Выпрямители напряжения емкостный фильтр

Сглаживающие фильтры

Пульсации вносят помехи в работу аппарата, который питается от БП. Кроме того, они делают невозможной работу стабилизаторов ввиду того, что в интервалах между полуволнами (абсолютная синусоида) напряжение падает практически до нуля. Рассмотрим некоторые виды сглаживающих фильтров.

Пассивные фильтры

Емкостной фильтр

Емкостной фильтр представляет собой конденсатор большой емкости, который включается параллельно нагрузочному резистору Rн. Конденсатор обладает большим сопротивление постоянному току и малым сопротивлением переменному току. Рассмотрим работу фильтра на примере схемы однополупериодного выпрямителя (рис. 1, а).

Рис. 1 — Однофазный однополупериодный выпрямитель с емкостным фильтром:
а) схема б) временные диаграммы работы

При протекании положительной полуволны во временном промежутке t0t1 (рис. 1, б) протекает ток нагрузки (ток диода) и ток заряда конденсатора. Конденсатор заряжается и в момент времени t1 напряжение на конденсаторе превышает спадающее напряжение вторичной обмотки – диод закрывается и во временной промежуток t1–t2 ток в нагрузке обеспечивается разрядом конденсатора. Т.о. ток в нагрузке протекает постоянно, что значительно уменьшает пульсации выпрямленного напряжения.

Чем больше емкость конденсатора Сф , тем меньше пульсаций. Это определяется време-нем разряда конденсатора — постоянной времени разряда τ = СфRн .

При τ > 10 коэффициент сглаживания q определяется по формуле:

m – число полупериодов выпрямленного напряжения.

Емкостный фильтр целесообразно применять с высокоомным нагрузочным резистором Rн при небольших мощностях нагрузки.

Индуктивный фильтр

Индуктивный фильтр (дроссель) включается последовательно с Rн (рис. 3, а). Индуктивность обладает малым сопротивлением постоянному току и большим переменному. Сглаживание пульсаций основывается на явлении самоиндукции, которая изначально препятствует нарастанию тока, а затем поддерживает его при уменьшении (рис. 2, б).

Однофазный однополупериодный выпрямитель с индуктивным фильтром

Рис. 2 — Однофазный однополупериодный выпрямитель с индуктивным фильтром:
а) схема, б) временные диаграммы работы

Индуктивные фильтры применяют в выпрямителях средней и большой мощностей, т. е. в выпрямителях, работающих с большими токами нагрузки.

Коэффициент сглаживания определяется по формуле:

Работа емкостного и индуктивного фильтра основана на том, что во время протекания тока, потребляемого из сети, конденсатор и катушка индуктивности запасают энергию, а когда тока от сети нет, либо он уменьшается, элементы отдают накопленную энергию, поддерживая ток (напряжение) в нагрузке.

Многозвенные фильтры

Многозвенные фильтры используют сглаживающие свойства и конденсаторов и катушек индуктивности. В маломощных выпрямителях, у которых сопротивление нагрузочного резистора составляет несколько кОм, вместо дросселя Lф включают резистор Rф, что существенно уменьшает массу и габариты фильтра.

На рисунке 3 представлены типы многозвенных LC- и RC-фильтров.

Многозвенные фильтр

Рисунок 3 – Многозвенные фильтры:
а) Г — образный LC-фильтр , б) П-образный LC-фильтр , в) RC-фильтр

Резистивно-емкостные фильтры

Рис. 4 — Резистивно-емкостные фильтры

Резистивно-емкостные фильтры (рис. 4) характеризуются сравнительно большим падением напряжения. Это связано с применением в них резистора. Поэтому для работы с токами более 500 мА такие фильтры не подходят ввиду больших потерь и рассеиваемой мощности. Резистор рассчитывается следующим образом

где:
Uвып – выходное напряжение выпрямителя,
Uп – напряжение питания нагрузки,
Iн – ток нагрузки.

Индуктивно-емкостной фильтр

Рис.5. Индуктивно-емкостной фильтр

Индуктивно-емкостные фильтры характеризуются сравнительно высокой сглаживающей способностью, но уступают другим по массогабаритным параметрам. Основная идея индуктивно–емкостного фильтра в соотношении реактивных сопротивлений его компонентов XС Rн XL , т.е. фильтр должен обладать хорошей добротностью. Сам фильтр рассчитывается по следующей формуле

q – коэффициент сглаживания
m – фазность
f – частота
Lф — индуктивность дросселя
Cф – емкость конденсатора.

В любительских условиях вместо дросселя можно использовать первичную обмотку трансформатора (ни того, от которого все питается), а вторичную замкнуть.

Активные фильтры

Активные фильтры применяются в тех случаях, когда пассивные фильтры не годятся по массогабаритным или температурным параметрам. Дело в том, что, как уже говорилось, чем больше ток нагрузки, тем больше емкость сглаживающих конденсаторов. На практике это вытекает в необходимость применения громоздких электролитических конденсаторов. В активном фильтре используется транзистор в схеме эмиттерного повторителя (каскад с общим коллектором), поэтому сигнал на эмиттере практически повторяет сигнал на базе (рис. 6)

Активный фильтр

Рис. 6 — Активный фильтр

Цепь R1C1 рассчитывается как резистивно – емкостной фильтр, только в качестве потребляемого тока берется ток в цепи базы

5-187-25.png

.

Однако, как видно из формулы, режим фильтра (в том числе и коэффициент сглаживания) будет зависеть от потребляемого тока, поэтому его лучше зафиксировать (рис. 7)

Активный фильтр

Рис. 7 — Активный фильтр

Схема работает при условии, что IR2>>Iб , при чем выходное напряжение будет составлять примерно 0,98 Uб из-за просадки напряжения в повторителе. За сопротивление нагрузки принимаем R2.

Помехозащитные фильтры

Надо сказать, что радиопомехи могут проникать не только из сети в прибор, но и из прибора в сеть. Поэтому оба направления следует защищать от помех. Особенно это касается импульсных БП. Как правило, это сводится к подключению конденсаторов небольшой емкости (0,01 – 1,0 мкФ) параллельно цепи, как это показано на рис. 8.

5-187-28.jpg

Как и в случае со сглаживающими фильтрами, помехозащитные фильтры работают при условии, что емкостное сопротивление конденсаторов на частоте возникновения помехи много меньше сопротивления нагрузки.

