переменного тока

как — величина постоянная по условию, то е пропорциональна sin а, т. е. ЭДС в этой рамке, при вращении ее вокруг оси изменяется по синусоидальному закону. Если к этой рамке включить нагрузку (потребитель), то в замкнутой цепи (рис. 10.1) идет ток, который, как и ЭДС, изменяется по синусоидальному ну. Поэтому такой ток и называется синусоидальным.

Однофазные электрические цепи переменного тока

Синусоидальная ЭДС изображена на графике рис. 10.2. график принято называть «волновая диаграмма». (Если изменяющаяся величина изображена в зависимости от времени то ее называют «временная диаграмма».) На этой диаграмме синусоида ограничивает величины ЭДС (ординаты) при раз-личных углах поворота рамки относительно нейтральной плоскости NN». Как видно, синусоидальная ЭДС изменяется по величине и направлению.

Однофазные электрические цепи переменного тока

Величины, характеризующие синусоидальную ЭДС

Амплитуда — это максимальное значение периодически изменяющейся величины.

Однофазные электрические цепи переменного тока

Обозначаются амплитуды прописными буквами с индексом m, т. е.

Нетрудно видеть (рис. 10.2), что ЭДС достигает своих амплитудных значений тогда, когда рамка повернется на угол а = 90° или на угол а = 270°, так как Однофазные электрические цепи переменного тока. Следовательно, Однофазные электрические цепи переменного тока

Однофазные электрические цепи переменного тока

Тогда

Период — это время, в течение которого переменная величина делает полный цикл своих изменений, после чего изменения повторяются в той же последовательности.

Однофазные электрические цепи переменного тока

Обозначается период буквой Т и измеряется в секундах, с (сек) т.е. = с.

Значение ЭДС через каждый период определяется следующим равенством (рис. 10.3):

Однофазные электрические цепи переменного тока

где к — целое число.

На рис. 10.3 изображена временная диаграмма синусоидальной ЭДС при вращении рамки в магнитном поле.

Частота — число периодов в единицу времени, т. е. величина, обратная периоду.

Однофазные электрические цепи переменного тока

Обозначается частота буквой , и измеряется в герцах (Гц):

Однофазные электрические цепи переменного тока

Стандартной частотой в электрических сетях России является частота Однофазные электрические цепи переменного тока= 50 Гц. Для установок электронагрева пользуются частотами Однофазные электрические цепи переменного токаГц ( Однофазные электрические цепи переменного токаГц = 1 МГц — мегагерц).

Однофазные электрические цепи переменного тока

При частоте =50 Гц, т.е. 50 периодов в секунду, период

Однофазные электрические цепи переменного тока

Однофазные электрические цепи переменного тока

Угловая частота (угловая скорость) характеризуется углом поворотом рамки в единицу времени.

Однофазные электрические цепи переменного тока

Обозначается угловая частота буквой (омега):

Однофазные электрические цепи переменного тока

Измеряется угловая частота в единицах радиан в секунду, так как угол измеряется в радианах (рад).

Так, время одного периода Т рамка повернется на угол 360° = рад. Следовательно, угловую частоту можно выразить следующим образом:

Однофазные электрические цепи переменного тока

Мгновенное значение — это значение переменной величины в й конкретный момент времени.

Мгновенные значения обозначаются строчными буквами..

Однофазные электрические цепи переменного тока

Из выражения (10.2) следует, что угол поворота рамки , мгновенные значения синусоидальных величин можно записать так:

Однофазные электрические цепи переменного тока

Таким образом, любая синусоидальная величина характеризуется амплитудой и угловой частотой, которые являются постоянными для данной синусоиды. Следовательно, по формулам (10.4) можно определить синусоидальную величину в любой конкретный момент времени t, если известны амплитуда и угловая частота.

Фаза и сдвиг фаз

Однофазные электрические цепи переменного тока

Если в магнитном поле вращаются две жестко скрепленные между собой под каким-то углом одинаковые рамки (рис. 10.4а), т.е. амплитуды ЭДС и угловые частоты со их одинаковы, то мгновенное значение их ЭДС можно записать в виде

Однофазные электрические цепи переменного тока

где Однофазные электрические цепи переменного тока— углы, определяющие значения синусоидальных величин Однофазные электрические цепи переменного токав начальный момент времени (t = 0), т.е.

Однофазные электрические цепи переменного тока

Однофазные электрические цепи переменного тока

Поэтому эти углы называют начальными фазами синусоид.

Однофазные электрические цепи переменного тока

Однофазные электрические цепи переменного тока

Начальные фазы этих ЭДС различны.

Таким образом, согласно (10.5) каждая синусоидальная величина характеризуется амплитудой Однофазные электрические цепи переменного тока, угловой частотой со и начальной фазой Однофазные электрические цепи переменного тока. Для каждой синусоиды эти величины Однофазные электрические цепи переменного токаявляются постоянными. В выражениях (10.4) начальные фазы Однофазные электрические цепи переменного токасинусоид равны нулю ( Однофазные электрические цепи переменного тока= 0).

