Выходное напряжение вторичных источников

Какими бывают источники питания?

Источники электропитания – это устройства, обеспечивающие электрическим током электроприборы, аппараты и т. д. Они подразделяются на два вида:

Первичные сами вырабатывают электрическую энергию путем преобразования в нее других видов энергии, полученной в результате химических и прочих реакций.

К ним относятся различные электростанции (тепловые, атомные, гидравлические), химические преобразователи (аккумуляторы, гальванические и топливные элементы), термоэлектрические и фотоэлектрические генераторы (солнечные батареи) и др.

Вторичные предназначены для преобразования получаемой от первичного источника электроэнергии в напряжение с требуемыми параметрами. Для питания и нормального функционирования большинства электронных приборов требуется стабильное напряжение с различными значениями.

Читайте также: Как правильно выбрать для холодильника стабилизатор напряжения с инвентарным компрессором? Советы электриков

Вторичные источники имеют вид отдельных блоков или входят в состав различных электронных узлов. Кроме самого источника питания узлы могут включать дополнительные устройства, поддерживающие его нормальную работу при воздействии разных внешних факторов. К вторичным относятся трансформаторные и инверторные преобразователи, выпрямители и т. п.

Понятие первичных и вторичных источников относительно. Например, бытовая электросеть является первичным источником для домашних электроприборов, так как большинство устройств имеет свой внешний или встроенный блок питания, преобразующий входное напряжение до необходимых значений.

В свою очередь, трансформаторная подстанция, от которой питается бытовая электросеть, сама является вторичным источником по отношению к электростанции.

ИСТОЧНИКИ ПЕРВИЧНОГО ПИТАНИЯ

Как было сказано, к первичным источникам относятся устройства, преобразующие различные виды энергии в электроэнергию. Это может быть химическая, механическая энергия, световая, тепловая и энергия атомного распада.

Основные виды первичных источников:

  • гидроэлектростанции – преобразуют в электроэнергию гравитационную энергию воды;
  • химические источники (аккумуляторы, топливные и гальванические элементы) – переводят химическую энергию в электрическую;
  • дизель-генераторы – химическая энергия преобразуется сначала в механическую, потом в электрическую;
  • солнечные батареи – преобразуют энергию солнечного света в электрическую на основе физического закона фотоэффекта;
  • ветряные генераторы – преобразуют кинетическую энергию воздушных частиц;
  • термоэлектрические преобразователи – преобразуют тепловую энергию в электрическую.

Химические источники обычно используются в маломощных устройствах и как резервные источники. Работа топливных элементов основана на электрическом окислении топлива. В термоэлектрических устройствах электрический потенциал создает разница температур.

Первичные источники электропитания

Источники электропитания условно делятся на первичные и вторичные источники.

Первичными источникам и электропитания (ПИЭЭ)называются устройства, предназначенные для получения электроэнергии из других видов энергии.

К ПИЭЭ относятся следующие источники (рис.1.5):

фотоэлектрические преобразователи (солнечные батареи), непосредственно преобразующие солнечную энергию в электрическую;

термоэлектрические генераторы (ТЭГ) и термоэмиссионные преобразователи (ТЭП), преобразующие тепловую энергию в электрическую;

электромашинные преобразователи (ЭМП) – генераторы переменного и постоянного тока, преобразующие механическую энергию в электрическую.

Рисунок 1.5 – Классификация первичных источников электроэнергии

ЭМП широко используются в паросиловых, дизель — генераторах и газотурбинных установках, в которых преобразование тепловой энергии в механическую производится соответственно с помощью паровых турбин (ПТ), двигатель внутреннего сгорания (ДВС) и газовых турбин (ГТ);

Читайте также: Магнитные преобразователи для воды: принцип работы, популярные модели и советы по сборке своими руками.

химические источники тока, непосредственно преобразующие химическую энергию в электрическую. К ним относятся:

а) гальванические элементы (ГЭ);

б) аккумуляторные батареи (АБ);

в) электрохимические элементы (ЭХГ).

Довольно редко и только в маломощных автономных СЭП удается осуществить питание всех устройств непосредственно от ПИЭЭ. В большинстве случаев ПИЭЭ или стандартная сеть по частоте, стабильности или уровню напряжения оказывается неприемлимыми для питания РЭСБН.

Следовательно, возникает необходимость преобразования электроэнергии с помощью источников вторичного электропитания.

ИВЭП по своей физической сущности являются преобразователями вида и качества электрической энергии и составляют основу всех систем электропитания РЭСБН.

В составе СЭП РЭСБН источники вторичного электропитаниямогут выполнять следующие функции:

— обеспечение требуемых значений питающего напряжения как постоянного, так и переменного токов;

— осуществление гальванической развязки цепей питания друг от друга и от ПИЭЭ;

— обеспечение высокой стабильности питающего напряжения в условиях значительного изменения входного питающего напряжения и нагрузок;

— эффективное подавление пульсаций во входных питающих цепях постоянного тока;

— обеспечение требуемой формы напряжения переменного тока и другие.

ИСТОЧНИКИ ВТОРИЧНОГО ПИТАНИЯ

Вторичные источники подключаются к первичным и преобразуют получаемую электроэнергию в выходное напряжение с требуемыми параметрами частоты, пульсации и т. д.

Основные функции вторичных источников:

Читайте также: Что такое модульный контактор

  • обеспечение передачи требуемой мощности с наименьшими потерями;
  • преобразование формы напряжения (переменного напряжения в постоянное, изменение частоты, формирование импульсов;
  • преобразование значение напряжения (повышение или понижение его величины, формирование нескольких величин для разных цепей);
  • стабилизация напряжения (его показатели на выходе должны находиться в заданном диапазоне);
  • защита (чтобы напряжение, превысившее допустимые значения вследствие неисправности, не вывело из строя аппаратуру или сам ИП);
  • гальваническое разделение цепей.