Возможно, что помеха возникает ни от спонтанного перепада тока в сети или прибора, а от постоянной «вибрации». Это относится, например, к импульсным БП или передатчикам в телеграфном режиме. В этом случае может потребоваться еще и индукционная развязка (рис. 9).

5-187-29.jpg

Рис.9 — Индукционная развязка

Однако конденсаторы должны быть подобраны так, чтобы не возникал резонанс в обмотках дросселей и трансформаторов.

Источники:

Электроника © ЦДЮТТ • Марсель Арасланов • 2019

Выпрямители напряжения емкостный фильтр

Формула

Силовые фильтры — назначение и основные параметры

В силовой электронике фильтры предназначены для следующих целей:

— сглаживание пульсаций — подавления пульсаций напряжения на выходе или на входе источника питания обусловленных импульсным характером преобразования энергии или выпрямления переменного напряжения. Такие фильтры называют сглаживающими. Их основное предназначение – «буферизация» энергии, то есть накопление энергии и питание нагрузки в те промежутки времени, когда энергия от преобразователя (или выпрямителя) не поступает в нагрузку;

— помехоподавление — подавление ВЧ помех, обусловленных коммутационными процессами переключения ключевых элементов. Такие фильтры называют помехоподавляющими. Назначение этих фильтров – максимальное подавление высокочастотных помех путем обеспечения для них максимального последовательного и минимального параллельного (на землю) реактивного сопротивления;

Сглаживающие и помехоподавляющие фильтры, несмотря на схожие топологии и конструкции выполняют принципиально разные задачи. При этом любой сглаживающий фильтр частично выполняет функции помехоподавления, а любой помехоподавляющий фильтр немного сглаживает пульсации. Поэтому далее представлены методики расчета раздельно для различных типов фильтров.

Основные параметры фильтров:

— полоса пропускания – или точнее амплитудно-частотная характеристика — зависимость амплитуды выходного сигнала от частоты входного напряжения. Определяет частоту, начиная с которой происходит эффективное уменьшение амплитуды пульсаций.

— коэффициент сглаживания K, который определяется как отношение коэффициента пульсаций на входе фильтра к коэффициенту пульсаций на выходе.

— максимальный ток, при котором фильтр сохраняет свои помехоподавляющие свойства. Это связано с фильтрами, в состав которых входят дроссели. Насыщение магнитопровода дросселя приводит к существенному ухудшению помехоподавляющих свойств.

— последовательное сопротивление на постоянном токе – активное последовательное сопротивление фильтра, измеряемое на постоянном токе.

Сглаживающие фильтры

Основным параметром сглаживающих фильтров является коэффициент сглаживания K, который определяется как отношение коэффициента пульсаций на входе фильтра kp_IN к коэффициенту пульсаций на выходе kp_OUT:

Формула

Здесь коэффициенты пульсаций:

Формула Формула

ΔVIN – амплитуда пульсации на входе;

ΔVOUT – амплитуда пульсации на выходе;

VIN – входное напряжение;

VOUT – выходное напряжение.

Как правило, напряжение на выходе фильтра практически равно входному напряжению:

Формула

Отсюда выражение для коэффициента сглаживания K можно упростить:

Формула

ΔVIN – амплитуда пульсации на входе;

ΔVOUT – амплитуда пульсации на выходе.

Сглаживающие фильтры в зависимости от месторасположения и назначения в структуре источника питания разделяются на входные и выходные. В источниках питания с трансформаторным входом сглаживающие фильтры ставят непосредственно после выпрямителя, выпрямляющего низкочастотное (50 Гц) сетевое напряжение. В импульсных преобразователях и стабилизаторах, как правило, используют сглаживающие фильтры как на входе источника, после сетевого выпрямителя, так и на его выходе, после высокочастотного выпрямителя.

Емкостной фильтр

В простейшем случае представляет собой конденсатор, подключенный к выходу выпрямителя или преобразователя. По отношению к нагрузке он подключен параллельно. Расчет емкостного фильтра зависит от типа и параметров питающего источника. В случае входного сетевого напряжения 50 Гц это будет одно. В случае выходного фильтра импульсного источника – другое.

Наиболее распространено использование емкостного фильтра в связке с двухполупериодным выпрямителем, поэтому этот случай будет рассмотрен отдельно.

Связка «Емкостной фильтр + двухполупериодный выпрямитель»

Электрическая схема связки мостового выпрямителя с конденсатором фильтра представлена на рисунке FLTR.1.

Напряжение на выходе выпрямителя имеет вид следующих друг за другом синусоидальных полуволн (рисунок FLTR.2). Амплитуда напряжения — VA . При работе на емкостной фильтр можно выделить два характерных интервала времени: первый — интервал разряда (временные промежутки II и IV на рисунке FLTR.2), при котором происходит передача энергии от конденсатора в нагрузку. При этом напряжение снижается на величину ΔVC равную амплитуде пульсаций. И второй интервал — интервал заряда (временные промежутки I и III на рисунке FLTR.2), на котором происходит подзаряд конденсатора до максимального значения VC_max. Величина VC_max меньше амплитудного напряжения VA на величину падения напряжения на выпрямителе Vrect.

В разделе «Выпрямители» представлен вывод соотношения для расчета емкостного фильтра, работающего в связке с двухполупериодным выпрямителем. Методика расчета емкостного фильтра работающего в связке с двухполупериодным выпрямителем включает в себя следующие действия:

— определяем мощность потребляемую нагрузкой P и КПД η;

— определяем максимальное напряжение на конденсаторе VС_max согласно заданным значениям амплитуды входного напряжения — VA и падения напряжения на выпрямителе Vrect :

Формула

— задаем допустимую амплитуду пульсаций напряжения на нагрузке ΔVС;

— рассчитываем емкость фильтра Cf по соотношению [Источники вторичного электропитания с бестрансформаторным входом. Бас А.А., Миловзоров В.П., Мусолин А.К. М.: Радио и Связь, 1987. 160 с.] :

Формула

Данная методика может быть использована для расчета выходных фильтров источников питания с трансформаторным входом, для расчета входных сглаживающих фильтров импульсных источников питания с безтрансформаторым входом. В данных фильтрах используются электролитические конденсаторы, как обладающие более высокой удельной емкостью по сравнению с другими типами конденсаторов.