Однофазные электрические цепи переменного тока

Величина называется фазой синусоиды.

Разность начальных фаз двух синусоидальных величин одинаковой частоты определяет угол сдвига фаз этих величин:

Однофазные электрические цепи переменного тока

При вращении против часовой стрелки (рис. 10.4а) ЭДС в первой рамке достигает амплитудного и нулевого значения раньше, чем во второй, т. е. Однофазные электрические цепи переменного токаопережает по фазе Однофазные электрические цепи переменного токаили Однофазные электрические цепи переменного токаотстает по фазе Однофазные электрические цепи переменного тока(рис. 10.46). Угол сдвига фаз Однофазные электрические цепи переменного токапоказывает, на какой угол синусоидальная величина опережает или отстает от другой, достигает своих амплитудных и нулевых значений раньше позже).

Две синусоидальные величины одинаковой частоты, достигаю-одновременно своих амплитудных (одного знака) и нулевых сечений, считаются совпадающими по фазе (рис. 10.5а).

Однофазные электрические цепи переменного тока

Если две синусоиды одинаковой частоты достигают одновременно своих нулевых и амплитудных значений разных знаков (рис. 10.56), то они находятся в противофазе.

Время, на которое одна синусоидальная величина опережает и отстает от другой, характеризует время сдвига фаз Однофазные электрические цепи переменного тока, которое можно выразить через период Т и частоту Однофазные электрические цепи переменного токасинусоиды следующим образом:

Однофазные электрические цепи переменного тока

Среднее и действующее значения переменного тока

Кроме амплитудных и мгновенных значений переменный ток, напряжение, ЭДС характеризуются еще средними и действующими (эффективными) значениями.

Среднее значение переменного тока

Среднее значение переменного тока равно величине такого постоянного тока, при котором через поперечное сечение провод-проходит то же количество электричества Q, что и при переменном токе.

Таким образом, среднее значение переменного тока эквивалентно постоянному току по количеству электричества Q, проходящему через поперечное сечение проводника в определенный промежуток времени.

Однофазные электрические цепи переменного тока

Средние значения переменных величин обозначаются прописными буквами с индексом «с», т. е. .

Однофазные электрические цепи переменного тока

Если ток изменяется по синусоидальному закону, то за половину периода через поперечное сечение проводника проходит определенное количество электричества Q в определенном направлении, а за вторую половину периода через то же сечение проходит то же количество электричества в обратном направлении. Таким образом, среднее значение синусоидального тока за период равно нулю, т. е. = 0.

Поэтому для синусоидального переменного тока определяется его среднее значение за половину периода Т/2, т. е.

Однофазные электрические цепи переменного тока

Из выражения (2.1) значение переменного тока Однофазные электрические цепи переменного тока, откуда Однофазные электрические цепи переменного тока. Следовательно, среднее значение синусоидального тока Однофазные электрические цепи переменного токас начальной фазой Однофазные электрические цепи переменного тока= 0 за полупериод определяется (рис. 10.6) выражением

Однофазные электрические цепи переменного тока

Однофазные электрические цепи переменного тока

где

Графически среднее за полупериод значение синусоидального тока равно высоте прямоугольника с основанием, равным Т/2, и площадью, равной площади, ограниченной кривой тока и осью абсцисс за половину периода (рис. 10.6).

Однофазные электрические цепи переменного тока

Под средним значением переменной величины понимают постоянную составляющую этой величины.

Средние значения синусоидального напряжения и ЭДС за полупериод можно определить по аналогии с током.

Однофазные электрические цепи переменного тока

Действующее значение переменного тока

Действующее (или эффективное) значение переменного тока — значение переменного тока, эквивалентное постоянному току тепловому действию.

Действующее значения переменных величин обозначается прочими буквами без индексов: I, U, Е.

Действующее значение переменного тока I равно величине такого постоянного тока, которое за время, равное одному периоду первого тока Т, выделит в том же сопротивлении R такое же количество тепла, что и переменный ток i:

Однофазные электрические цепи переменного тока

Откуда действующее значение переменного тока

Однофазные электрические цепи переменного тока

Однофазные электрические цепи переменного тока

Если переменный ток изменяется по синусоидальному закону с начальной фазой, равной нулю, т.е. , то действующее сечение такого синусоидального тока будет равно

Однофазные электрические цепи переменного тока

Однофазные электрические цепи переменного тока

Действующее значение синусоидального тока в =1 ,41 раза меньше его амплитудного значения. Так же можно определить действующие значения синусоидального напряжения и ЭДС.

Однофазные электрические цепи переменного тока

Номинальные значения тока и напряжения в электрических цепей и устройствах выражаются их действующими значениями.