Существует два основных типа источников вторичного питания (ИВП) – трансформаторный и импульсный.

Трансформаторный блок питания.

Трансформаторный, или линейный ИВП – классический блок питания. Регулировка выходного напряжения происходит в нем непрерывно, то есть линейно.

В его конструкцию последовательно входят:

  • трансформатор (корректирует напряжение в ту или иную сторону до нужной величины);
  • выпрямитель (преобразует переменное напряжение в постоянное);
  • фильтр (сглаживает пульсацию (колебания) в выпрямленном напряжении).

Также схема может включать защиту от короткого замыкания, фильтр высокочастотных помех, стабилизатор и др.

Достоинства трансформаторных ИВП:

  • простота конструкции;
  • гальваническая развязка от сети;
  • надежность в эксплуатации.
  • большие габариты и вес, которые прямо пропорциональны его мощности;
  • относительно низкий КПД.

В бытовой технике линейные ИП малой мощности используются для питания плат управления стиральных машин, микроволновок, отопительных котлов.

Импульсный ИВП.

Импульсный блок питания устроен принципиально иначе и имеет более сложную конструкцию.

  • выпрямитель (входное напряжение сначала выпрямляется – преобразуется из переменного в постоянное);
  • блок широтно-импульсной модуляции – ШИМ (преобразует постоянное напряжение в импульсы определенной частоты и скважности);
  • частотный фильтр (в блоках без гальванической развязки);
  • трансформатор (в блоках с гальванической развязкой от сети).

В импульсных источниках вторичного напряжения стабилизация реализуется посредством обратной связи, что позволяет поддерживать выходное напряжение на заданном уровне независимо от скачков входных параметров.

Например, в блоках с гальванической развязкой в зависимости от величины выходного сигнала изменяется скважность (отношение частоты следования импульсов к их длительности) на выходе ШИМ-контроллера.

Достоинства импульсных источников питания:

  • малый вес и небольшие размеры;
  • высокий КПД (до 98%);
  • широкий диапазон допустимого входного напряжения;
  • встроенная защита от короткого замыкания и других форс-мажоров;
  • невысокая цена;
  • по надежности сравнимы с трансформаторными ИП.
  • являются источниками высокочастотных помех, которые нельзя полностью устранить;
  • имеют ограничение по минимальной мощности нагрузки: не включаются, если она ниже требуемой.

Импульсные источники – это зарядки мобильных телефонов, блоки питания компьютеров, оргтехники, бытовой электроники.

Структура источников питания

Большинство электронных систем функционируют с использованием источников питания постоянного тока. Маломощные устройства, такие как сотовые телефоны, ноутбуки, переносные радиоприемники и другие, работают на батареях или аккумуляторах, которые вырабатывают постоянный ток. Для стационарного оборудования, как правило, требуется преобразование стандартного электропитания переменного тока (220 В, 50 Гц в Европе и 110 В, 60 Гц в Америке) в напряжение постоянного тока. Существуют три типа таких преобразователей [18, 19]:

Простой нерегулируемый источник питания (рис. 3.1). Трансформатор преобразовывает входное переменное напряжение в низкое выходное напряжение (обычно от 6 до 24 В). Далее низкое переменное напряжение подается на выпрямитель. На выходе выпрямителя протекает пульсирующий прерывный ток. Подключенный параллельно выходу конденсатор сглаживает пульсации.

На рис. 3.1 и последующих приняты следующие обозначения: АС — alternating current (переменный ток); DC — direct current (постоянный ток).

Регулируемый источник питания (рис. Ъ2а) отличается от предыдущего тем, что в его конструкцию добавлен электронный регулятор выходного напряжения (рис. 3.2б). В качестве такого регулятора может выступать ИМС линейного или импульсного стабилизаторов напряжения. Задача регулятора — создать стабильное требуемое выходное напряжение.

Рис. 3.1. Схема простого нерегулируемого источника питания

Читайте также: Классы напряжения для частного дома

Рис. 3.2. Схема регулируемого источника питания (а) и символьное обозначение структуры блока регулятора (б)

Рис. 3.3. Структура импульсного источника питания

Импульсный источник питания (рис. 3.3) широко применяется в телевизорах, компьютерах, видеомагнитофонах и другой радиоэлектронной бытовой аппаратуре. В таких источниках питания используется прерыватель, который преобразует входное напряжение частотой 50 или 60 Гц в высокочастотное напряжение (обычно от 20 до 500 КГц). Высокочастотное напряжение преобразуется импульсным трансформатором в напряжение требуемой величины, затем выпрямляется и сглаживается. Преимущество импульсного источника питания в том, что нет необходимости в использовании громоздкого и тяжелого низкочастотного трансформатора. Трансформаторы, которые работают на частоте 20 кГц и более, в несколько раз меньше по габаритам и массе, чем низкочастотного.

Обычно в состав блока прерывателя входят более «мелкие» блоки: выпрямитель сетевого переменного напряжения, ИМС управления импульсным источником питания со схемой обрамления, а также со встроенным или наружным MOSFET. На выходах обычно также ставятся соответствующие регуляторы (линейные или импульсные стабилизаторы напряжения).

Источник: Белоус А.И., Ефименко С.А., Турцевич А.С., Полупроводниковая силовая электроника, Москва: Техносфера, 2013. – 216 с. + 12 с. цв. вкл.