Необходимо отметить, что на практике беспредельным увеличением емкости фильтра уменьшить до нуля пульсации не получится. Причиной является то, что с ростом емкости фильтра сокращается время, за которое ёмкость должна зарядиться до амплитудного значения, это в свою очередь вызывает рост амплитуды импульсов зарядного тока. В результате с одной стороны за счет падения напряжения на паразитном последовательном сопротивлении источника питания снижается амплитуда напряжения питания VA. С другой стороны с ростом зарядного тока увеличиваются пульсации напряжения на фильтре, обусловленные падением напряжения на ESR — паразитном последовательном сопротивлении конденсаторов. Кардинальным способом уменьшения амплитуды пульсаций является использование многоступенчатых фильтров, включающих Г-, П- и Т- образные звенья LC-цепочек.

Резистивно-емкостной фильтр (RC-фильтр)

Силовые RC-фильтры при построении источников питания практически не используются. Дело в том, что введение резистора в классическую связку «емкостной фильтр + двухполупериодный выпрямитель» приводит лишь к затягиванию интервала заряда конденсатора за счет ограничения резистором максимального тока. При этом пропорционально снижается амплитуда импульсов тока через диоды выпрямителя, что в принципе неплохо. Но значительно возрастают потери, поскольку ток через резистор в любом случае носит характер сравнительно коротких импульсов и его среднеквадратичное значение уходит в облака. Тем не менее, для ограничения импульсного тока диода применение RC-фильтров допускается для маломощных источников (менее 100 Вт), особенно в случаях, когда не предъявляются жесткие требования к КПД [Гейтенко Е.Н. Источники вторичного электропитания. Схемотехника и расчет. Учебное пособие. — М.: СОЛОН-ПРЕСС, 2008. — 448 с.].

Электрическая схема резистивно-емкостного фильтра представлена на рисунке FLTR.3.

Согласно определению коэффициент сглаживания K фильтра определяется по формуле:

Формула

ΔVIN – амплитуда пульсации на входе;

ΔVOUT – амплитуда пульсации на выходе;

VIN – входное напряжение;

VOUT – выходное напряжение.

Если на вход фильтра поступает напряжение с выпрямителя, то амплитуда пульсации на входе ΔVIN равна уровню входного напряжения VIN:

Формула

Отсюда соотношение для коэффициента сглаживания K приводится к виду:

Формула

Выходное напряжение RC-фильтра VOUT меньше входного за счет падения напряжения на сопротивлении фильтра. Его среднее значение определяется выражением:

Формула

Rf – сопротивление фильтра;

Отсюда следует требование к величине сопротивления фильтра:

Формула

Последовательность расчета резистивно-емкостного сглаживающего фильтра представлена ниже [Гейтенко Е.Н. Источники вторичного электропитания. Схемотехника и расчет. Учебное пособие. — М.: СОЛОН-ПРЕСС, 2008. — 448 с.]:

— определяем величину сопротивления фильтра:

Формула

(VIN-VOUT) – разность между средними значениями входного VIN и выходного напряженийVOUT. Рекомендуемое значение падения напряжения на резисторе (VIN-VOUT) не должно превышать 1-5% от величины напряжения питания;

— определяем минимальное эффективное сопротивление нагрузки как отношение минимального выходного напряжения VOUT_min к максимальному току нагрузки Iload_max :

Формула

— задаемся требуемым значением амплитуды пульсаций ΔVOUT и рассчитываем коэффициент сглаживания K:

Формула

ΔVOUT – амплитуда пульсации на выходе;

VOUT – выходное напряжение.

— рассчитываем величину емкости конденсатора фильтра по соотношению:

Формула

K – коэффициент сглаживания;

m – фазность схемы (или число фаз выпрямления — количество полуволн на период, m зависит от схемы выпрямителя: m=1 для однофазного однополупериодного выпрямителя, m=2 для однофазного двухполупериодного и мостового выпрямителей, m=6 для трехфазного мостового выпрямителя (схема Ларионова);

f – частота пульсаций входного напряжения;

Rf – сопротивление фильтра;

Rload – эффективное сопротивление нагрузки.

КПД фильтра определяется из соотношения:

Формула

RC-фильтры могут быть использованы как маломощные сглаживающие и помехоподавляющие фильтры. Использование RC-фильтров в мощных цепях ограничено высокой рассеиваемой мощностью и значительным снижением выходного напряжения. Поэтому в мощных цепях используют LC фильтры различных топологий.

Преимуществом использования RC-фильтров является низкий уровень электромагнитных помех, что улучает ЕМС-совместимость. А также более низкая стоимость и габариты. Недостатками – снижение выходного напряжения, значительное уменьшение КПД, проблемы нагрева и необходимости отвода значительной мощности, выделяющейся на резисторе.

Индуктивно-емкостной фильтр (LC-фильтр)

LC-фильтры являются более эффективным типом фильтров по сравнению с RC-фильтрами. При этом простейший LC-фильтр содержит два реактивных элемента и точный расчет данных фильтров является более сложным. Кроме того объединение L и C всегда образует гремучую смесь в виде опасности резонанса и выбросов перенапряжений.

Электрическая схема индуктивно-емкостного фильтра представлена на рисунке FLTR.4.

Первым и базовым условием эффективного подавления пульсаций на частоте f является малое емкостное сопротивление конденсатора фильтра ZCf (на данной частоте) по сравнению с эффективным сопротивления нагрузки и наоборот большое индуктивное сопротивление дросселя ZLf (на данной частоте) по отношению к нагрузке [Гейтенко Е.Н. Источники вторичного электропитания. Схемотехника и расчет. Учебное пособие. — М.: СОЛОН-ПРЕСС, 2008. — 448 с.]:

Формула Формула

Таким образом, реактивные сопротивления индуктивности и емкости, по отношению к пульсации образуют делитель напряжения, резко уменьшающий её амплитуду на выходе (на нагрузке).