Так, например, стандартные напряжения электрических сетей U= 127 В или U = 220 В выражают действующие значения этих напряжений. А изоляцию необходимо рассчитывать на амплитудное значение этих напряжений, т. е.

Однофазные электрические цепи переменного тока

При расчете цепей переменного тока и их исследованиях чаще всего пользуются действующими (эффективными) значениями тока, напряжения и ЭДС.

На шкалах измерительных приборов переменного тока указывается действующие значение переменного тока или напряжения.

Именно действующие значения тока, напряжения и ЭДС указываются в технической документации, если нет специальных оговорок.

Коэффициенты формы и амплитуды

Отклонения кривых тока, напряжения и ЭДС от синусоиды характеризуются коэффициентами формы Однофазные электрические цепи переменного токаи амплитуды Однофазные электрические цепи переменного тока.

Однофазные электрические цепи переменного тока

Коэффициент формы определяется отношением действующего значения переменной величины к ее среднему значению:

Однофазные электрические цепи переменного тока

Коэффициент формы необходимо учитывать при проектировании и изучении выпрямительных устройств и электрических машин.

Для синусоидальных величин коэффициент формы будет равен

Однофазные электрические цепи переменного тока

Однофазные электрические цепи переменного тока

Коэффициент амплитуды определяется отношением амплитудного значения переменной величины к ее действующему значению:

Однофазные электрические цепи переменного тока

Для синусоидальных величин коэффициент амплитуды равен

Однофазные электрические цепи переменного тока

Чем больше коэффициент формы и коэффициент амплитуды отличается от значений Однофазные электрические цепи переменного тока= 1,11 и Однофазные электрические цепи переменного тока= 1,41, тем больше рассматриваемая кривая отличается от синусоиды. Так, например, если Однофазные электрические цепи переменного тока= 1,41, то исследуемая кривая имеет более острую форму, чем синусоида, а если Однофазные электрические цепи переменного тока

При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org

Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи

Сайт пишется, поддерживается и управляется коллективом преподавателей

Telegram и логотип telegram являются товарными знаками корпорации Telegram FZ-LLC.

Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.

Среднеквадратичное (действующее, эффективное) значение

Что же из себя представляет среднеквадратичное значение напряжения и как его замерить? Давайте разберем значение этого термина. Поможет нам в этих делах наш осциллограф OWON SDS6062 , Блок питания, а также ЛАТР (Лабораторный автотрансформатор). Для того, чтобы разобраться в этом, мы проведем простейший опыт.

Лампочка и постоянное напряжение

Для опытов нам также понадобится простая автомобильная лампа накаливания на напряжение 12 Вольт

Среднеквадратичное (действующее, эффективное) значение

Вот ее характеристики: рабочее напряжение U=12 Вольт, мощность Р = 21 Ватт.

Среднеквадратичное (действующее, эффективное) значение

Следовательно, зная мощность и напряжение лампы, можно узнать, какую силу тока будет потреблять лампочка. Из формулы P=IU, где I — сила тока, можно найти I. Значит I=P/U=21/12=1,75 Ампер.

Ладно, с лампочкой разобрались. Давайте ее зажжем. Для этого на нашем блоке питания выставляем рабочее напряжение для нашей лампы

Среднеквадратичное (действующее, эффективное) значение

Подаем напряжение с блока питания на лампу и вуаля!

Среднеквадратичное (действующее, эффективное) значение

Замеряем напряжение на клеммах-крокодилах блока питания с помощью мультиметра . Ровнехонько 12 Вольт, как и предполагалось.

Среднеквадратичное (действующее, эффективное) значение

К этим же клеммах цепляем и наш осциллограф

Среднеквадратичное (действующее, эффективное) значение

Среднеквадратичное (действующее, эффективное) значение

Видите прямую линию? Это и есть осциллограмма постоянного напряжения. В течение времени у нас напряжение остается таким, каким и было и не меняется. Если посчитать, то можно вычислить, чему равняется напряжение. Так как одна клеточка у нас 5 Вольт (на фото внизу слева), то значит, наше напряжение 12 Вольт. Я также вывел это значение на дисплей осциллографа в самом нижнем левом углу: 12,03 Вольт. Все верно.

Замеряем силу тока. Как правильно замерить силу тока в цепи, можно узнать, прочитав статью как измерить ток и напряжение мультиметром?.

Среднеквадратичное (действующее, эффективное) значение

Получили 1,72 Ампер. А как вы помните, наше расчетное значение было 1,75 Ампер. Думаю, вину можно переложить на погрешность прибора или на лампочку 😉

Лампочка и переменное напряжение

Теперь начинается самое интересное. Берем наш ЛАТР

Среднеквадратичное (действующее, эффективное) значение

Ставим прибор на измерение переменного напряжения и выставляем с помощью крутилки ЛАТРа напряжение в 12 Вольт. Обратите внимание, что крутилка на мультиметре находится в диапазоне измерения переменного напряжения. Забегая вперед, скажу, что мультиметр измеряет среднеквадратичное напряжение.