  • Предыдущая запись: АВТОМАТИЧЕСКИЙ КОНТРОЛЬНЫЙ ПРИЕМНИК
  • Следующая запись: Обобщенная структура и классификация электродвигателей – Полупроводниковая силовая электроника

Вторичные источники питания электронных устройств. Часть первая

Электрику

Источники электропитания – это устройства, обеспечивающие электрическим током электроприборы, аппараты и т. д. Они подразделяются на два вида:

Первичные сами вырабатывают электрическую энергию путем преобразования в нее других видов энергии, полученной в результате химических и прочих реакций.

К ним относятся различные электростанции (тепловые, атомные, гидравлические), химические преобразователи (аккумуляторы, гальванические и топливные элементы), термоэлектрические и фотоэлектрические генераторы (солнечные батареи) и др.

Вторичные предназначены для преобразования получаемой от первичного источника электроэнергии в напряжение с требуемыми параметрами. Для питания и нормального функционирования большинства электронных приборов требуется стабильное напряжение с различными значениями.

Читайте также: Техника из Кореи 60 Гц — можно ли использовать в сети 50 Гц

Вторичные источники имеют вид отдельных блоков или входят в состав различных электронных узлов. Кроме самого источника питания узлы могут включать дополнительные устройства, поддерживающие его нормальную работу при воздействии разных внешних факторов. К вторичным относятся трансформаторные и инверторные преобразователи, выпрямители и т. п.

Понятие первичных и вторичных источников относительно. Например, бытовая электросеть является первичным источником для домашних электроприборов, так как большинство устройств имеет свой внешний или встроенный блок питания, преобразующий входное напряжение до необходимых значений.

В свою очередь, трансформаторная подстанция, от которой питается бытовая электросеть, сама является вторичным источником по отношению к электростанции.

Типы источников питания

Подробности Категория: Школа радиофанатика
Существует много типов источников питания. Большинство разработано, чтобы преобразовать высокое напряжение электрической сети переменного тока (AC) в соответствующее низкое напряжение, для электроснабжения электронных схем и других устройств. Источник питания может быть разделен на ряд блоков, каждый из которых выполняет специальную функцию. Например, стабилизированный источник питания 5В:

Блок-схема стабилизированного источника питания

Каждый из блоков описан более подробно ниже:

Трансформатор — понижает высокое напряжение сети переменного тока (AC) к низкому напряжению AC. Выпрямитель — преобразовывает переменное напряжение в выпрямленное, но выходное DC является переменным. Фильтр – фильтрует DC, преобразуя большие помехи в маленькие. Стабилизатор — устраняет помехи, устанавливая выходное DC в постоянное напряжение.

Электрическая схема и график выходного напряжения источников питания, построенные на основе этих блоков, описаны ниже :

Только трансформатор Трансформатор + выпрямитель Трансформатор + выпрямитель + фильтр Трансформатор + выпрямитель + фильтр + стабилизатор

источники питания тока рис. 2.72 Блок-схема импульсного источника питания

ИСТОЧНИКИ ПЕРВИЧНОГО ПИТАНИЯ

Как было сказано, к первичным источникам относятся устройства, преобразующие различные виды энергии в электроэнергию. Это может быть химическая, механическая энергия, световая, тепловая и энергия атомного распада.

Основные виды первичных источников:

  • гидроэлектростанции – преобразуют в электроэнергию гравитационную энергию воды;
  • химические источники (аккумуляторы, топливные и гальванические элементы) – переводят химическую энергию в электрическую;
  • дизель-генераторы – химическая энергия преобразуется сначала в механическую, потом в электрическую;
  • солнечные батареи – преобразуют энергию солнечного света в электрическую на основе физического закона фотоэффекта;
  • ветряные генераторы – преобразуют кинетическую энергию воздушных частиц;
  • термоэлектрические преобразователи – преобразуют тепловую энергию в электрическую.

Химические источники обычно используются в маломощных устройствах и как резервные источники. Работа топливных элементов основана на электрическом окислении топлива. В термоэлектрических устройствах электрический потенциал создает разница температур.

Трансформатор

Трансформаторы преобразуют переменное напряжение одного уровня в напряжение другого уровня с небольшой потерей мощности. Трансформаторы работают только на переменном напряжении, потому что большинство электрических сетей используют переменного напряжения. Повышающие трансформаторы увеличивают напряжение, понижающие трансформаторы уменьшают напряжение. Большинство источников питания используют понижающий трансформатор, чтобы уменьшить опасное высокое напряжение сети (230V в Великобритании) к более безопасному низкому напряжению. Входную обмотку называют первичной, а выходную обмотку называют вторичной. Электрического соединения между двумя обмотками нет, вместо этого они связаны переменным магнитным полем, которое создается в сердечнике трансформатора из мягкой стали. Две линии, в середине схемы, представляют собой сердечник. Трансформаторы рассеивают очень маленькую мощность, таким образом, мощность на входе (почти) равна выходной мощности. Следует отметить, что когда напряжение понижается, ток растет. Соотношение числа витков на каждой обмотке, называется коэффициентом трансформации и определяет соотношение напряжений. Понижающий трансформатор имеет большее количество витков на своей первичной (входной) обмотке, которая соединена с высоким напряжением электрической сети, и небольшое количество витков на вторичной (выходной) обмотке, чтобы выдавать низкое выходное напряжение.

Коэффициент трансформации = Vp/Vs = Np/Ns выходная мощность = входная мощность Vs*Is = Vp*Ip

Vp = первичное (входное) напряжение, Np = число витков первичной обмотки, Ip = первичный (входой) ток, Vs = вторичное (выходное) напряжение, Ns = число витков вторичной обмотки, Is = вторичный (выходной) ток

Читайте также: Период, частота, амплитуда и фаза переменного тока

Время реакции на изменение нагрузки

Этот параметр определяет, насколько быстро ИП реагирует на изменение нагрузки или скачки электротока. Если выходной ток быстро изменяется в широком диапазоне значений, выходное напряжение также начинает с высокой скоростью уменьшаться или увеличиваться. Время, которое необходимо устройству для стабилизации характеристик, называется временем реакции (или отклика) на изменение нагрузки. Из-за использования обратной связи в топологии для контроля выходного напряжения, импульсные ИП отличаются сравнительно медленной реакцией.