Вторым условием оптимального сглаживания является обеспечение индуктивной реакции фильтра в диапазоне частоты подавления пульсаций на частоте f. Физически это означает непрерывность тока через дроссель и выравнивание тока протекающего через фильтр за счет его затягивания индуктивностью. Это приводит к устранению импульсного характера тока, заряжающего конденсатор фильтра и соответственно к снижению потерь на ключевых элементах, диодах, паразитных сопротивлениях. Кроме снижения потерь уменьшаются пульсации обусловленные падением напряжения на ESR — последовательном паразитном сопротивлении конденсатора фильтра. Условием индуктивной реакции является [Гейтенко Е.Н. Источники вторичного электропитания. Схемотехника и расчет. Учебное пособие. — М.: СОЛОН-ПРЕСС, 2008. — 448 с. ; А.А. Ровдо. Полупроводниковые диоды и схемы с диодами. Лайт Лтд. 2000. 286 с.]:

Формула

Linuct_min – минимальное значение индуктивности фильтра обеспечивающей индуктивную реакцию фильтра;

m – фазность схемы (количество полуволн на период, m зависит от схемы выпрямителя: выражение справедливо для однофазного двухполупериодного и мостового выпрямителей — m=2 и для трехфазного мостового выпрямителя (схема Ларионова) — m=6);

f – частота пульсаций входного напряжения;

Rload – эффективное сопротивление нагрузки;

Vout_rms – среднеквадратичное значение напряжения на нагрузке;

Iload_rms – среднеквадратичное значение тока нагрузки.

Коэффициент сглаживания LC-фильтра K (без учета активного сопротивления дросселя) рассчитывается по соотношению:

Формула

m – фазность схемы (количество полуволн на период, m зависит от схемы выпрямителя: m=1 для однофазного однополупериодного выпрямителя, m=2 для однофазного двухполупериодного и мостового выпрямителей);

f – частота пульсаций входного напряжения;

Lf – индуктивность дросселя фильтра;

Cf – ёмкость конденсатора фильтра.

Поскольку LC-фильтр представляет собой соединение двух реактивных элементов, то существуют подводные камни, способные стать причиной выхода фильтра из строя:

— перенапряжения на конденсаторе при сбросе нагрузки;

— перенапряжения на конденсаторе при включении;

— броски тока при включении.

— Для устранения возможных резонансных явлений необходимо выполнение условия:

Формула

— Для устранения недопустимых перенапряжений на конденсаторе при сбросе нагрузки емкость должна быть достаточно большой, чтобы поглотить избыточную энергию. Так, выброс напряжения на выходе фильтра, обусловленный резким изменением тока нагрузки (сбросом или обрывом тока нагрузки) ∆Vload_OFF равен [В.Е. Китаев, А.А. Бокуняев, М.Ф. Колканов; Под ред. А.А. Бокуняева. Расчет источников электропитания устройств связи. Учебное пособие для вузов. — М.: Радио и связь 1993. — 232с.]:

Формула

ΔIload – величина изменения тока нагрузки (принимается равной току нагрузки как крайнему случаю – обрыву нагрузки фильтра);

Lf – индуктивность дросселя фильтра;

Cf – ёмкость конденсатора фильтра.

Это соотношение можно привести к виду:

Формула

Формула

имеет смысл волнового сопротивления фильтра.

Отсюда следует требование к величине емкости фильтра:

Формула

Здесь ΔVload_max – максимально допустимая величина выбросов на нагрузке.

— Для расчета перенапряжения на конденсаторе, обусловленного коммутацией фильтра к сети ΔVf_comm используют следующее соотношение [В.Е. Китаев, А.А. Бокуняев, М.Ф. Колканов; Под ред. А.А. Бокуняева. Расчет источников электропитания устройств связи. Учебное пособие для вузов. — М.: Радио и связь 1993. — 232с.]:

Формула

r – активное сопротивление первичного источника (источника до фильтра) включающее внутренне сопротивление источника, сопротивление проводов, коммутационных и выпрямительных элементов и т.д.

VIN – амплитуда входного напряжения фильтра;

Lf – индуктивность дросселя фильтра;

Cf – ёмкость конденсатора фильтра.

— Для расчета броска тока через фильтр, обусловленного зарядом конденсатора при коммутации фильтра к сети If_comm используют следующее соотношение [В.Е. Китаев, А.А. Бокуняев, М.Ф. Колканов; Под ред. А.А. Бокуняева. Расчет источников электропитания устройств связи. Учебное пособие для вузов. — М.: Радио и связь 1993. — 232с.]:

Формула

r – активное сопротивление первичного источника (источника до фильтра) включающее внутренне сопротивление источника, сопротивление проводов, коммутационных и выпрямительных элементов и т.д. ;

VIN – амплитуда входного напряжения фильтра;

Iload – ток нагрузки;

Lf – индуктивность дросселя фильтра;

Cf – ёмкость конденсатора фильтра.

Последовательность расчета индуктивно — емкостного сглаживающего LC фильтра представлена ниже [Гейтенко Е.Н. Источники вторичного электропитания. Схемотехника и расчет. Учебное пособие. — М.: СОЛОН-ПРЕСС, 2008. — 448 с.]:

— определяем максимальное эффективное сопротивление нагрузки Rload как отношение максимального выходного напряжения VOUT_max к минимальному току нагрузки Iload_min(наихудший случай):

Формула

— рассчитываем индуктивность фильтра исходя из условия обеспечения индуктивной реакции фильтра:

Формула

Linuct_min – минимальное значение индуктивности фильтра обеспечивающей индуктивную реакцию фильтра;

m – фазность схемы (количество полуволн на период, m зависит от схемы выпрямителя: выражение справедливо для однофазного двухполупериодного и мостового выпрямителей — m=2 и для трехфазного мостового выпрямителя (схема Ларионова) — m=6);

f – частота пульсаций входного напряжения;

Rload – эффективное сопротивление нагрузки.

Рекомендуется выбирать значение Lf превышающее в 2-4 раза минимальное рассчитанное значение Linuct_min.

— задаем коэффициент сглаживания Г-образного LC-фильтра K. Для выполнения условия отсутствия возникновения резонанса — K > 3;

— рассчитываем величину емкости конденсатора фильтра по соотношению:

Формула

m – фазность схемы (количество полуволн на период, m зависит от схемы выпрямителя: m=1 для однофазного однополупериодного выпрямителя, m=2 для однофазного двухполупериодного и мостового выпрямителей);

f – частота пульсаций входного напряжения;

Lf – индуктивность дросселя фильтра;

Cf – ёмкость конденсатора фильтра.

— вычисляем величину перенапряжений на конденсаторе ΔVload_OFF при условии полного обрыва нагрузки:

Формула

где величина изменения тока ΔIload равна номинальному току нагрузки Iload:

Формула

Lf – индуктивность дросселя фильтра;

Cf – ёмкость конденсатора фильтра.