Среднеквадратичное (действующее, эффективное) значение

Цепляем осциллограф к клеммах ЛАТРа, не забывая на осциллографе выставить замеры переменного напряжения и смотрим получившуюся осциллограмму:

Среднеквадратичное (действующее, эффективное) значение

Смотрим, сколько силы тока кушает наша лампочка. Все как положено, 1,71 Ампер.

Среднеквадратичное значение напряжения

Среднеквадратичное значение напряжения

Итак, что же у нас получилось? Как и постоянное напряжение, так и переменное напряжение зажигали одну и ту же лампочку, которая кушала одну и ту же мощность. Значит эта осциллограмма

Среднеквадратичное (действующее, эффективное) значение

и вот эта осциллограмма

Среднеквадратичное (действующее, эффективное) значение

Чем то похожи? Но чем.

Среднеквадратичное значение напряжения — это такое значение переменного напряжения, при котором нагрузка потребляет столько же силы тока, как и при постоянном напряжении. То есть лампочка у нас потребляла 1,71 Ампер и при постоянном токе и при переменном. То есть, в двух этих случаях, мощность, которую потребляла лампочка, была одинакова.

Также среднеквадратичное напряжение еще называют действующим или эффективным значением напряжения. С помощью несложных умозаключений, инженеры-электрики пришли к выводу действующее (оно же среднеквадратичное) напряжение синусоидального сигнала любой частоты равняется максимальной его амплитуде, поделенной на корень из двух

Среднеквадратичное значение напряжения формула

Стоп! Мы ведь не разобрали, что такое максимальная амплитуда! На осциллограмме максимальная амплитуда выглядит примерно вот так:

Среднеквадратичное значение напряжения

Если даже посчитать по клеточкам и посмотреть, чему равняется одна клеточка по вертикали (смотрим внизу слева, она равняется 5 Вольт), то Umax = 17 Вольт. Делим это значение на корень из двух. Я беру это значение как 1,41. Получаем, что среднеквадратичное значение равняется 17/1,41=12,06 Вольт. Ну что, все верно 😉

Значит, когда нам говорят, что напряжение в розетке равняется 220 Вольт, то мы то знаем, что на самом деле это среднеквадратичное напряжение. Максимальная амплитуда этих 220 Вольт равняется 220х1,41=310 Вольт.

Где же среднеквадратичное напряжение и максимальная амплитуда сигнала прячутся на табличке измерений? Да вот же они!

Среднеквадратичное (действующее, эффективное) значение

Vk — это и есть среднеквадратичное напряжение этого сигнала.

Ma — это и есть Umax.

Конечно, 16,6/1,41=11,8 Вольт, а он пишет 12,08 Вольт.

Формула для определения действующего значения силы тока

Действующее значение синусоидального напряжения

Дело - труба

В механической системе вынужденные колебания возникают при действии на нее внешней периодической силы. Аналогично этому вынужденные электромагнитные колебания в электрической цепи происходят под действием внешней периодически изменяющейся ЭДС или внешнего изменяющегося напряжения.

Вынужденные электромагнитные колебания в электрической цепи представляют собой переменный электрический ток

  • Переменный электрический ток
    — это ток, сила и направление которого периодически меняются.

Мы в дальнейшем будем изучать вынужденные электрические колебания, происходящие в цепях под действием напряжения, гармонически меняющегося с частотой ω

Читайте также: Устройство сварочного трансформатора

по синусоидальному или косинусоидальному закону:
\(~u = U_m \cdot \sin \omega t\) или \(~u = U_m \cdot \cos \omega t\) ,
где u

– мгновенное значение напряжения,
U
m – амплитуда напряжения, ω – циклическая частота колебаний. Если напряжение меняется с частотой ω, то и сила тока в цепи будет меняться с той же частотой, но колебания силы тока не обязательно должны совпадать по фазе с колебаниями напряжения. Поэтому в общем случае
\(~i = I_m \cdot \sin (\omega t + \varphi_c)\) ,
где φc – разность (сдвиг) фаз между колебаниями силы тока и напряжения.

Исходя из этого можно дать еще такое определение:

  • Переменный ток
    – это электрический ток, который изменяется с течением времени по гармоническому закону.

Переменный ток обеспечивает работу электрических двигателей в станках на заводах и фабриках, приводит в действие осветительные приборы в наших квартирах и на улице, холодильники и пылесосы, отопительные приборы и т.п. Частота колебаний напряжения в сети равна 50 Гц. Такую же частоту колебаний имеет и сила переменного тока. Это означает, что на протяжении 1 с ток 50 раз поменяет свое направление. Частота 50 Гц принята для промышленного тока во многих странах мира. В США частота промышленного тока 60 Гц.

Что такое действующее напряжение переменного тока?