Чтобы обезопасить тестируемые устройства от сильных перегрузок, рекомендуется применять предварительную нагрузку. Она подключается параллельно с испытываемым прибором и ограничивает скачки напряжения. У современных импульсных источников питания время отклика составляет 40-80 мкс, а у линейных — до 1 мкс.

Выпрямитель

Существует несколько способов соединения диодов, чтобы получить выпрямитель для преобразования переменного напряжения в постоянное. Мостовой выпрямитель является самым важным, и он производит все полуволны переменного выпрямленного напряжения. Двухполупериодный выпрямитель может также быть выполнен только из двух диодов, если используется трансформатор со средней точкой, но этот метод сейчас редко используется, так как диоды стоят дешевле. Один диод может использоваться как выпрямитель, но он только использует положительные (+) полуволны переменного напряжения, чтобы произвести полуволну, переменного выпрямленного напряжения.

Основные характеристики ИБП

Чтобы обеспечить эффективную защиту оборудования при разумных затратах, необходимо учесть следующие параметры УПС:

  • Мощность на выходе. Полная измеряется в вольт-амперах (ВА, VA), активная – в ваттах (Вт, W).
  • Диапазон входного сигнала. Определяет те значения напряжения, при которых происходит переключение рабочих режимов.
  • Время работы в автономном режиме (в минутах). Зависит от мощности подключенной техники и емкости батарей.
  • Время, необходимое для перехода от сетевого электропитания на автономное. Измеряется в миллисекундах.
  • Срок эксплуатации. Может быть 5 или 10 лет, это зависит от технических характеристик аккумуляторов.

Устройства могут быть напольной и универсальной конфигурации или устанавливаться в стойку. Батареи размещаются снаружи или внутри корпуса.

ИБП конфигурация

ИБП могут быть напольной, универсальной конфигурации, устанавливаться в стойку.

Мостовой выпрямитель

Мостовой выпрямитель может быть сделан, используя четыре индивидуальных диода, или комплексную сборку, содержащую эти четыре требуемые диода. Он называется двухполупериодным выпрямителем, потому что он использует всю волну переменного напряжения (и положительную и отрицательную части). 1.4В расходуется в мостовом выпрямителе, потому что каждый диод потребляет по 0.7В, когда проводит и всегда есть два проводниковых диода, как показано на рисунке ниже. Мостовые выпрямители оцениваются по максимальному току, который они могут пропустить и максимальному обратному напряжению, которому они могут противостоять (это должно быть равно, по крайней мере, тремя значениям действующего значения поставляемого напряжения, таким образом, выпрямитель может противостоять максимальным напряжениям).

Пары чередующихся диодных соединений, соединены попарно так ,что переменное напряжение AC, преобразуется к одному значению DC. Выход: две полуволны переменного выпрямленного напряжения DC (используются все волны переменного напряжения).

ИСТОЧНИКИ БЕСПЕРЕБОЙНОГО ЭЛЕКТРОПИТАНИЯ

Большая категория устройств нуждается в непрерывной подаче электроэнергии вне зависимости от внешних условий. Это могут быть как вычислительная техника (серверы, устройства хранения данных), так и целые производства с непрерывным циклом. Перебои питания в таких случаях недопустимы.

Для обеспечения постоянной подачи питающего напряжения разработаны устройства бесперебойного питания. В широком смысле источником бесперебойного питания (ИБП) может служить резервная линия электропередач или автономная электростанция.

Сейчас этим термином принято именовать устройства вторичного электропитания, которые предназначены для обеспечения работоспособности подключенной аппаратуры при кратковременных перебоях электроэнергии питающей сети.

Как правило, источники бесперебойного питания также выполняют функцию защиты от помех и скачков напряжения. По принципу действия их можно разделить на несколько категорий:

  • off-line;
  • line-interactive;
  • online.

Наиболее простую конструкцию имеют off-line

блоки электропитания. В нормальных условиях питание устройств осуществляется напрямую от первичного источника.

В случае пропадания напряжения или его выхода за допустимые пределы источник автоматически переключается на питание от встроенного аккумулятора, напряжение которого преобразуется при помощи инвертора.

Читайте также: Вопросы и ответы билетов по 3 группе электробезопасности

Подобные устройства имеют в своем составе пассивные фильтры, препятствующие прохождению помех и схему слежения за параметрами входного напряжения. Несомненное достоинство off-line ИБП – простота конструкции, низкая стоимость и высокий КПД.

Следующий тип «бесперебойников» — line-interactive

, работает по тому же принципу, но имеет встроенный ступенчатый стабилизатор на основе автотрансформатора.

Такой блок дополнительно стабилизирует входное напряжение и в большинстве случаев позволяет не переключаться на питание от аккумулятора, который необходим только в случаях неспособности автотрансформатора справиться со стабилизацией (значительное превышение или понижение входного напряжения, его полное пропадание).

Основные недостатки перечисленных устройств:

  • требуется определенное время на переключение в режим работы от аккумулятора;
  • невозможность коррекции частоты сети;
  • несинусоидальное напряжение на выходе при работе от аккумулятора.

Первый недостаток может вызвать сбои в работе подключенных устройств при переключениях. Второй более существенен и не позволяет подключать устройства, требующие для питания синусоидального напряжения, а это асинхронные электродвигатели и бытовая техника, имеющая их в составе, например, отопительные котлы.