— вычисляем величину перенапряжения на конденсаторе обусловленного коммутацией фильтра к сети ΔVf_comm по соотношению [В.Е. Китаев, А.А. Бокуняев, М.Ф. Колканов; Под ред. А.А. Бокуняева. Расчет источников электропитания устройств связи. Учебное пособие для вузов. — М.: Радио и связь 1993. — 232с.]:

Формула

r – активное сопротивление первичного источника (источника до фильтра) включающее внутренне сопротивление источника, сопротивление проводов, коммутационных и выпрямительных элементов и т.д. ;

VIN – амплитуда входного напряжения фильтра;

Lf – индуктивность дросселя фильтра;

Cf – ёмкость конденсатора фильтра.

— выбираем максимальное из полученных величин перенапряжений и сравниваем сопоставляем его с максимальным входным напряжением фильтра VIN . Если максимальное напряжение превышает это значение более чем на 30% то рекомендуется увеличение номинала емкости. При выборе конденсатора его максимальное рабочее напряжение должно быть превышать наибольшее из полученных значений ΔVload_OFF и ΔVf_comm.

— оцениваем величину выбросов напряжения на нагрузке ΔVf_comm относительно максимально допустимой величины. Если наблюдается превышение максимального порога, то выбирается большая емкость конденсатора фильтра и расчет повторяют снова.

— дополнительно рассчитываем бросок тока через фильтр обусловленный зарядом конденсатора по следующему соотношению [В.Е. Китаев, А.А. Бокуняев, М.Ф. Колканов; Под ред. А.А. Бокуняева. Расчет источников электропитания устройств связи. Учебное пособие для вузов. — М.: Радио и связь 1993. — 232с.]:

Формула

r – активное сопротивление первичного источника (источника до фильтра) включающее внутренне сопротивление источника, сопротивление проводов, коммутационных и выпрямительных элементов и т.д. ;

VIN – амплитуда входного напряжения фильтра;

Iload – ток нагрузки;

Lf – индуктивность дросселя фильтра;

Cf – ёмкость конденсатора фильтра.

— сравниваем полученное значение тока с максимально допустимым значением однократного импульсного тока через элементы до фильтра (диоды выпрямителя и т.д.). Если полученная величина превышает данное значение, то необходимо увеличить индуктивность дросселя и произвести перерасчет фильтра.

Помехоподавляющие фильтры

Помехоподавляющие фильтры предназначены для подавления высокочастотных составляющих напряжения сети питания. Как правило, силовые помехоподавляющие фильтры стоят на входе источников питания и предназначены как для подавления ВЧ-пульсаций как исходящих из сети, так и пульсаций, поступающих в сеть от блока питания.

Что такое ВЧ-помехи? Как они образуются и передаются? Зачем с ними нужно бороться?

Подавление ВЧ помех необходимо по ряду причин:

— обеспечение нормального электромагнитного фона внутри изделия, поскольку дополнительные высокочастотные помехи, проходящие из сети по цепи питания или же генерируемые самой схемой способны вызвать наводки в цепях управления способные стать причиной выхода устройства из строя. Кроме этого минимизация электромагнитного фона крайне важна для обеспечения нормальной работы измерительной техники, акустических устройств Hi-Fi и Hi-End класса и др.

— обеспечение существующих норм и стандартов по излучаемым в питающую сеть ВЧ-колебаний. Это особенно актуально для устройств с импульсными источниками питания на входе.

— обеспечение совместимости и нормальной работы различных устройств подключенных к одной сети, например мощного источника питания и аудиоусилителя;

— сглаживание высоковольтных выбросов напряжения в питающей сети.

Организация мер по подавлению ВЧ помех зависит от того какая из вышеприведенных причин является приоритетной. Об этом подробнее ниже.

Источниками помех внутри устройства являются:

— коммутация активных элементов (транзисторы, тиристоры, электромагнитные реле, закрывающиеся диоды и др.);

— скачкообразные изменения нагрузки;

— резонансные явления из-за паразитных элементов (звон паразитных LC-контуров и т.д.) [Векслер Г.С., Недочетов В.С. и др. Подавление электромагнитных помех в цепях электропитания. Киев: Тэхника. 1990. 167 с.].

Источниками помех вне устройства являются:

— соседние устройства, в особенности работающий рядом инверторный сварочный аппарат J;

— питающая сеть (пресловутые 50 Гц);

— беспроводные сети (Wi-Fi и т.д.);

— мобильная техника и т.д.

Источники распространяют помехи по одному из нижеперечисленных путей или по обоим одновременно.

Существуют два пути распространения помех :

— кондуктивные помехи – помехи, распространяющиеся в проводящей среде. Иными словами помехи, распространяющиеся по проводникам внутри схемы;

— распространение помех за счет электромагнитных волн в пространстве. Этот вид путей распространения помех включает существующие емкостные (между площадками и «антенками») и магнитные связи (между контурами). Иными словами распространение помех осуществляется через пространство или, кому как удобнее, эфир являющийся проводником для распространения электромагнитных возмущений.

Различают два вида кондуктивных помех:

— дифференциальные помехи – пульсации напряжения, возникающие между двумя шинами питания. То есть контур протекания тока помехи ограничен контуром токопроводящих шин внутри устройства. С этими помехами бороться проще.

— синфазные помехи — пульсации напряжения, возникающие между любой из шин питания и общим проводом (землей). Иными словами потенциал всех шин питания одновременно «осциллирует» относительно уровня земли. В этом случае контур протекания тока помехи замыкается на корпус устройства за счет емкостной связи, и контур, охватываемый током, получается «объемным». С этими помехами бороться несколько сложнее.

Для подавления кондуктивных помех используют помехоподавляющие фильтры. Для подавления помех распространяющихся за счет электромагнитных волн используют электромагнитное экранирование.

Характерные параметры помехоподавляющих фильтров:

Основные типы входных помехоподавляющих пассивных фильтров

Пассивные помехоподавляющие фильтры широко применяются в различных источниках питания [Векслер Г.С., Недочетов В.С. и др. Подавление электромагнитных помех в цепях электропитания. Киев: Тэхника. 1990. 167 с.] благодаря своей простоте и надежности.

Помехоподавляющие фильтры должны пропускать постоянный ток или ток низкой частоты (50 Гц) и блокировать высокочастотные помехи. В зависимости от назначения и используют:

На рисунке FLTR.5 представлены электрические схемы емкостных фильтров, предназначенные для подавления только несимметричных (FLTR.5а), только симметричных (FLTR.5б) и обоих типов помех одновременно (FLTR.5в).