Как я писал выше, одним из основных параметров переменного напряжения является амплитуда Um, однако использовать в расчётах данную величину не удобно, так как временной интервал в течение, которого значение напряжения u равно амплитудному Um ничтожно мал, по сравнению с периодом Т напряжения. Использовать мгновенное значение напряжения u, также не очень удобно, вследствие больших объёмов расчётов. Тогда возникает вопрос, какое значение переменного напряжения использовать при расчётах?

Для решения данного вопроса необходимо обратиться к энергии, которая выделяется под воздействием переменного напряжения, и сравнить её с энергией, которая выделяется под воздействием постоянного напряжения. Для решения данного вопроса обратимся к закону Джоуля – Ленца для постоянного напряжения

Для переменного напряжения мгновенное значение выделяемой энергии составит

где u – мгновенное значение напряжения

Тогда количество энергии за полный период от t = 0 до t1 = T составит

Приравняв выражения для количества энергии при переменном напряжении и постоянном напряжении и выразив полученное выражение через постоянное напряжение, получим действующее значение переменного напряжения

Получившееся выражение, позволяет вычислить действующее значение напряжение U для периодического переменного напряжения любой формы. Из выше изложенного можно сделать вывод, что действующее значение переменного напряжения называется такое постоянное напряжение, которое за такое же время и на таком же сопротивлении выделяет такую же энергию, которая выделяется данным переменным напряжением.

Действующее значение синусоидального напряжения

Действующее значение синусоидального напряжения.

Вычислим действующее значение синусоидального напряжения

Читайте также: Схема трубки домофона: принцип работы, разновидности, устройство, установка

Стоит отметить, все напряжения электротехнических устройств определяются, как правило, действующим значением напряжения.

Генератор переменного тока

Основная часть электроэнергии в мире в настоящее время вырабатывается генераторами переменного тока, создающими гармонические колебания.

  • Генератором переменного тока
    называется электротехническое устройство, предназначенное для преобразования механической энергии в энергию переменного тока.

ЭДС индукции генератора изменяется по синусоидальному закону

\(e=_ \cdot \sin \omega \cdot t,\)

где \(_ =B\cdot S\cdot \omega\) — амплитудное (максимальное) значение ЭДС. При подключении к выводам рамки нагрузки сопротивлением R

, через нее будет проходить переменный ток. По закону Ома для участка цепи сила тока в нагрузке

\(i=\dfrac =\dfrac \cdot \sin \omega \cdot t = I_ \cdot \sin \omega \cdot t,\)

где \(I_ = \dfrac\) — амплитудное значение силы тока.

Основными частями генератора являются (рис. 1):

  • индуктор
    — электромагнит или постоянный магнит, который создает магнитное поле;
  • якорь
    — обмотка, в которой индуцируется переменная ЭДС;
  • коллектор со щетками
    — устройство, посредством которого снимается с вращающихся частей или подается по ним ток.

Рис. 1
Неподвижная часть генератора называется статором

, а подвижная —
ротором
. В зависимости от конструкции генератора его якорь может быть как ротором, так и статором. При получении переменных токов большой мощности якорь обычно делают неподвижным, чтобы упростить схему передачи тока в промышленную сеть.

На современных гидроэлектростанциях вода вращает вал электрогенератора с частотой 1-2 оборота в секунду. Таким образом, если бы якорь генератора имел только одну рамку (обмотку), то получался бы переменный ток частотой 1-2 Гц. Поэтому, для получения переменного тока промышленной частоты 50 Гц якорь должен содержать несколько обмоток, позволяющих увеличить частоту вырабатываемого тока. Для паровых турбин, ротор которых вращается очень быстро, используют якорь с одной обмоткой. В этом случае частота вращения ротора совпадает с частотой переменного тока, т.е. ротор должен делать 50 об/с.

Мощные генераторы вырабатывают напряжение 15-20 кВ и обладают КПД 97-98 %.

. Первоначально Фарадей обнаружил лишь едва заметный ток в катушке при движении вблизи нее магнита. «Какая от этого польза?» — спросили его. Фарадей ответил: «Какая может быть польза от новорож­денного?» Прошло немногим более половины столетия и, как сказал американский физик Р. Фейнман, «бесполезный новорожденный превратился в чудо-богатыря и изменил облик Земли так, как его гордый отец не мог себе и представить».

Читайте также: Поверка счетчиков электроэнергии без их снятия

*Принцип действия

Принцип действия генератора переменного тока основан на явлении электромагнитной индукции.

Пусть проводящая рамка площадью S

вращается с угловой скоростью ω вокруг оси, расположенной в ее плоскости перпендикулярно однородному магнитному полю индукцией \(\vec\) (см. рис. 1).