Только электроприемники, работа которых основана импульсных блоках питания, то есть не чувствительные к форме входного напряжения, могут нормально функционировать от подобных ИБП. К таким потребителям относятся устройства вычислительной техники, где off-line ИБП получили наибольшее распространение.

Наиболее высокое качество обеспечивают online

устройства. Работают они по принципу двойного преобразования. Входное напряжение сети сначала преобразуется в постоянное, а затем, при помощи инвертора, обратно в переменное.

Самое главное, что время переключения на питание от внешнего аккумулятора здесь отсутствует полностью, поскольку он постоянно подключен в цепь и при нормальных условиях работы находится в буферном режиме.

Поскольку выходное напряжение получается в результате преобразования постоянного, то имеется возможность коррекции его частоты и уровня в необходимых пределах.

Только самые дешевые устройства имеют на выходе напряжение с низким качеством. В основном большинство ИБП двойного преобразования выдают потребителям чистое синусоидальное напряжение, что делает такие приборы пригодными для питания большинства устройств.

Существенный недостаток online преобразователя – его высокая стоимость.

Все перечисленные устройства предназначены для кратковременной работы от внутреннего аккумулятора. Так происходит потому, что аккумуляторы имеют низкое значение ЭДС и при преобразовании к уровню входного напряжения от аккумулятора требуется отдать довольно значительный ток.

Аккумуляторы больших емкостей имеют значительные габариты и массу, а также требуют большое количество времени на подзарядку.

Таким образом, ИБП служат в основном для того, чтобы корректно и безопасно отключить устройства при пропадании напряжения сети.

Выпрямитель с одним доидом

В качестве выпрямителя может использоваться один диод, но он производит полуволну, переменного выпрямленного напряжения DC, и имеет пробелы, при отрицательной полуволне переменного напряжения. Трудно сгладить такое напряжение достаточно хорошо, чтобы поставлять в электронные схемы, если они не требуют очень маленького тока, таким образом, сглаживающий конденсатор недостаточно разряжается во время пробелов.

Выпрямитель с одним доидом

Выход: полуволны переменного выпрямленного напряжения DC (используется только половина волны AC).

Основные виды ИБП, особенности применения

Периодические внезапные отключения электроэнергии стали обычным явлением в нашей жизни. К сожалению, такие скачки напряжения существенно сокращают жизнь бытовой техники, приводят к потере электронных данных.

Избежать неприятных последствий помогают источники бесперебойного питания. Современный рынок представляет широкий ассортимент этих приборов. Принцип работы весьма прост: устройство включают в электросеть, а к нему подключают бытовые приборы. Если сеть функционирует нормально, бесперебойник только накапливает энергию. При пропадании электроэнергии в работу включается ИБП.

ИБП бывают следующих видов:

• Резервный ИБП. Подходит для офисной техники, компьютеров, бытового применения. КПД около 99%. Это хороший источник бесперебойного питания. Цена вполне доступная. К сожалению, такие бесперебойники работают не только при отключении электричества, но и при изменении его параметров, поэтому износ аккумуляторной батареи увеличивается. В этом случае можно предложить использовать дополнительный внешний источник питания.

внешний источник питания

• Линейно-интерактивные ИБП. Работают только в случае полного отключения питания. Их можно применять для офисного оборудования, отопительных котлов, вычислительной техники.

Читайте также: Правила технической эксплуатации электроустановок потребителей

• ИБП с двойным преобразованием. Это самый дорогой источник бесперебойного питания. Цена его превышает 50 тыс. рублей, но он того стоит. ИБП с двойным преобразованием доводят показания сети до отличных параметров. Время переключения при сбоях — меньше 1 мс. Используются они для питания медицинской техники, серверов, высокочувствительного оборудования.

Фильтрация

Фильтрация (сглаживание) выполняется с помощью электролитического конденсатора большой емкости, связанного с источником постоянного тока DC, который работает как емкость, поставляя ток выходу, когда переменное выпрямленное напряжение DC от выпрямителя падает. На рисунке показаны: несглаженное переменное выпрямленное напряжение DC (пунктирная линия) и сглаженное DC (сплошная линия). Конденсаторные заряжается быстро возле максимума переменного выпрямленного напряжения, и затем разряжается после поставки тока к выходу.

Следует отметить, что сглаживание значительно увеличивает среднее напряжение DC почти до максимального значения (1.4*действующее значение). Например, 6В действующего переменного напряжения AC соответствует полной волне DC приблизительно 4.6В действующего напряжения (1.4В теряется в мостовом выпрямителе), при сглаживании оно увеличивается к почти максимальному значению, дающему 1.4*4.6 = 6.4В сглаженного DC. Сглаживание не является идеальным из-за падения напряжения конденсатора во время его разрядки, что вносит небольшое напряжение пульсаций. Для многих схем пульсации, которые составляют 10 % напряжения питания, является допустимыми, и уравнение ниже позволяет определить необходимое значение емкости для сглаживающего конденсатора. Конденсатор большой емкости вносит меньшие пульсации. Значение емкости конденсатора должно быть удвоено, когда полуволна DC сглажена.

Сглаживающий конденсатор с 10% пульсацией,С = (5*Io)/(Vs*f)

С — ёмкость конденсатора в Фарадах (Ф); Io — выходной ток от источника питания в Амперах (A); Vs — напряжение питания в Вольтах (В), это — максимальное напряжение несглаженного напряжения; f — частота источника переменного напряжения в Герцах (Гц), 50 Гц в Великобритании.