а – подавление несимметричных помех (конденсаторы Cy);

б — подавление симметричных помех (конденсаторы Cx);

в – комбинированное включение — подавление симметричных и несимметричных помех.

На рисунке FLTR.6 представлены электрические схемы индуктивных помехоподавляющих фильтров. Развязанные дроссели на прямом и обратном пути тока подавляют как симметричные, так и несимметричные помехи (рисунок FLTR.6а).

Сдвоенный дроссель с синфазным включением обмоток (рисунок FLTR.6б) эффективно подавляет помехи, ток которых проходит через обмотки в одном направлении (несимметричные, но одинаковые по амплитуде тока); Для симметричных помех – эта схема представляет собой только индуктивность рассеяния (связи между обмотками). Преимущество схемы – в сетях переменного тока исключается подмагничивание рабочим током.

Сдвоенный дроссель с противофазным включением обмоток (рисунок FLTR.6в) эффективно подавляет помехи, ток которых проходит через обмотки в противоположных направлениях (симметричные, но одинаковые по амплитуде тока). Для данной схемы общая индуктивность дросселя для симметричных помех в четыре раза превышает индуктивность отдельно взятой обмотки [Векслер Г.С., Недочетов В.С. и др. Подавление электромагнитных помех в цепях электропитания. Киев: Тэхника. 1990. 167 с.]. Таким образом, резко уменьшаются массогабаритные параметры фильтра. Недостатком является значительное падение напряжения на фильтре, вследствие чего эта схема фильтра используется крайне редко.

Индуктивно-связанные дроссели (рисунок FLTR.6 б, в) позволяют снизить падение напряжения на фильтре и уменьшить потери.

а – развязанные дроссели на прямом и обратном пути тока;

б – сдвоенный дроссель с синфазным включением обмоток;

в – сдвоенный дроссель с противофазным включением обмоток.

На основе представленных схем емкостных и индуктивных фильтров строят индуктивно-емкостные фильтры или просто LC-фильтры. Однозвенные LC-фильтры делятся на:

На рисунке FLTR.7 показаны примеры всех трех топологий однозвенных LC фильтров с использованием конденсаторов подавления несимметричных помех и сдвоенных дросселей с синфазным включением обмоток.

а – Г-образный LC-фильтр;

б – Т-образный LC-фильтр;

в – П-образный LC-фильтр.

Многозвенные фильтры

Для улучшения помехоподавления используют комбинацию различных типов фильтров. Пример эволюции построения фильтров представлен на рисунке FLTR.8.

а – Г-образный LC-фильтр с конденсатором подавления несимметричных помех;

б – Т-образный LC-фильтр с конденсаторами подавления несимметричных и несимметричных помех;

в – Т-образный LC-фильтр с конденсаторами подавления несимметричных и несимметричных помех;

г – Т-образный LC-фильтр с конденсаторами подавления несимметричных и несимметричных помех.

Та или иная последовательность и комбинация отдельных простых фильтров в многозвенном составном фильтре выбирается в соответствии с решаемыми задачами. Однако в любом случае важно, чтобы фильтр содержал как емкостные, так и индуктивные элементы. И был симметричным по отношению к прохождению помех (туда и обратно).

Необходимо отметить, что если сеть не предусматривает «земляного» провода, то подавление несимметричных помех с помощью емкостных звеньев фильтра неэффективно.

Расчет вносимого затухания

Расчет вносимого фильтром затухания проводится отдельно для симметричных и отдельно для несимметричных помех.

Таблица FLTR.1 — Затухание различных типов фильтров

Тип, Схема, Вносимое затухание (в Дб)

Здесь R – внутреннее сопротивление источника помехи; сопротивление приемника помехи принято равным сопротивлению источника (то есть R)

Расчет полного сопротивления элементов электромагнитных фильтров

Таблица FLTR.2 — Полное сопротивление элементов электромагнитных фильтров

Тип элемента, Эквивалентная схема, Полное сопротивление

Выпрямители напряжения емкостный фильтр

Формула

Выпрямители

Назначение выпрямителя

Выпрямители используются для превращения переменного напряжения в постоянное. Их схемотехника состоит в том, чтобы направить входной переменный ток таким образом, чтобы через выходную нагрузку он протекал только в одном направлении. Выпрямители бывают пассивные и активные. В пассивных выпрямителях используются приборы с односторонней проводимостью – диоды. В активных выпрямителях используются электронные коммутационные элементы (MOSFET, IGBT, биполярные), включаемые по определенному алгоритму с синхронизацией с полярностью входного напряжения. Поэтому они часто называются синхронными выпрямителями.

Часто выпрямитель устанавливается сразу после трансформатора. Это справедливо как для низкочастотных, так и для высокочастотных схем. Поэтому схемотехника выпрямителей будет представлена в связке с трансформатором и пока только с резистивной нагрузкой.

Однополупериодный выпрямитель

Самая простая схема выпрямления (рисунок RECT.1). Всего один диод. В течение положительной полуволны диод открыт и напряжение прикладывается к нагрузке. Соответственно через нагрузку течет ток. Во время отрицательной полуволны диод закрыт, и ток через нагрузку не протекает. В результате максимальная амплитуда напряжения на нагрузке VR меньше амплитуды входного переменного напряжения VA на величину VF – прямого падения напряжения на диоде:

Формула

Выходное напряжение имеет форму полусинусоидальных волн (рисунок RECT.2) чередующихся паузами длительностью полпериода. Трансформатор нагружен только в периоды прямой проводимости диода. Максимальное напряжение на диоде равно удвоенному входному максимальному напряжению 2VA.

— только один диод, минимальная сложность схемы, минимальная стоимость выпрямления;

— высокие пульсации напряжения в нагрузке;

— подмагничивание сердечника трансформатора, неравномерная нагрузка на сеть (относится к низкочастотным трансформаторам, и импульсным двухтактным схемам) вследствие того, что мощность потребляется только в течение половины периода.

— в обратноходовых и прямоходовых однотактных преобразователях;

— в дополнительных цепях питания, имеющих существенном меньшую нагрузку по сравнению с основной.