При равномерном вращении рамки угол α между направлениями вектора индукции магнитного поля \(\vec\) и нормали к плоскости рамки \(\vec\) меняется со временем по линейному закону. Если в момент времени t

= 0 угол α0 = 0 (см. рис. 1), то

\(\alpha = \omega \cdot t = 2\pi \cdot \nu \cdot t,\)

где ω — угловая скорость вращения рамки, ν — частота ее вращения.

В этом случае магнитный поток, пронизывающий рамку будет изменяться следующим образом

\(\Phi \left(t\right)=B\cdot S\cdot \cos \alpha =B\cdot S\cdot \cos \omega \cdot t.\)

Тогда согласно закону Фарадея индуцируется ЭДС индукции

\(e=-\Phi ‘(t)=B\cdot S\cdot \omega \cdot \sin \omega \cdot t = _ \cdot \sin \omega \cdot t.\)

Подчеркнем, что ток в цепи проходит в одном направлении в течение полуоборота рамки, а затем меняет направление на противоположное, которое также остается неизменным в течение следующего полуоборота.

“Приборы НПСИ”

Вначале уже говорили, что НПФ “КонтрАвт” выпускает целый ряд измерительных преобразователей измерения и преобразования в унифицированные сигналы тока и напряжения

Вот их перечень:

  • НПСИ-ДНТВ (до 500 В), НПСИ-ДНТН (до 50 В), программируемые тип и диапазон измерения
  • НПСИ-200-ДН (напряжение) и НПСИ-200-ДТ (ток) — фиксированные диапазоны
  • НПСИ-МС1 — ток, напряжение, мощность, 1 фаза, программируемые
  • НПCИ-500-МС1 ( 1 фаза) и НПСИ-500-МС3 (3 фаза) — ток, напряжения мощности, программируемые, RS-485

В этой линейке приборов есть преобразователи с программируемым типом и диапазоном измерения, есть с фиксированным преобразованием. Есть преобразователи, которые измеряют всю совокупность параметров в одно- и трехфазной сети (действующие значения тока и напряжения, все виды мощности, частоту сети и ряд других параметры), а также преобразуют их в токовые сигналы и передают по интерфейсу RS-485.

Во всех реализован описанный метод измерения, позволяющий измерять периодические несинусоидальные сигналы с основной частотой 50 Гц с гармониками вплоть до 20 (частота 1000 Гц), а также сигналы с постоянной составляющей (постоянные сигналы). Дополнительное усреднение измеренных значений эффективно повышает точность и стабильность измерения.

Действующие значения силы тока и напряжения

Пусть источник тока создает переменное гармоническое напряжение

\(u=U_ \cdot \sin \omega \cdot t.\;\;\;(1)\)

Согласно закону Ома, сила тока в участке цепи, содержащей только резистор сопротивлением R

, подключенный к этому источнику, изменяется со временем также по синусоидальному закону:

\(i = \dfrac =\dfrac > \cdot \sin \omega \cdot t = I_ \cdot \sin \omega \cdot t,\;\;\; (2)\)

где \(I_m = \dfrac>.\) Как видим, сила тока в такой цепи также меняется с течением времени по синусоидальному закону. Величины Um

,
Im
называются
амплитудными значениями напряжения и силы тока
. Зависящие от времени значения напряжения
u
и силы тока
i
называют
мгновенными
.

Кроме этих величин используются еще одна характеристика переменного тока: действующие (эффективные) значения силы тока и напряжения

Читайте также: Как самому подключить кондиционер к электросети

  • Действующим (эффективным) значением силы
    переменного тока называется сила такого постоянного тока, который, проходя по цепи, выделяет в единицу времени такое же количество теплоты, что и данный переменный ток.

Обозначается буквой I

  • Действующим (эффективным) значением напряжения
    переменного тока называется напряжение такого постоянного тока, который, проходя по цепи, выделяет в единицу времени такое же количество теплоты, что и данный переменный ток.

Обозначается буквой U

Действующие (I, U

) и амплитудные (
Im, Um
) значения связаны между собой следующими соотношениями:

Таким образом, выражения для расчета мощности, потребляемой в цепях постоянного тока, остаются справедливыми и для переменного тока, если использовать в них действующие значения силы тока и напряжения:

\(P = U\cdot I = I^ \cdot R = \dfrac.\)

Необходимо отметить, что закон Ома для цепи переменного тока, содержащей только резистор сопротивлением R

, выполняется как для амплитудных и действующих, так и для мгновенных значений напряжения и силы тока, вследствие того, что их колебания совпадают по фазе.