Скорость изменения выходного напряжения

Это важный параметр, который имеет большое значение в сфере тестирования электроприборов. При испытаниях на аппаратуру подаются различные напряжения для проверки ее правильного функционирования в пределах рабочего диапазона. Чем быстрее источник питания реагирует на изменение настроек, тем выше производительность тестирования. В стандартных устройствах время установки выходного напряжения с точностью до 1% составляет в среднем 50-500 мс. Существуют специальные схемы регулируемых источников питания постоянного тока, которые позволяют уменьшить данный показатель до 1-4 мс.

Стабилизатор

Фотография регулятора напряжения © Быстрая Электроника

Интегральный стабилизатор напряжения (ICs) совместим с постоянным (как правило, 5, 12 и 15В) или переменные выходным напряжением. Они также оцениваются по максимальному току, который они могут пропустить. Отрицательное регулирование напряжения доступно, главным образом для использования в двухполупериодных схемах. Большинство регуляторов включает некоторую автоматическую защиту от чрезмерного тока (защита от перегрузки) и перегрева (тепловая защита). Большинство интегральных стабилизаторов постоянного напряжения имеют 3 электропровода и выглядят как транзисторы большой мощности, такие как 7805 +5В 1A стабилизатор, показанный справа. Они включают отверстие для того, чтобы приложить теплоотвод в случае необходимости.

Линейные

Начали применять в радиоэлектронной технике в начале 20 века. К настоящему времени устарели и применяются в основном в дешевых конструкциях из-за присущих им недостатков: большого веса и габаритов, низкого КПД. Преимуществами линейных источников питания являются простота и высокая надежность, низкий уровень шумов и излучений.

источник бесперебойного питания цена

Принцип действия блока питания чрезвычайно прост. Входное напряжение поступает на трансформатор, понижается до требуемой величины, выпрямляется, сглаживается конденсатором и подается на вход стабилизатора, который состоит из транзистора и схемы управления. «Излишки» напряжения компенсируются регулирующим транзистором. Поэтому на нем выделяется значительная мощность в виде тепла. Линейный источник питания целесообразно применять при токах потребления до 1А.

Как выбрать ИБП

УПС могут использоваться для защиты бытовой и офисной техники, ПК, промышленного оборудования. Сферой применения определяется и выбор модели ИБП, а чтобы сделать его правильно, нужно знать потребляемую техникой мощность.

Ее номинальная величина в ваттах указана в технической документации или на наклейке с задней панели каждого устройства. Так как бесперебойники характеризуются ее значением в ВА, то в расчетах необходимо использовать формулу P(VA)=P(W)/0,7.

Подключение оборудования, общая мощность которого превышает номинальное значение у самого UPS, приведет к его перегрузке и отключению. Поэтому выбирать ИБП следует, исходя из суммарной нагрузки от всей аппаратуры, которую планируется к нему подключить.

Номинальная мощность бесперебойника должна быть выше расчетной на 20-30%. Например, работу оборудования мощностью 750 ВА обеспечит ИБП с номинальным ее значением не ниже 1 кВА. Кроме того, нужно учитывать резкое увеличение нагрузки во время пуска приборов с электродвигателем (компрессоры, насосы), поэтому производителями ИБП разработаны специальные программы для расчета их требуемой мощности.

Время автономной работы УПС подбирается в зависимости от задач, которые будут выполняться. Для защиты компьютеров, мониторов, аудио- и видеоаппаратуры подойдут недорогие устройства offline или smart типа. Если в сети наблюдаются частые перепады напряжения, то лучше взять бесперебойник с функцией AVR.

Для того, чтобы была возможность увеличить время работы ИБП в автономном режиме, выбирают модели с внешним размещением батарей – емкость такого устройства легко увеличивается дополнительными аккумуляторами, которые подсоединяются параллельно.

Лазерные принтеры, инструменты и бытовые приборы с электродвигателями, а также другое оборудование, чувствительное к качеству подаваемого напряжения (требующее правильной синусоиды), обеспечивается питанием только через блоки online типа.

При выборе модели ИБП следует обратить внимание на количество и виды разъемов, которыми она оснащена. Они должны соответствовать подключаемой технике по количеству (желательно с запасом) и типу.

Вторичные источники питания электронных устройств. Часть первая

Станко-строй

Источники электропитания – это устройства, обеспечивающие электрическим током электроприборы, аппараты и т. д. Они подразделяются на два вида:

Первичные сами вырабатывают электрическую энергию путем преобразования в нее других видов энергии, полученной в результате химических и прочих реакций.

К ним относятся различные электростанции (тепловые, атомные, гидравлические), химические преобразователи (аккумуляторы, гальванические и топливные элементы), термоэлектрические и фотоэлектрические генераторы (солнечные батареи) и др.

Вторичные предназначены для преобразования получаемой от первичного источника электроэнергии в напряжение с требуемыми параметрами. Для питания и нормального функционирования большинства электронных приборов требуется стабильное напряжение с различными значениями.

Читайте также: Межвитковое замыкание: причины, способы проверки и методы ремонта

Вторичные источники имеют вид отдельных блоков или входят в состав различных электронных узлов. Кроме самого источника питания узлы могут включать дополнительные устройства, поддерживающие его нормальную работу при воздействии разных внешних факторов. К вторичным относятся трансформаторные и инверторные преобразователи, выпрямители и т. п.

Понятие первичных и вторичных источников относительно. Например, бытовая электросеть является первичным источником для домашних электроприборов, так как большинство устройств имеет свой внешний или встроенный блок питания, преобразующий входное напряжение до необходимых значений.

В свою очередь, трансформаторная подстанция, от которой питается бытовая электросеть, сама является вторичным источником по отношению к электростанции.