Мостовой выпрямитель

Наиболее распространенная двухполупериодная схема выпрямления (рисунок RECT.3).Четыре диода, включенные таким образом, что работают попеременно. В течение положительного полупериода ток проводят диоды VD2 и VD3, в течение отрицательного – VD1 и VD4. Таким образом, мостовой выпрямитель обеспечивает подключение нагрузки к источнику в течение всего периода переменного напряжения. Выходное напряжение имеет форму полусинусоидальных волн, следующих друг за другом (рисунок RECT.4). Амплитуда напряжения на нагрузке меньше амплитуды входного переменного напряжения на величину 2VF – сумму падения напряжения на диодах, поскольку в мостовой схеме ток проходит через два диода:

Формула

Именно поэтому применение мостовой схемы нецелесообразно при низких входных напряжениях (менее 12-15 В) поскольку «все упадет» на диодах.

Максимальное напряжение на диодах равно единичному входному максимальному напряжению VA.

— малые пульсации напряжения в нагрузке;

— обеспечивает симметричную нагрузку трансформатора (без подмагничивания);

— нет необходимости в использовании хитрого трансформатора со средней точкой.

— четыре диода, определенная сложность схемы,

— высокий относительный уровень потерь (низкий КПД) при малом входном напряжении.

— в выходных выпрямителях двухтактных преобразователей при высоком выходном напряжении (более 15 В);

— в схемах с низкочастотным трансформатором;

— во входной цепи преобразователей с бестрансформаторным входом;

— в дополнительных цепях питания.

Двухполупериодный выпрямитель со средней точкой трансформатора

Основная схема выпрямления для малых выходных напряжений (12 В и менее). Особенность схемы состоит в использовании фактически двух выходных обмоток трансформатора, соединённых вместе так, чтобы напряжение на выводах обмоток относительно общей точки было противоположно по фазе (рисунок RECT.5). При этом в течение одного полупериода «работает» обмотка «1» с диодом VD1, а в другом полупериоде «работает» обмотка «2» с диодом VD2. При этом «полусинусоиды» поочередно складываются в результирующее напряжение на нагрузке, имеющее форму полуволн следующих друг за другом, как в мостовом преобразователе (рисунок RECT.6). Амплитуда напряжения на нагрузке меньше амплитуды входного переменного напряжения на величину VF – прямого падения напряжения на диоде:

Формула

В некотором роде этот выпрямитель представляет собой два однополупериодных выпрямителя включенных параллельно друг другу, но питающихся от обмоток находящихся в противофазе. Максимальное напряжение на диодах равно удвоенному входному максимальному напряжению 2VA.

— малые пульсации напряжения в нагрузке;

— обеспечивает симметричную нагрузку трансформатора (без подмагничивания);

— всего два диода, меньше в двухполупериодных схемах не бывает;

— высокая энергетическая эффективность, в том числе при малых выходных напряжениях.

— использование хитрого трансформатора с отводом от средней точки или соединенных двух обмоток, кроме этого габаритная мощность трансформатора должна быть выше по сравнению с мостовой схемой;

— два диода, сравнительная сложность схемы подключения вследствие необходимости соблюдать фазировку обмоток трансформатора;

— высокий относительный уровень потерь (низкий КПД) при малом входном напряжении.

— в выходных выпрямителях двухтактных преобразователей, в том числе при низком выходном напряжении (более 15 В);

— в схемах с низкочастотным трансформатором;

— в сильноточных и низковольтных цепях.

В реальности амплитуды напряжений обмоток (и их мощности) могут несколько отличаться друг от друга. Это необходимо контролировать экспериментально.

Работа выпрямителей совместно с конденсатором фильтра

Как правило, выпрямители работают в связке с конденсатором фильтра выполняющим функцию буферного накопителя энергии и сглаживающим пульсации напряжения. Эта схема включения выпрямителей имеет свои особенности. Об этом ниже.

Однополупериодный выпрямитель с конденсатором фильтра

Каждый из циклических периодов работы схемы однополупериодного выпрямителя с конденсатором фильтра можно условно разделить на два интервала (рисунок RECT.8):

I – в течение первого интервала когда напряжение источника превышает текущее значение напряжения на конденсаторе, диод находится в прямом смещении и проводит ток который подзаряжает конденсатор фильтра.

II – в течение второго интервала, который начинается когда напряжение источника становится меньше напряжения на только что подзаряженном конденсаторе фильтра, при этом к диоду приложено обратное напряжение и он не проводит ток. В этом интервале напряжение на фильтрующем конденсаторе плавно уменьшается в результате разряда током нагрузки. Величина обратного напряжения приложенного к диоду складывается из напряжения на конденсаторе VC и напряжения источника (обратная полуволна). Таким образом, в точке максимума к диоду фактически прикладывается удвоенное напряжение источника.

Резюме: Подзаряд конденсатора фильтра происходит только один раз в течение всего периода. К диоду прикладывается удвоенное напряжение питания выпрямителя.

Мостовой выпрямитель с конденсатором фильтра

В данном случае каждый из циклических периодов работы схемы однополупериодного выпрямителя с конденсатором фильтра можно условно разделить на четыре интервала (рисунок RECT.10):

I – в течение первого интервала текущее значение напряжения источника (положительная полуволна) превышает напряжение на конденсаторе, диоды VD2, VD3 в открыты прямом смещении и ток источника подзаряжает конденсатор фильтра. При этом к диодам VD1, VD4 прикладывается обратное напряжение равное VA (которое в этот период достигает своего максимума):

Формула Формула

VF – прямого падения напряжения на диоде.

II – в течение второго интервала, который начинается когда напряжение источника становится меньше напряжения на подзаряженном конденсаторе фильтра к диодам VD2, VD3прикладывается запирающее напряжение. В этот период все диоды моста находятся в закрытом состоянии и напряжение между ними перераспределятся по закону (рисунок RECT.10):

Формула Формула

Напряжение на фильтрующем конденсаторе VC плавно уменьшается в результате разряда током нагрузки.

III – в течение третьего интервала в момент когда напряжение отрицательной полуволны превышает напряжение на конденсаторе, другая пара диодов VD1, VD4 открывается и снова подзаряжается конденсатор фильтра. При этом уже к другой паре диодов VD2, VD3 прикладывается обратное напряжение равное VA (которое в этот период достигает своего максимума).