*Вывод формулы

Зная мгновенные значения u

и
i
, можно вычислить мгновенную мощность

которая, в отличие от цепей постоянного тока, изменяется с течением времени. С учетом уравнений (1) и (2) перепишем выражение для мгновенной мощности на резисторе в виде

\(p=U_ \cdot I_ \cdot \sin ^ \omega \cdot t=U_ \cdot I_ \cdot \dfrac =\dfrac -\dfrac \cdot \cos 2\omega \cdot t.\)

Первое слагаемое не зависит от времени. Второе слагаемое P

2 — функция косинуса удвоенного угла и ее среднее значение за период колебаний равно нулю (рис. 2, найдите сумму площади выделенных фигур с учетом знаков).
Рис. 2
Поэтому среднее значение мощности переменного электрического тока за период будет равно

\(\left\langle P \right\rangle =\dfrac \cdot I_ >.\)

Тогда с учетом закона Ома \(\left(I_ =\dfrac \right)\) получаем:

\(\left\langle P \right\rangle = \dfrac^ > \cdot R=\dfrac^ >. (4)\)

По определению действующих значений необходимо сравнивать мощности (количество теплоты в единицу времени) переменного и постоянного тока. Запишем уравнения для расчета мощности постоянного тока

и сравним с уравнениями (4>:

Параметры сигнаал

Что такое действующее, среднеквадратичное, эффективное напряжение или ток

Среднее значение переменного синусоидального напряжения или тока
Говоря о величине, изменяющейся по синусоидальному (гармоническому) закону, можно за половину периода определить ее среднее значение. Поскольку ток в сети у нас в подавляющем большинстве случаев синусоидальный, то для этого тока также легко может быть найдена средняя его величина (за половину периода), достаточно прибегнуть к операции интегрирования, установив пределы от 0 до Т/2. В результате получим:

Подставив Пи = 3,14, найдем среднюю, за половину периода, величину синусоидального тока в зависимости от его амплитуды. Аналогичным образом находится среднее значение синусоидальной ЭДС или синусоидального напряжения U:

Действующее значение тока I или напряжения U

Однако среднее значение не так широко применяется на практике, как действующее значение синусоидального тока или напряжения. Действующее значение синусоидально меняющейся во времени величины — есть среднеквадратичное, другими словами — эффективное ее значение.

Что такое действующее, среднеквадратичное, эффективное напряжение или ток

Эффективное (или действующее) значение тока или напряжения находится так же, путем интегрирования, но уже по отношению к квадратам, и с последующим извлечением квадратного корня, причем пределы интегрирования теперь — целый период синусоидальной функции.

Итак, для тока будем иметь:

Подставив значение корня из 2, получим формулу для нахождения эффективного (действующего, среднеквадратичного) значения тока, напряжения, ЭДС — по отношению к амплитудному значению. Эту формулу можно встретить очень часто, ее используют всюду в расчетах, связанных с цепями переменного синусоидального тока:

С практической точки зрения, если сравнить тепловое действие тока переменного синусоидального с тепловым действием тока постоянного непрерывного, на протяжении одного и того же периода времени, на одной и той же активной нагрузке, то выяснится, что выделенная за период синусоидального переменного тока теплота окажется равна выделенной за это же время теплоте от тока постоянного, при условии, что величина постоянного тока будет меньше амплитуды тока переменного в корень из 2 раз:

Это значит, что действующее (эффективное, среднеквадратичное) значение синусоидального переменного тока численно равно такому значению постоянного тока, при котором тепловое действие (выделяемое количество теплоты) этого постоянного тока на активном сопротивлении за один период синусоиды равно тепловому действию данного синусоидального тока за тот же период.

Аналогичным образом находится действующее (эффективное, среднеквадратичное) значение синусоидального напряжения или синусоидальной ЭДС.

Мультиметр

Подавляющее большинство современных портативных измерительных приборов, измеряя переменный ток или переменное напряжение, показывают именно действующее значение измеряемой величины, то есть среднеквадратичную величину, а не ее амплитуду и не среднее значение за полпериода.

Читайте также: Инфракрасная лампа для обогрева животных, птицы и рассады

Если других уточняющих настроек на приборе нет, а стоит значок

U – измерены будут действующие значения тока и напряжения. Обозначения для конкретно амплитуды или конкретно действующего — Im (m — maximum – максимум, амплитуда) или Irms (rms — Root Mean Square – среднеквадратичное значение).

Определение действующего (эффективного) значения

Действующее (эффективное) значение напряжения

— (по определению) такое напряжение постоянного тока, которое на такой же резистивной нагрузке выделит такую же мощность, как измеряемое переменное напряжение. Соответственно,
действующее (эффективное) значение силы тока
— (по определению) такое значение силы постоянного тока, при прохождении которого через резистивную нагрузку выделится такую же мощность, что и при прохождении измеряемого тока.

Учебники

Ланге В. Эффективное напряжение в сети переменного тока //Квант. — 2001. — № 3. — С. 40-41.

По специальной договоренности с редколлегией и редакцией журнала «Квант»

Перспективность использования электрической энергии в технике и быту стала очевидной еще в начале XIX века, а в конце его началась настоящая война между сторонниками постоянного и переменного тока. В ней, однако, не было ни победителей, ни побежденных, так как для одних целей оказывается необходимым постоянный ток (например, при электролизе), в других случаях целесообразнее использовать переменный (в особенности, при передаче электроэнергии на большие расстояния). Уместно напомнить, что сейчас существуют простые установки, позволяющие легко преобразовывать один вид тока в другой.