ИСТОЧНИКИ ПЕРВИЧНОГО ПИТАНИЯ

Как было сказано, к первичным источникам относятся устройства, преобразующие различные виды энергии в электроэнергию. Это может быть химическая, механическая энергия, световая, тепловая и энергия атомного распада.

Основные виды первичных источников:

  • гидроэлектростанции – преобразуют в электроэнергию гравитационную энергию воды;
  • химические источники (аккумуляторы, топливные и гальванические элементы) – переводят химическую энергию в электрическую;
  • дизель-генераторы – химическая энергия преобразуется сначала в механическую, потом в электрическую;
  • солнечные батареи – преобразуют энергию солнечного света в электрическую на основе физического закона фотоэффекта;
  • ветряные генераторы – преобразуют кинетическую энергию воздушных частиц;
  • термоэлектрические преобразователи – преобразуют тепловую энергию в электрическую.

Химические источники обычно используются в маломощных устройствах и как резервные источники. Работа топливных элементов основана на электрическом окислении топлива. В термоэлектрических устройствах электрический потенциал создает разница температур.

ИСТОЧНИКИ ВТОРИЧНОГО ПИТАНИЯ

Вторичные источники подключаются к первичным и преобразуют получаемую электроэнергию в выходное напряжение с требуемыми параметрами частоты, пульсации и т. д.

Основные функции вторичных источников:

  • обеспечение передачи требуемой мощности с наименьшими потерями;
  • преобразование формы напряжения (переменного напряжения в постоянное, изменение частоты, формирование импульсов;
  • преобразование значение напряжения (повышение или понижение его величины, формирование нескольких величин для разных цепей);
  • стабилизация напряжения (его показатели на выходе должны находиться в заданном диапазоне);
  • защита (чтобы напряжение, превысившее допустимые значения вследствие неисправности, не вывело из строя аппаратуру или сам ИП);
  • гальваническое разделение цепей.

Существует два основных типа источников вторичного питания (ИВП) – трансформаторный и импульсный.

Трансформаторный блок питания.

Трансформаторный, или линейный ИВП – классический блок питания. Регулировка выходного напряжения происходит в нем непрерывно, то есть линейно.

В его конструкцию последовательно входят:

  • трансформатор (корректирует напряжение в ту или иную сторону до нужной величины);
  • выпрямитель (преобразует переменное напряжение в постоянное);
  • фильтр (сглаживает пульсацию (колебания) в выпрямленном напряжении).

Также схема может включать защиту от короткого замыкания, фильтр высокочастотных помех, стабилизатор и др.

Достоинства трансформаторных ИВП:

  • простота конструкции;
  • гальваническая развязка от сети;
  • надежность в эксплуатации.

Читайте также: Что такое катушка индуктивности и для чего она нужна

  • большие габариты и вес, которые прямо пропорциональны его мощности;
  • относительно низкий КПД.

В бытовой технике линейные ИП малой мощности используются для питания плат управления стиральных машин, микроволновок, отопительных котлов.

Импульсный ИВП.

Импульсный блок питания устроен принципиально иначе и имеет более сложную конструкцию.

  • выпрямитель (входное напряжение сначала выпрямляется – преобразуется из переменного в постоянное);
  • блок широтно-импульсной модуляции – ШИМ (преобразует постоянное напряжение в импульсы определенной частоты и скважности);
  • частотный фильтр (в блоках без гальванической развязки);
  • трансформатор (в блоках с гальванической развязкой от сети).

В импульсных источниках вторичного напряжения стабилизация реализуется посредством обратной связи, что позволяет поддерживать выходное напряжение на заданном уровне независимо от скачков входных параметров.

Например, в блоках с гальванической развязкой в зависимости от величины выходного сигнала изменяется скважность (отношение частоты следования импульсов к их длительности) на выходе ШИМ-контроллера.

Достоинства импульсных источников питания:

  • малый вес и небольшие размеры;
  • высокий КПД (до 98%);
  • широкий диапазон допустимого входного напряжения;
  • встроенная защита от короткого замыкания и других форс-мажоров;
  • невысокая цена;
  • по надежности сравнимы с трансформаторными ИП.
  • являются источниками высокочастотных помех, которые нельзя полностью устранить;
  • имеют ограничение по минимальной мощности нагрузки: не включаются, если она ниже требуемой.

Импульсные источники – это зарядки мобильных телефонов, блоки питания компьютеров, оргтехники, бытовой электроники.

Основы электроакустики

Во многих книгах источники электропитания быто­вых устройств упоминаются вскользь или их существова­ние подразумевается само собой. Что мы делаем в первую очередь, покупая новый плеер, радиоприемник, телевизор или видеокамеру? Прежде всего, мы разбира­емся с их источниками питания. Если они автономные, то надо, соблюдая полярность, вставить батареи в корпус устройства и лишь после этого включать его. Если устройство питается от аккумуляторов, их надо вначале зарядить (а возможно, и отформатировать) и лишь затем вставить в устройство. А если ваше устройство питается от сети, то прежде чем вставить вилку сетевого шнура в розетку и включить устройство, полезно убедиться в том, что переключатель напряжения сети установлен в правильное положение. Словом, с источниками питания мы сталкиваемся в первую очередь! Все бытовые аудио- и видеоустройства нуждаются в электропитании. Подобно тому, как не удалось изобре­сти вечный двигатель, пока не придуманы электронные устройства, способные усиливать электрические сигналы без электропитания входящих в них транзисторов и интегральных микросхем, именуемых активными приборами. Эту азбучную истину должен знать каждый пользователь аудио- и видеоустройств.

По типу электропитания такие устройства в насто­ящее время можно подразделить на три категории:

  • 1 устройства с автономным питанием;
  • 2 устройства с комбинированным питанием;
  • 3 устройства с сетевым питанием.