Формула Формула

IV – в течение четвертого интервала, который начинается когда напряжение источника становится меньше напряжения на подзаряженном конденсаторе фильтра к диодам VD2, VD3прикладывается запирающее напряжение. В этот период все диоды моста находятся в закрытом состоянии и напряжение между ними перераспределятся по закону (рисунок RECT.10):

Формула Формула

В течение интервала напряжение на фильтрующем конденсаторе плавно уменьшается в результате разряда током нагрузки.

Резюме: Подзаряд конденсатора фильтра происходит два раза в течение всего периода. Максимальное обратное напряжение, прикладываемое к диоду равно амплитуде напряжения питания выпрямителя.

Двухполупериодный выпрямитель со средней точкой с конденсатором фильтра

Аналогично мостовому выпрямителю каждый из циклических периодов работы схемы однополупериодного выпрямителя с конденсатором фильтра можно условно разделить на четыре интервала (рисунок RECT.12):

I – в течение первого интервала текущее значение напряжения VA1 верхней обмотки превышает напряжение на конденсаторе, диод VD1 в открыт и к конденсатор фильтра подзаряжается. При этом диоду VD2 прикладывается обратное напряжение сумме напряжений обмотки трансформатора VA2 (которое в этот период достигает своего максимума) и напряжения на конденсаторе VC:

Рисунок-схема Рисунок-схема

II – в течение второго интервала, который начинается когда напряжение на верхней обмотке становится меньше напряжения на подзаряженном конденсаторе фильтра CF к диоду VD1 прикладывается запирающее напряжение. В этот период оба диода находятся в закрытом состоянии и напряжение между ними перераспределятся по закону (рисунок RECT.12):

Формула Формула

В течение интервала напряжение на конденсаторе фильтра плавно уменьшается в результате разряда током нагрузки.

III – в течение третьего интервала аналогично интервалу I когда текущее значение напряжения VA2 верхней обмотки превышает напряжение на конденсаторе, диод VD2открывается и конденсатор фильтра подзаряжается. К диоду VD1 прикладывается обратное напряжение сумме напряжений обмотки трансформатора VA1 (которое в этот период достигает своего максимума) и напряжения на конденсаторе VC:

Формула Формула

IV – в течение четвертого интервала, который начинается когда напряжение на нижней обмотке VA2 становится меньше напряжения на подзаряженном конденсаторе фильтра к диоду VD2 прикладывается запирающее напряжение. В этот период оба диода находятся в закрытом состоянии и напряжение между ними перераспределятся по закону (рисунок RECT.12):

Формула Формула

В течение интервала напряжение на конденсаторе фильтра плавно уменьшается в результате разряда током нагрузки.

Резюме: Подзаряд конденсатора фильтра происходит два раза в течение всего периода. Максимальное обратное напряжение, прикладываемое к диоду равно удвоенной амплитуде напряжения на обмотке VA1, VA2.

Расчет емкости конденсатора при заданном уровне пульсаций напряжения на выходе мостового выпрямителя с конденсатором фильтра

Напряжение на входе и выходе мостового выпрямителя имеет вид, представленный на рисунке RECT.13 [Источники вторичного электропитания с бестрансформаторным входом. Бас А.А., Миловзоров В.П., Мусолин А.К. М.: Радио и Связь, 1987. 160 с.]. Там же представлены формы импульсов тока через диоды и тока нагрузки.

Видно, что энергия, запасаемая в конденсаторе фильтра передается в нагрузку в течение времени:

Формула

θ – угол в радианах (часть периода) в течение которого осуществляется заряд конденсатора.

Количество переданной энергии равно:

Формула

P – мощность, потребляемая нагрузкой.

С другой стороны, количество переданной энергии также равно:

Формула

VC_max – максимальное напряжение на конденсаторе фильтра;

ΔVС – абсолютные значения пульсаций напряжения на конденсаторе фильтра;

Cf – емкость конденсатора фильтра.

Приравнивая эти выражения для количества переданной энергии получим:

Формула

Формула

То можно выразить емкость конденсатора, обеспечивающую заданный уровень пульсаций:

Формула

или в другом виде:

Формула

При малом уровне пульсаций можно полагать, что:

Формула

Iload_rms – среднеквадратичное значение тока нагрузки;

Vout_ rms – среднеквадратичное значение напряжения на нагрузке.

Формула

Или сокращая множители в числителе и знаменателе получаем выражения для расчета емкости конденсатора фильтра Сf обеспечивающий заданный уровень пульсаций ΔVС (при условии синусоидальной форме напряжения):

Формула

VC_max – максимальное напряжение на конденсаторе фильтра;

ΔVС – абсолютные значения пульсаций напряжения на конденсаторе фильтра;

Iload_rms – действующее (среднеквадратичное) значение тока нагрузки;

Здесь максимальное напряжение на конденсаторе фильтра VC_max меньше амплитуды входного переменного напряжения VA на величину падения напряжения на выпрямителе Vrect:

Формула

Соотношения для расчета емкости конденсатора для двухполупериодного выпрямителя со средней точкой с конденсатором фильтра аналогично.

Расчет амплитуды импульсов тока при заданном уровне пульсаций напряжения на выходе мостового выпрямителя с конденсатором фильтра

Оценим амплитуду импульсов тока через диоды мостового выпрямителя.

Длительность импульса тока Δtθ составляет:

Формула Формула

Принимаем, что амплитуда пульсаций тока незначительна и ток через нагрузку можем считать постоянным и равным среднему току нагрузки Iload_avg, тогда заряд, протекающий через нагрузку в течение половины периода равен:

Формула

Форма импульсов тока через выпрямительные диоды хорошо аппроксимируется треугольником с высотой равной амплитудному значению тока IVD_max и шириной основания равной длительности Δtθ . Тогда заряд, протекающий через диоды за полупериод равен:

Формула

Из равенства электрического заряда проходящего через диоды полумоста QVD и заряда проходящего через нагрузку Qload в течение полупериода следует соотношение:

Формула

Откуда следует выражение для определения амплитуды импульсов тока:

Формула

Подставляя в которое выражение для длительности импульса тока Δtθ получаем:

Формула Формула Формула

VC_max – максимальное напряжение на конденсаторе фильтра;

ΔVС – абсолютные значения пульсаций напряжения на конденсаторе фильтра;

Iload_avg – среднее значение тока нагрузки;

Расчет по данным соотношениям имеет погрешность порядка 20-30 % (но в большую сторону, то есть с запасом).

Соотношения для расчета пульсаций напряжения на выходе двухполупериодного выпрямителя со средней точкой с конденсатором фильтра аналогично.