В соответствии с названием, в сетях постоянного

тока напряжение остается неизменным, а в сетях
переменного
тока оно со временем меняется. Обычно изменение напряжения происходит по синусоидальному закону \(~U = U_0 \sin \omega t\), где
ω
— циклическая частота, связанная с периодом
Т
соотношением \(~\omega = \frac<2\pi>\), a
U
0 — амплитудное значение напряжения. Графически характер изменения напряжения со временем показан на рисунке 1,а.
Рис. 1
Предположим, что необходимо рассчитать мощность Р

, которую будет потреблять из сети переменного тока с амплитудным напряжением
U
0 электрическая печь, имеющая сопротивление
R
. Как известно, такие расчеты выполняются с помощью закона Джоуля-Ленца:
\(~P = I^2 R\) ,
или в нашем случае

Однако в рассматриваемой цепи напряжение меняется и по знаку, и по величине. Как учесть эти два обстоятельства?

Начнем с ответа на более простой первый вопрос. В законе Джоуля-Ленца фигурирует квадрат напряжения, а поскольку (+U

)2 = (-
U
)2 , тепловыделение не зависит от знака разности потенциалов (или, что то же, от направления тока). Стало быть, и в сети переменного тока электрическая печь будет исправно выполнять свое назначение.

Попробуем теперь ответить на вопрос, какое напряжение надо подставить в формулу закона Джоуля-Ленца, чтобы получить правильное значение мощности в случае переменного тока. Для этого рассчитаем количество теплоты, выделяемое переменным током за время, равное периоду. И сделаем это следующим образом.

Поскольку теплоотдача определяется квадратом напряжения, легко понять, что тепловыделение имеет период \(~\frac T2\) (рис. 1,б). Более того, достаточно рассмотреть интервал от 0 до \(~\frac T4\), так как выделенная на рисунке фигура, если учесть ее зеркальные отражения, повторяется именно с таким периодом. На этом интервале фаза колебаний меняется от φ

1 = 0 до \(~\varphi_2 = \frac<\pi>\).

Запишем выражение для мощности электропечи в некоторый момент времени t

> в интервале времени от 0 до \(~\frac T4\) представим в виде
\(~
= \sin^2 \omega t> = \frac \) .

В угловых скобках остался зависящий от времени сомножитель, обозначаемый далее буквой y

. Для расчета его среднего значения воспользуемся рисунком 2, отметив на оси абсцисс точки
E
1,
Е
и
E
2, соответствующие фазам \(~\frac<\pi> — \alpha\), \(~\frac<\pi>\) и \(~\frac<\pi> + \alpha\), где α — произвольный угол, удовлетворяющий условию \(~0 < \alpha < \frac<\pi>\). Ясно, что
\(~E_1C_1 = \sin^2 \left( \frac<\pi> — \alpha \right) = \cos^2 \left( \frac<\pi> — \left( \frac<\pi> — \alpha \right)\right) = \cos^2 \left( \frac<\pi> + \alpha \right) = 1 — \sin^2 \left( \frac<\pi> + \alpha \right) = 1 — C_2E_2\) .
Таким образом, кривая

1
СС
2
В
делит прямоугольник
0DBA
на две равные части, каждая площадью
\(~\frac = \frac<\frac<\pi> \cdot 1> = \frac<\pi>\) .
Чтобы найти среднее значение \(~\sin^2 \omega t\) за время изменения фазы от 0 до \(~\frac<\pi>\), нужно площадь криволинейной фигуры 0СВА

разделить на ее основание:
\(~ = \frac<\frac<\pi>><\frac<\pi>> = \frac 12\) .
После этого находим среднее значение мощности за время от t

Поскольку такой же результат можно получить для каждого из последующих интервалов длительностью \(~\frac T4\) правая часть формулы дает мощность плитки сопротивлением R

, включенной в сеть переменного тока с амплитудным значением напряжения
U
0.

Пусть эта же плитка включена в сеть постоянного тока с таким напряжением U

ef, что ее мощность осталась прежней. Тогда, приравнивая мощность плитки в сети постоянного тока
\(~P = \frac>\) .
правой части предыдущего выражения, после несложного преобразования получим

Напряжение в сети постоянного тока, где плитка дает такой же тепловой эффект, как и в сети переменного тока с амплитудным значением напряжения, в \(~\sqrt 2\) большим, называется эффективным (или действующим) напряжением в сети переменного тока. В обычной городской еети амплитудное напряжение составляет приблизительно 310 В. Тогда для эффективного напряжения получается хорошо знакомое число 220 В.
Заметим, что аналогичное соотношение связывает эффективное и амплитудное значения и для силы тока в сети переменного тока.