Устройства с автономным питанием обычно питаются от гальванических элементов и батарей. Батарея — не­сколько гальванических элементов, соединенных по­следовательно (реже параллельно или смешанно). Широ­ко используются также аккумуляторы и аккумуляторные батареи, которые заряжаются с помощью специальных зарядных устройств от сети и затем уже используются для питания аудио- и видеоустройств. Обычно автономное (батарейное) электропитание применяется в малогаба­ритных устройствах малой мощности — плеерах (маг­нитофонных и дисковых), радиоприемниках и магнито­лах низших классов.
Комбинированное питание, пожалуй, наиболее удоб­но. Оно предполагает, что соответствующее устройство может питаться как от батарей, так и от электрической сети переменного тока. Некоторые устройства могут питаться и от бортовой сети — например, автомобилей (с подключением к ней с помощью разъема-вставки, вставляемого в гнездо для зажигалки). При питании от сети используются специальные источники вторичного электропитания — сетевые адаптеры. Они могут быть встроенными в корпус питаемых устройств или выпол­няться в виде отдельных устройств.

Сетевое питание обычно используется для стацио­нарных устройств, потребляющих приличную мощ­ность — обычно начиная с десятка ватт. Такие устрой­ства редко переносятся с места на место и почти никогда не используются при отдыхе на природе.

Различают первичные и вторичные источники питания.

Аккумуляторы Топливные элементы Редоксиэлементы

Читайте также: Цветовая и цифровая маркировка резисторов. Обозначение их мощности.

Фотоэлектрические преобразователи (солнечная батарея) Термоэлектрические преобразователи Электромеханические источники тока МГД-генератор

Радиоизотопные источники энергии

Трансформаторы и автотрансформаторы переменного напряжения и тока Вибропреобразователи Импульсные преобразователи

Стабилизаторы напряжения и тока

Первичные источники питания − преобразователи различных видов энергии в электрическую. Например: гидроэлектростанция − ГЭС (потенциальная гравитационная энергия воды преобразуется в электрическую энергию), химические источники тока (ХИТ), аккумуляторы, топливные элементы (химическая энергия преобразуется в электрическую), дизель-генераторная установка − ДГУ (химическая энергия преобразуется в механическую, затем в электрическую), ветрогенератор (кинетическая энергия частиц воздуха преобразуется в электрическую) и др. В силовой электротехнике к первичным источникам питания можно отнести аккумуляторные батареи, дизельные- газовые- бензиновые генераторные установки, генерирующие электростанции, ИБП в автономном режиме работы и др.. Примером может служить аккумулятор, преобразующий химическую энергию в электрическую. Вторичные источники сами не генерируют электроэнергию, а служат лишь для её преобразования с целью обеспечения требуемых параметров (напряжения, тока, пульсаций напряжения и т. п.) Устройство, предназначенное для обеспечения питания электроприбора электрической энергией, при соответствии требованиям её параметров: напряжения, тока, и так далее путём преобразования энергии других источников питания Источник электропитания может быть интегрированным в общую схему (обычно в простых устройствах; либо когда недопустимо даже незначительное падение напряжения на подводящих проводах — например материнская плата компьютера имеет встроенные преобразователи напряжения для питания процессора), выполненным в виде модуля (блока питания, стойки электропитания и так далее), или даже расположенным в отдельном помещении (цехе электропитания).

  • Задачи вторичного источника питания
  • Обеспечение передачи мощности — источник питания должен обеспечивать передачу заданной мощности с наименьшими потерями и соблюдением заданных характеристик на выходе без вреда для себя. Обычно мощность источника питания берут с некоторым запасом.
  • Преобразование формы напряжения — преобразование переменного напряжения в постоянное, и наоборот, а также преобразование частоты, формирование импульсов напряжения и т. д. Чаще всего необходимо преобразование переменного напряжения промышленной частоты в постоянное.
  • Преобразование величины напряжения — как повышение, так и понижение. Нередко необходим набор из нескольких напряжений различной величины для питания различных цепей.
  • Стабилизация — напряжение, ток и другие параметры на выходе источника питания должны лежать в определённых пределах, в зависимости от его назначения при влиянии большого количества дестабилизирующих факторов: изменения напряжения на входе, тока нагрузки и так далее. Чаще всего необходима стабилизация напряжения на нагрузке, однако иногда (например, для зарядки аккумуляторов) необходима стабилизация тока.
  • Защита — напряжение, или ток нагрузки в случае неисправности (например, короткого замыкания) каких-либо цепей может превысить допустимые пределы и вывести электроприбор, или сам источник питания из строя. Также во многих случаях требуется защита от прохождения тока по неправильному пути: например прохождения тока через землю при прикосновении человека или постороннего предмета к токоведущим частям.
  • Гальваническая развязка цепей — одна из мер защиты от протекания тока по неверному пути.
  • Регулировка — в процессе эксплуатации может потребоваться изменение каких-либо параметров для обеспечения правильной работы электроприбора.
  • Управление — может включать регулировку, включение/отключение каких-либо цепей, или источника питания в целом. Может быть как непосредственным (с помощью органов управления на корпусе устройства), так и дистанционным, а также программным (обеспечение включения/выключения, регулировка в заданное время или с наступлением каких-либо событий).
  • Контроль — отображение параметров на входе и на выходе источника питания, включения/выключения цепей, срабатывания защит. Также может быть непосредственным или дистанционным.
  • Чаще всего перед вторичными источниками питания стоит задача преобразования электроэнергии из сети переменного тока промышленной частоты (например, в России — 220 В 50 Гц, в США — 120 В 60 Гц). Две наиболее типичных конструкции — это трансформаторные и импульсные источники питания.